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We review recent results about the modelling of gravitational collapse to black holes in higher
dimensions. The models are constructed through the junction of two exact solutions of the Einstein
field equations: an interior collapsing fluid solution and a vacuum exterior solution. The vacuum
exterior solutions are either static or containing gravitational waves. We then review the global
geometrical properties of the matched solutions which, besides black holes, may include the
existence of naked singularities and wormholes. In the case of radiating exteriors, we show that
the data at the boundary can be chosen to be, in some sense, arbitrarily close to the data for the
Schwarzschild-Tangherlini solution.

1. Introduction

Higher dimensional black holes have recently been the subject of an increasing number of
research works (see [1] for a review) and play an important role in theoretical physics,
particularly in String Theory. However, the study of the actual dynamical process of collapse
resulting in black hole formation has deserved little attention from the mathematical point of
view.

Mathematically, black hole formation can be analysed by constructing appropriate
matched spacetimes which settle down through gravitational collapse to black hole solutions.
The junction (or matching) of two spacetimes requires the equality of the respective first
and second fundamental forms at some matching boundary hypersurface. These conditions
amount to a set of differential equations that the spacetime metric functions need to satisfy
at that matching boundary. This is often not an easy problem as the metric functions are also
required to satisfy the respective Einstein field equations (EFEs) on both sides of thematching
surface. In what follows, we review some results about models of black hole formation with
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emphasis on models resulting from the spacetime matching with an exterior which is either
vacuum or a cosmological background.

For a zero cosmological constant Λ, there are well known spherically symmetric
examples, one of the simplest being the Oppenheimer-Snyder model which results from the
matching of a Friedman-Lemaı̂tre-Robertson-Walker (FLRW) dust metric to a Schwarzschild
exterior. For Λ/= 0 spherical cases, the results are less well-known: the matching of Λ-FLRW
with the Λ-Schwarzschild solution (also called Kottler solution) has been investigated by
Balbinot et al. [2], Nakao [3], and Markovic and Shapiro [4] and its Λ-Lemaı̂tre-Tolman-
Bondi counterpart by Lake [5]. The matching of the dust Λ-Szekeres solution with Kottler
was recently studied by Debnath et al. [6] (following a work of Bonnor [7] for Λ = 0), while
the matching of a collapsing fluid with tangential pressure and Λ/= 0 to Kottler has been
investigated by Madhav et. al. [8]. The above examples give rise to black hole solutions with
Λ/= 0 in spherical symmetry.

The collapse to nonspherical black holes has been less studied. Smith and Mann [9]
have shown that one can match a collapsing k = −1 FLRW spacetime to an asymptotically
anti-de Sitter (AdS) exterior, as a model of gravitational collapse to higher genus
asymptotically AdS black holes. In a related work, Lemos [10]matched a flat FLRWmetric to
a radiating Vaidya exterior whose collapse results in a toroidal black hole. Subsequently, there
has been considerable interest in models of toroidal and higher genus black holes (also called
topological black holes), shells, and horizons, see, for example, [11–14], partly due to the
existence of a “landscape” of vacua states in String theory withΛ positive, negative, and zero
(see, e.g., [15]). More recently, [16] generalised the earlier work and constructed models for
the collapse of inhomogeneous and anisotropic fluids to topological asymptotically AdS black
holes in planar and hyperbolic symmetry.

There is also a vast literature about the formation of black holes in cosmological
models. There are, essentially, three types of models which are geometrically different,
namely, models with (i) junctions with no shells where twometrics are involved, for example,
swiss-cheese-type models (see, e.g., [17] and references therein); (ii) junctions with shells
(these can be thin or thick), for example, models with domain walls and bubbles mentioned
in the previous paragraph; (iii) no junctions, where a single metric is involved in the
problem, for example, models of collapsing over-densities resulting from perturbations on
cosmological backgrounds.

In the context of primordial black hole (PBH) formation, the gravitational collapse
due to first-order density perturbations in FLRW models of the early universe radiative
phase was first studied by Zeldovich and Novikov [18] as well as Hawking [19]. These
works were then generalised [20, 21], in particular, to include black hole formation from
the collapse of cosmic strings produced in phase transitions with symmetry breaking [22].
The collision of bubble walls formed at phase transitions was also considered as sources of
PBHs in [23–25]. Different scenarios were subsequently studied and a review is in [26]. More
recently, cosmological black hole formation due to QCD and electroweak phase transitions
were studied by, for example, [27] following earlier works of [28] and bubble collision has
been investigated in detail (for various potentials and using planar, hyperbolic, and spherical
symmetry in both dS and AdS phases) by, for example, [11, 29]. Furthermore, PBH formation
in cosmological models with Λ/= 0 has very recently been analysed in [30], which contains an
interesting review of numerical results up to the year 2011 (for a review on the Λ = 0 case see
[31]). In turn, the collapse to black holes in FLRW models have also been investigated using
nonlinear scalar metric perturbations on radiative [32] and scalar field backgrounds [33],
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with those recent works establishing interesting observational bounds on the cosmological
spectra nongaussianity.

In this paper, we will be mostly interested in cases which involve spacetime junctions
with no shells and, in particular, we will focus on nonspherical spacetimes containing a non-
zero Λ. We start by reviewing the theory of spacetime junctions and we then summarise
recent results about the gravitational collapse to black holes in higher dimensions [34]
which generalise the results of [16]. We start by considering a family of solutions to the
Λ-vacuum Einstein equations in n + 2 dimensions which contains black hole solutions.
We find some possible interior collapsing solutions with dust as source and study the
corresponding matching problem. We then analyse the global geometrical properties of the
matched spacetime and find conditions for which the spacetimes have no naked singularities.

We also review the interesting case of a model of radiating gravitational collapse. In
particular, we take the anisotropic Bizoń-Chmaj-Schmidt (BCS) solution in 4 + 1 dimensions
and prove that it can bematched to some collapsing dust interiors. The BCS solution is known
[35] to settle down via radiation to the Schwarzschild-Tangherlini (SchT) solution. In turn,
the latter is known to be stable [35, 36] and we show that, for some interiors, the data at the
matching surface can be chosen to be arbitrarily close to the data for a SchT exterior [34]. So,
the resulting spacetime models the gravitational collapse of a fluid in five dimensions with
an exterior emitting gravitational waves which settles down to the SchT solution.

2. Geometric Theory of Spacetime Junctions in Brief

Let (M+, g+) and (M−, g−) be two n-dimensionalC3 space times with oriented boundariesΩ+

andΩ−, respectively, such thatΩ+ andΩ− are diffeomorphic. The matched space time (M,g)
is the disjoint union ofM± with the points in Ω± identified such that the junction conditions
are satisfied (Israel [37], Clarke and Dray [38] and Mars and Senovilla [39]). Since Ω± are
diffeomorphic, one can then view those boundaries as diffeomorphic to a 3-dimensional
orientedmanifoldΩwhich can be embedded inM+ andM−. Let {ξα} and {x±i} be coordinate
systems on Ω and M±, respectively, where α, β = 1, 2, . . . , n − 1 and i, j = 1, 2, . . . , n. The two
embeddings are given by the following C3 maps:

Φ± : Ω −→M±, (2.1)

ξα �−→ xi
±
= Φi±(ξα), (2.2)

such that Ω± ≡ Φ±(Ω) ⊂M±. The diffeomorphism from Ω+ to Ω− is Φ− ◦Φ+−1.
Given the basis {∂/∂ξα|p} of the tangent plane TpΩ at some p ∈ Ω, the push forwards

dΦ±|p map {∂/∂ξα|p} into three linearly independent vectors atΦ±(p) represented by �e ±
α |Φ±(p):

dΦ±
(

∂

∂ξα

∣∣∣∣
Ω

)
=
∂Φ±i

∂ξα
∂

∂x±i

∣∣∣∣
Ω±

≡ �e ±
α

∣∣
Ω± = e±iα �e

±
α

∂

∂x±i

∣∣∣∣
Ω±
. (2.3)

On the other hand, using the pull backsΦ±∗ of the mapsΦ±, the metrics g± can be mapped to
Ω given two symmetric 2-covariant tensors g+ and g− whose components in the basis {dξα}
are

g±
αβ ≡ e±iα e

±j
β
gij

∣∣
Ω± =

(
�e ±
α · �e ±

β

)∣∣∣
Ω±
. (2.4)
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The first matching conditions are given by the equality of the first fundamental forms (Israel
[37])

g+
αβ = g

−
αβ. (2.5)

The bases {�e +
α |p} and {�e −

α |p} can then be identified,

dΦ+
(

∂

∂ξα

∣∣∣∣
Ω

)
= dΦ−

(
∂

∂ξα

∣∣∣∣
Ω

)
, (2.6)

as can the hypersurfaces Ω+ ≡ Ω−, so henceforth we represent both Ω± by Ω.
We now define a 1-form n, normal to the hypersurface Ω, as

n±
(
�e ±
α

)
= 0. (2.7)

The vectors {�n±, �e ±
α } constitute a basis on the tangent spaces to M± at Ω±. Since the first

junction condition allows the identification of {�e +
α } with {�e −

α }, we only have to ensure that

both bases have the same orientation and that n+i n
+i Ω= n−i n

−i is satisfied in order to identify
the whole 4-dimensional tangent spaces ofM± at Ω, {�n+, �e +

α } ≡ {�n−, �e −
α }.

The second fundamental forms are given by

K±
αβ = −n±i e

±j
α ∇±

j e
±i
β (2.8)

and the second matching conditions, for nonnull surfaces, are the equality of the second funda-
mental forms

K+
αβ = K

−
αβ. (2.9)

We note that these matching conditions do not depend on the choice of the normal vectors.
The first matching conditions ensure the continuity of the metric across Ω while the second
conditions prevent infinite jump discontinuities in the Riemann tensor so that the Einstein
field equations are well defined in the distributional sense.

The theory is also fully developed for the case where the matching boundaryΩ is null
or changes character. In that case, the normal vectors n±α are substituted by the so-called
rigging vectors, which are vectors nonwhere tangent to Ω± and are used to define generalised
second fundamental forms, see [39] for the details.

We are interested in the particular cases for which the matching surface inherits a
certain symmetry of the two space times (M±, g±). Such matching is said to preserve the
symmetry. In practice one demands that the matching hypersurface is tangent to the orbits
of the symmetry group to be preserved, see [40].

We note that if the exterior is a vacuum spacetime and the interior contains a fluid then
the normal pressure of the fluid has to vanish at the boundaryΩ. This is a consequence of the
fact that the matching conditions imply

nα−T
−
αβ

Ω= nα+T
+
αβ. (2.10)
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We also note that if the interior contains dust then the boundary Ω− is ruled by geodesics,
and we will explore this fact to solve the matching problem in what follows.

3. Black Holes in Higher Dimensions

An (n + 2)-dimensional Lorentzian manifold (M,gab) is a solution of the Einstein equations
with cosmological constant Λ and energy-momentum tensor Tab if its Ricci tensor Rab satisfies

Rab = Λgab + κ
(
Tab − 1

n
Tgab

)
, (3.1)

where κ is a constant, T = Taa and the indices a, b = 1, 2, . . . , n + 2. We will consider the family
of higher-dimensional black holes given in the following proposition (see also [41, 42]).

Proposition 3.1. Let (N,dσ2) be an n-dimensional Riemannian Einstein manifold with Ricci scalar
nλ, and let

V (r) =
λ

n − 1
− 2m
rn−1

− Λr2

n + 1
, (3.2)

where m, Λ are constants. If J ⊂ R is an open interval where V is well defined and does not vanish
then the (n + 2)-dimensional Lorentzian manifold (M,ds2) given byM = R × J ×N and

ds2 = −V (r)dt2 + (V (r))−1dr2 + r2dσ2 (3.3)

is a solution of the vacuum Einstein equations with cosmological constant Λ.

It is easy to see that the above metric generalises the Kottler metric to arbitrary
dimensions. Nevertheless, black holes with the above metric do not immediately integrate
into the usual intuition of a black hole in four dimensions. For instance, since themetric on the
sections of null infinity I does not need to be a metric of constant curvature, the spacetimes
are not asymptotically flat (Nor asymptotically de Sitter (dS), resp., anti de Sitter (AdS), in
the case of Λ > 0, resp., Λ < 0.); however, by analysing the equations for null geodesics inM
andN, one can show that the spacetimes are weakly asymptotically simple [34].

Proposition 3.2. The metrics (3.3) are conformally compactifiable at infinity and are weakly asymp-
totically-simple.

Therefore, by comparison with the four-dimensional case [16], the following prop-
erties hold.

(i) WithΛ = 0, λ > 0 andm > 0, V has a single zero, corresponding to an event horizon,
and asymptotes to a positive constant at large r. This is a black-hole solution, which
can be thought of as generalising the Schwarzschildmetric. The (degenerate)metric
on the horizon is dσ2, which is also the conformal metric on future null infinity I+.

(ii) WithΛ > 0,m > 0 and large enough positive λ, V (r) is positive between two zeroes,
corresponding to a black-hole event horizon and a cosmological event horizon. The
solution generalises the asymptotically dS Kottler solution.
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(iii) WithΛ < 0 andm > 0, V again has a single zero, corresponding to an event horizon,
and the solution generalises the asymptotically AdS Kottler solution.

(iv) The solutions in the previous class with λ ≤ 0 may have no global symmetries
except the staticity Killing vector. This is because compact, negative scalar curvature
Einstein manifolds have no global symmetries, nor does, for example, the Ricci-flat
metric on K3 (an example with λ = 0 and n = 4).

3.1. Generalised Friedman-Lemaı̂tre-Robertson-Walker Interiors

Wewill fill in the solutions of the previous section with (interior) collapsing dust solutions, so
that the resulting global spacetime is a model of gravitational collapse with a black hole as the
end state. In order to do that, we take the following classes of generalised FLRW spacetimes.

Proposition 3.3. The (n + 2)-dimensional Lorentzian metric,

ds2 = −dτ2 + R2(τ)
(
dρ2 + f2(ρ)dσ2

)
, (3.4)

is a solution of the Einstein equations with cosmological constant Λ and energy-momentum tensor
Tab = μuaub, corresponding to a dust fluid with density μ and velocity uadxa = dτ , if and only if
R(τ) and μ(τ) satisfy the conservation equation:

μRn+1 = μ0, (3.5)

for constant μ0, and the Friedman-like equation:

Ṙ2

R2
+

k

nR2
=

2κμ
n(n + 1)

+
Λ

n + 1
. (3.6)

We consider the matching of an interior metric (3.4) to a static exterior (3.3) at a
hypersurface Ω ruled by radial time-like geodesics in (3.3), that is, a surface of constant ρ
(say ρ = ρ0) in (3.4). We then solve the matching conditions (2.5) and (2.9) together with the
EFEs (3.6) to get the following result [34].

Theorem 3.4. The metric (3.3) can be matched to the FLRW-like metric (3.4) at ρ = ρ0 provided that
f ′(ρ0) > 0 andm = κμ0f(ρ0)

n+1/n(n + 1).

The matching boundary is comoving with the collapsing fluid whose dynamics is
given by (3.6). We call the matched spacetime of the previous theorem FLRW-Kottler space-
time. We now summarize some properties of the FLRW-Kottler spacetime in the three cases
Λ = 0, Λ > 0, and Λ < 0: when the Einstein manifoldN is not cobordant to a point (e.g., CP 2)
the solutions we find cannot have a regular origin, though they can be regular with spacetime
wormholes or a “cusp” at the origin. When there is a singularity at the origin, it may or may
not be visible from infinity. If the singularity is visible it is called naked singularity as it is
not hidden by an horizon. The next three propositions exploit these aspects, and Figures 1, 2,
and 3 show Penrose diagrams which represent the global structure of the matched spacetimes
in the cases Λ = 0, Λ < 0, and Λ > 0 [34]. In particular, by comparing the conformal lifetime
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J+

J−

(a)

J+

J−

(b)

Figure 1: Penrose diagram for Λ > 0 with the FLRW universe (a) recollapsing; (b) nonrecollapsing,
showing the matching surfaces and the horizons.

J

(a)

J

(b)

J2 J1

(c)

Figure 2: Penrose diagram for Λ < 0 and (a) λ > 0; (b) λ = 0; (c) λ < 0, showing the matching surfaces and
the horizons.

of the FLRW universe with the supremum of the possible values of ρ0 we show [34] the
following.

Proposition 3.5. If Λ = 0 (hence λ > 0) and (N, dσ2) is not an n-sphere then the locally naked
singularity of the FLRW-Kottler spacetime at ρ = 0 is always visible from future null infinity I+ for
k ≤ 0, but can be hidden if k > 0 and n ≥ 4 (space-time dimension n + 2 ≥ 6).

Interestingly, [43] investigated higher dimensional dust collapsing spacetimes with
Λ = 0 and also found that for dimension d = n + 2 ≥ 6 the final central singularity is always
hidden by an horizon, while for d < 6 naked singularities may appear and thus the cosmic
censorship conjecture is violated. By construction, their collapsing interiors are spherical,
while here we allow interior spacetimes with other topologies.

Proposition 3.6. If Λ > 0 (hence λ > 0) and (N, dσ2) is not an n-sphere then the locally naked
singularity of the FLRW-Kottler spacetime at ρ = 0 can be always hidden except if the FLRW universe
is recollapsing (hence k > 0) and n < 4.

The case Λ < 0 has wormhole solutions that may have causal curves which cross
from one J to the other and may violate causality. The next proposition, in particular, states
conditions under which this can be avoided (see also a result of Galloway [44]). Those
conditions are obtained by showing that the future (resp., past) horizons hit the matching
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J+

J−

(a)

J+

J−

(b)

Figure 3: Penrose diagram for Λ = 0 and (a) k ≤ 0; (b) k > 0, showing the matching surfaces and the
horizons.

surfaces at marginally outer trapped (resp., antitrapped) surfaces which are spacelike and, in
turn, that these two curves touch at Ṙ = ρ = 0.

Proposition 3.7. For Λ < 0 the FLRW-Kottler spacetime satisfies the following.

(1) If λ > 0 and (N, dσ2) is not an n-sphere then the locally naked singularity of the FLRW-
Kottler spacetime at ρ = 0 can always be hidden.

(2) If λ = 0 then the cusp singularity is not locally naked.

(3) If λ < 0 then no causal curve can cross the wormhole from one I to the other.

3.2. Generalised Lemaı̂tre-Tolman-Bondi Interiors

We consider now higher dimensional versions of the inhomogeneous Lemaı̂tre-Tolman-
Bondi (LTB) solutions, generalising those of [45].

Proposition 3.8. The (n + 2)-dimensional Lorentzian metric,

ds2 = −dτ2 +A(
τ, ρ

)2dρ2 + B(τ, ρ)2dσ2, (3.7)

is a solution of the Einstein equations with cosmological constant Λ and energy-momentum tensor
Tab = μuaub, corresponding to a dust fluid with density μ and velocity uadxa = dτ , if and only if
A(τ, ρ), B(τ, ρ) and μ(τ, ρ) satisfy

A = B′(1 +w(
ρ
))
,

μABn =M′(ρ)(1 +w(
ρ
))
,

(3.8)

for some functions w(ρ) andM(ρ), and

Ḃ2Bn−1 +

(
λ

n − 1
− 1(

1 +w
(
ρ
))2 − Λ

n + 1
B2

)
Bn−1 =

2κM
(
ρ
)

n
, (3.9)

(where dot and prime denote differentiation with respect to τ and ρ).
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This metric has three free functions of ρ, namely,w(ρ),M(ρ), and B(0, ρ), one of which
can be removed by coordinate freedom. We seek to match an interior represented by the
metric (3.7) to a static exterior represented by the metric (3.3) at a surface Ω ruled by radial
time-like geodesics in (3.3), that is, a surface of constant ρ (say ρ = ρ0) in (3.7). The solutions
to the matching conditions (2.5) and (2.9) allow us to prove [34].

Theorem 3.9. The metric (3.3) can be matched to the LTB-like metric (3.7) at ρ = ρ0 provided that
1 +w(ρ0) > 0 andm = (κ/n)M(ρ0).

Note that the matching boundary is again comoving with the collapsing inho-
mogeneous fluid and its dynamics is now given by (3.9). We will use the term LTB-
Kottler space-times for these matched solutions. The global properties of the LTB-Kottler
spacetime obtained in Theorem 3.9 are much more diverse than what we find in the FLRW-
Kottler spacetimes. For instance, one can easily find examples of black hole formation with
wormholes inside the matter with positive λ and Λ = 0, see [34] (similar results in 4
dimensions are in [46]).

4. Collapse with Radiating Exteriors

In this section, we consider models of gravitational collapse with a gravitational wave
exterior, so that the exterior metrics will be time-dependent generalisations of (3.3). This is a
specially interesting problem for observational and experimental purposes [36]. We take the
Bizoń-Chmaj-Schmidt (BCS) metric in (4 + 1) dimensions [36], although similar ansetz can
be made in other dimensions (see [47]). We then consider three different interiors with this
exterior, which are anisotropic generalisations of FLRW models [34]. Consider the metric:

ds2+ = −Ae−2δdt2 +A−1dr2 +
r2

4
e2B

(
σ2
1 + σ

2
2

)
+
r2

4
e−4Bσ2

3 , (4.1)

whereA, δ, and B are functions of t and r. The one forms σi are left invariant for the standard
Lie group structure on S3 and can be taken as

σ1 = cosψdθ + sin θ sinψdφ,

σ2 = sinψdθ − sin θ cosψdφ,

σ3 = dψ + cos θdφ,

(4.2)

where θ, ψ, φ are Euler angles on S3 with 0 < θ < π , 0 < φ < 2π , and 0 < ψ < 4π . The space-
time with B /= 0 is interpreted as containing pure gravitational waves with radial symmetry
[36] and the Schwarzschild-Tangherlini (SchT) limit is obtained for B = 0. There is a residual
coordinate freedom t → t̂ = f(t); δ → δ̂ = δ + log ḟ in (4.1), which one can use to set δ
arbitrarily along a timelike curve. The (4 + 1) dimensional vacuum EFEs give [36]

∂rA = −2A
r

+
1
3r

(
8e−2B − 2e−8B

)
− 2r

(
e2δA−1(∂tB)

2 +A(∂rB)
2
)
, (4.3)

∂tA = −4rA(∂tB)(∂rB), (4.4)
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∂rδ = −2r
(
e2δA−2(∂tB)

2 + (∂rB)
2
)
, (4.5)

together with the quasi-linear wave equation for B

∂t
(
eδA−1r3(∂tB)

)
− ∂r

(
e−δAr3(∂rB)

)
+
4
3
e−δr

(
e−2B − e−8B

)
= 0. (4.6)

In [36], the authors solve this system numerically by giving B and ∂tB at t = 0 with A(0, 0) =
0 = δ(t, 0). Within the BCS class, they provide numerical evidence that linear perturbations
of SchT decay in time so that SchT is linearly stable, in this sense. The nonlinear stability of
SchT within the BCS class was later established in [35].

We will give data A, B and the normal derivative ∇nB at the timelike boundary

Ω of the collapsing interior with the gauge choice δ Ω= 0. Uniqueness and local existence
follow as standard. From [35], one knows that if data close to that for SchT is given on an
asymptotically flat hypersurface then the solution will exist forever and stay close to the SchT
solution. As we will see, in some of our cases, data on Ω can be chosen to be arbitrarily close
to data for SchT.

4.1. Generalised FLRW Interiors

As interior metrics, we will consider three classes of FLRW-like solutions based on
Riemannian Bianchi-IX spatial metrics which are, respectively, the Eguchi-Hanson metric
(with Rij = 0), the k-Eguchi-Hanson metric (with Rij = kgij excluding the case k = 0), and
the k-Taub-NUT metric (with Rij = kgij , including, k = 0 as a particular case).

We summarize now our main result and leave the details of the proof to the next three
sections (see also [34]).

Theorem 4.1. In each case, the interior metric gives consistent data for the metric (4.1) at a comoving
time-like hypersurface. Local existence of the radiating exterior in the neighbourhood of the matching
surface is then guaranteed. In the case of Eguchi-Hanson and k-Taub-NUT with k < 0, the data can
be chosen to be close to the data for the Schwarzschild-Tangherlini solution.

4.1.1. The Eguchi-Hanson Metric

Eguchi and Hanson found a class of self-dual solutions to the Euclidean Einstein equations
with metric given by [48]

hEH =

(
1 − a4

ρ4

)−1
dρ2 +

ρ2

4

(
σ2
1 + σ

2
2

)
+
ρ2

4

(
1 − a4

ρ4

)
σ2
3 , (4.7)

with σi given by (4.2) and a is a real constant. The generalised FLRW metric built on this
Riemannian metric is

ds2− = −dτ2 + R2(τ)hEH, (4.8)
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with the EFEs for a dust source reducing to

μR4 = μ0, Ṙ2 =
κμ0

6R2
. (4.9)

We match at ρ = ρ0 so that Ω− is parameterised by Ω− = {τ, ρ = ρ0}. The equality of the first
and second fundamental forms at Ω then gives

r
Ω= Rρe−B, e−6B Ω= 1 − a4

ρ4
, ∇nB

Ω= − 2a4

3Rρ5

(
1 − a4

ρ4

)−1/2
, Ae−δṫ Ω= e2B

(
1 − a4

3ρ4

)
,

(4.10)

from which we calculate A, ∂tB, and ∂rB onΩ in terms of quantities from the interior. At this
point, we have B, ∇nB, and A on Ω, and we use the gauge freedom to set δ = 0 on Ω. By
(4.10), we have

B
Ω= O

(
a4

ρ4

)
, ∇nB

Ω=
(
ρR

)−1
O

(
a4

ρ4

)
, (4.11)

and, to say that the data is close to SchT data, we want these to be small. The first term is
small if ρ  a. The second term will increase without bound as R decreases to zero. If we
restrict R by its value when a marginally outer trapped surface forms on Ω then, from the
Friedman equation and with ρ  a, this happens when R2ρ2 ∼ κμ0ρ

4 so that we control ∇nB
on Ω by controlling μ0. So, by choice of the location of Ω, at ρ = ρ0, and choice of μ0, we can
choose data close to SchT.

4.1.2. The k-Eguchi-Hanson Metric

The k-Eguchi-Hanson metric is given by [49]

hkEH = Δ−1dρ2 +
ρ2

4

(
σ2
1 + σ

2
2

)
+
ρ2

4
Δσ2

3 , (4.12)

where Δ = 1 − a4/ρ4 − kρ2/6. This metric is complete for k < 0 and a4 = 4(p − 2)2(p + 1)/3k2,
ρ > (−2(p − 2)/k)1/2, where p ≥ 3 in an integer. Since k is related to a for a complete solution,
we cannot obtain the previous case from this case by taking k → 0. However, the matching
formulae do formally allow this limit. The generalised FLRW metric built on this metric is
ds2− = −dτ2 + R2(τ)hkEH and the respective EFEs for a dust source reduce to

μR4 = μ0, Ṙ2 +
k

3
=
κμ0

6R2
. (4.13)

The matching conditions on Ω give

r
Ω= Rρe−B, e−6B Ω= Δ, ∇nB

Ω= −Δ
−1/2

3ρR

(
2a4

ρ4
− kρ2

6

)
, Ae−δṫ Ω= e2B

(
1 − a4

3ρ4
− 2kρ2

9

)
.

(4.14)
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We can calculate A in terms of interior data, as before, and check that this is consistent with
the EFEs (4.3) and (4.4). However, in this case, it is not clear that we may choose data close
to SchT data as the normal derivative of B is

∇nB
Ω=
kρ

6R
, (4.15)

and for this to be small, we would require R to be large on Ω outside the marginally trapped
surface. It is hard to see how to arrange this and so although the solution in the exterior exists
locally, we do not have a good reason to think that it will settle down to SchT.

4.1.3. k-Taub-NUT

We consider the Riemannian Taub-NUT metric with a cosmological constant (k rather than
Λ with our conventions) [50, 51]

hTN =
1
4
Σ−1dρ2 +

1
4

(
ρ2 − L2

)(
σ2
1 + σ

2
2

)
+ L2Σσ2

3 , (4.16)

where Σ = (ρ −L)(1− (k/12)(ρ −L)(ρ + 3L))/(ρ +L), and use it to construct the 4+ 1 interior:

ds2− = −dτ2 + R2(τ)hTN. (4.17)

The EFEs for a dust source are again (4.13). From matching the first fundamental forms we
get

r
Ω= R

(
ρ2 − L2

)1/2
e−B, e−6B Ω=

4L2Σ
ρ2 − L2

, (4.18)

and the second matching conditions read

Ae−δṫ Ω=
4R
3r

Σ1/2e4B
(

2L2(2ρ + L)Σ
ρ2 − L2

− k

6
L2(ρ − L)

)
, ∇nB

Ω=
1
3R

(
2Σ1/2

ρ + L
+
k
(
ρ − L)
6Σ1/2

)
.

(4.19)

As before, the expression forA onΩ is consistent with Ȧ calculated from (4.3) and (4.4). Now
note that if kL2 = −3 then the metric (4.16) is precisely the 4-dimensional hyperbolic metric.
In this case, B and ∇nB vanish on Ω whatever is the value of ρ0, so that the exterior metric is
precisely SchT: this is a case from the previous section as the interior is now a standard FLRW
cosmology. Consequently, if we take kL2 close to −3 we get data close to SchT data. To see
this, set kL2 = −3(1 + ε). Then Σ = ((ρ2 − L2)/4L2)(1 +O(ε)), so that

e−6B Ω= 1 +O(ε), ∇nB
Ω=

1
LR

O(ε), (4.20)

and the data (B,∇nB) can be chosen as small as desired by choosing large ρ0 and small ε.
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[36] P. Bizoń, T. Chmaj, and B. G. Schmidt, “Critical behavior in vacuum gravitational collapse in 4 + 1
dimensions,” Physical Review Letters, vol. 95, no. 7, p. 071102, 2005.

[37] W. Israel, “Singular hypersurfaces and thin shells in general relativity,” Il Nuovo Cimento B, vol. 44,
no. 1, pp. 1–14, 1966.

[38] C. J. S. Clarke and T. Dray, “Junction conditions for null hypersurfaces,”Classical and QuantumGravity,
vol. 4, no. 2, pp. 265–275, 1987.

[39] M. Mars and J. M. M. Senovilla, “Geometry of general hypersurfaces in spacetime: junction
conditions,” Classical and Quantum Gravity, vol. 10, no. 9, pp. 1865–1897, 1993.

[40] R. Vera, “Symmetry-preserving matchings,” Classical and Quantum Gravity, vol. 19, no. 20, pp. 5249–
5264, 2002.

[41] G. Gibbons and S. A. Hartnoll, “Gravitational instability in higher dimensions,” Physical Review D,
vol. 66, no. 6, 064024, 2002.

[42] G. W. Gibbons, D. Ida, and T. Shiromizu, “Uniqueness and non-uniqueness of static vacuum black
holes in higher dimensions,” Progress of Theoretical Physics. Supplement, no. 148, pp. 284–290, 2002.

[43] R. Goswami and P. S. Joshi, “Cosmic censorship in higher dimensions,” Physical Review D, vol. 69, no.
10, 104002, 2004.

[44] G. J. Galloway, “A “finite infinity” version of topological censorship,” Classical and Quantum Gravity,
vol. 13, no. 6, pp. 1471–1478, 1996.

[45] S. G. Ghosh and A. Beesham, “Higher dimensional inhomogeneous dust collapse and cosmic cen-
sorship,” Physical Review D, vol. 64, no. 12, 124005, 2001.

[46] C. Hellaby, “A Kruskal-like model with finite density,” Classical and Quantum Gravity, vol. 4, no. 3, pp.
635–650, 1987.
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