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The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV)
equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic
plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized
symbolic computation is applied in obtaining a series of exact solutions of the KdV equation.
Numerical studies have been made using plasma parameters which reveal different solutions,
that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points,
which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly
relativistic effect is found to significantly change the basic properties (namely, the amplitude and
the width) of the ion-acoustic waves. The result of the present investigation may be applicable to
some plasma environments, such as ionosphere region.

1. Introduction

Nonlinear evolution equations are widely used as models to describe complex physical
phenomena and have a significant role in several scientific and engineering fields [1, 2].
The propagation of solitary waves is important as it describes characteristic nature of the
interaction of the waves and the plasmas. In the case where the velocity of particles is much
smaller than that of light, ion-acoustic waves present the nonrelativistic behaviors, but in the
case where the velocity of particles approaches that of light, the relativistic effect becomes
dominant [3]. Actually high-speed and energetic streaming ions with the energy from 0.1 to
100MeV are frequently observed in solar atmosphere and interplanetary space. Nevertheless,
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Figure 1: Profile of localized pulses for expression (4.3).

relativistic ion-acoustic waves have not been well investigated. When we assume that the ion
energy depends only on the kinetic energy, such plasma ions have to attain very high velocity
of relativistic order. Thus, by considering the weakly relativistic effect where the ion velocity
is about 1/10 of the velocity of light, we can describe the relativistic motion of such ions in the
study of nonlinear interaction of the waves and the plasmas [4]. It appears that the weakly
relativistic and ion temperature effects play an important role in energetic ion-acoustic waves
propagating in interplanetary space [5, 6].
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Figure 2: Profile of pulses for expression (4.5) for v = 0.04, σ = 0.001, and γ0 = 0.01.
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Figure 3: The explosive solution for expression (4.7) for v = 0.04, σ = 0.001, and γ0 = 0.01.

Washimi and Taniuti [7] were the first to use reductive perturbation method to study
the propagation of a slow modulation of quasi-monochromatic waves through plasma. And
then the attention has been focused by many authors [8–11].

The evolution of small-but finite-amplitude solitary waves, studied by means of the
Korteweg-de Vries (KdV) equation, is of considerable interest in plasma dynamics.

Many powerful methods have been established and developed to study nonlinear
evolution equations (NLEEs). These methods include the inverse scatting method [12],
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Figure 4: The asymptotical property of Jacobi elliptic doubly periodic wave for expression (4.10) with
v = 0.04, σ = 0.001, a0 = 0, and m = 2.

the tanh function method [13], extended tanhmethod [14–16], the Exp-function method [17],
the extended F-expansion method [18], the Jacobi elliptic function expansion method [19],
the homogeneous balance method [20], sech-functionmethod [21], F-expansionmethod [22],
and the multiple exp-function method [23]. There is no unified method that can be used to
deal with all types of NLEEs. Fan [24] developed a new algebraic method with computerized
symbolic computation, which greatly exceeds the applicability of the existing tanh, extended
tanh methods, and Jacobi function expansion method in obtaining a series of exact solutions
of nonlinear differential equations.

Recently, the ion-acoustic solitary wave in collisionless unmagnetized plasma
consisting of warm ions fluid and isothermal electrons is studied using the time-fractional
KdV equation by El-Wakil et al. [25]. They showed that the time fractional can be used to
modulate the electrostatic potential wave.

The major topic of this work is to study the ion-acoustic solitary and other type waves
in relativistic warm plasma. This paper is organized as follows. In Section 2, we present
the basic set of fluid equations governing our plasma model. In Section 3, an algorithm
describing the computerized symbolic computationmethod is presented. In Section 4, explicit
solutions for KdV equation are obtained. Finally, some discussions and conclusions are given
in Section 5.

2. Basic Equations and KdV Equation

Consider collisionless ionization-free unmagnetized plasma consisting of a mixture of warm
ion-fluid and isothermal electrons. Assume that the ion flow velocity has a weak relativistic
effect, and therefore there exist streaming ions in an equilibrium state when sufficiently
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Figure 5: Weierstrass elliptic doubly periodic type solution (4.13) for v = 0.04, γ0 = 0.01, c0 = −1, c1 = 1,
and c3 = 0.1.

small- but finite-amplitude waves propagate one-dimensionally. Such a system is governed
by the following normalized equations [26]:

∂

∂t
n(x, t) +

∂

∂x
[n(x, t) u(x, t)] = 0, (2.1a)

[
∂

∂t
+ u(x, t)

∂

∂x

][
γ(x, t) u(x, t)

]
+

σ

n(x, t)
∂

∂x
p(x, t) +

∂

∂x
φ(x, t) = 0, (2.1b)

[
∂

∂t
+ u(x, t)

∂

∂x

]
p(x, t) + 3p(x, t)

∂

∂x

[
γ(x, t) u(x, t)

]
= 0, (2.1c)

∂2

∂x2
φ(x, t) + n(x, t) − ne(x, t) = 0. (2.1d)

The electron temperature Te is much larger than the ion temperature Ti and in this case
for simplicity one can neglect the inertia of the electrons relative to that of the ions, that is,
the high-frequency plasma oscillations are neglected. Since it is interested with the regime of
density and velocity fluctuations near the ion plasma frequency, so the isothermal electrons
density is given by

ne(x, t) = exp
[
φ(x, t)

]
. (2.1e)
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For weakly relativistic effects, the relativistic factor γ(x, t) = 1/
√
1 − u2(x, t)/c2 is

approximated by

γ(x, t) ≈ 1 +
u2(x, t)
(2c2)

, (2.1f)

where c is the velocity of light.
In (2.1a)–(2.1f), n(x, t) and ne(x, t) are the densities of ions and electrons, respectively,

u(x, t) is the ion flow velocity, p(x, t) is the ion pressure, φ(x, t) is the electric potential, x
is the space coordinate, and t is the time variable. σ = Ti/Te � 1 is the ratio of the ion
temperature to the electron temperature. All of these quantities are dimensionless and are
normalized in terms of the following characteristic quantities: n(x, t) and ne(x, t) by the
unperturbed electron density n0, u(x, t) and c by the sound velocity

√
kBTe/mi, p(x, t) and

φ(x, t) by n0kBTi and kBTe/e, respectively; t and x by the inverse of the plasma frequency
ω−1

pi = 1/
√
4π e2n0/mi and the electron Debye length λD =

√
kBTe/(4π e2n0), respectively,

kB is Boltzmann’s constant, and mi is the mass of plasma ion.
According to the general method of reductive perturbation theory, the stretched

variables are introduced as [7]

τ = ε3/2t, ξ = ε1/2(x − λt), (2.2)

where λ is the phase velocity and ε represents the amplitude of the perturbation. All the
physical quantities that appeared in (2.1a)–(2.1f) are expanded as power series in ε about the
equilibrium values as

n(ξ, τ) = 1 + εn1( ξ, τ) + ε2n2( ξ, τ) + · · · , (2.3a)

u(ξ, τ) = u0 + εu1( ξ, τ) + ε2u2( ξ, τ) + · · · , (2.3b)

p(ξ, τ) = 1 + εp1(ξ, τ) + ε2p2(ξ, τ) + · · · , (2.3c)

φ(ξ, τ) = εφ1( ξ, τ) + ε2φ2( ξ, τ) + · · · . (2.3d)

The boundary conditions of this problem are imposed as |ξ| → ∞, n = ne = p = 1, u = u0, and
φ = 0.

Substituting (2.2) and (2.3a)–(2.3d) into the system of (2.1a)–(2.1f) and equating the
coefficients of like powers of ε, then from the lowest order

n1(ξ, τ) = φ1(ξ, τ), (2.4a)

u1(ξ, τ) = (λ − u0)φ1(ξ, τ), (2.4b)

p1(ξ, τ) = 3γ1φ1(ξ, τ), (2.4c)
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with the transcendental equation of λ that is given as

1 −
(
λ2 − 3σ

)
γ1 = 0 =⇒ λ = ±

√(
3σγ1 + 1

)
γ1

, (2.4d)

where

γ1 = 1 +
3γ20
2

, γ0 =
u0

c
. (2.4e)

Using second-order equations in ε and eliminating the second-order perturbed quantities n2,
u2, p2, and φ2, the following KdV equation for the first-order perturbed potential is obtained:

∂

∂τ
φ1(ξ, τ) +Aφ1(ξ, τ)

∂

∂ξ
φ1(ξ, τ) + B

∂3

∂ξ3
φ1(ξ, τ) = 0. (2.5a)

Therefore, the nonlinear coefficient A and the dispersion coefficient B are represented by

A = B

⎛
⎜⎝g1 −

g2γ2√
γ31

⎞
⎟⎠, B =

1
g2
√
γ1
, (2.5b)

with

g1 = 3σγ1
(
3γ1 + 1

)
+ 2, g2 = 2

√
3σγ1 + 1, γ2 =

3γ0
(2c)

. (2.5c)

3. Computerized Symbolic Computation Method

An algebraic method with computerized symbolic computation has been developed by Fan
[24], which can be used to solve a given partial differential equation in φ1(ξ, τ) of the form

H

(
φ1,

∂φ1

∂τ
,
∂φ1

∂ξ
,
∂2φ1

∂ξ2
, . . .

)
= 0. (3.1a)

This equation may be transformed into an ordinary differential equation of the form

H

(
Φ,

dΦ
dη

,
d2Φ
dη2

, . . .

)
= 0 (3.1b)

using a traveling frame of reference

φ1(ξ, τ) = Φ
(
η
)
, η = ξ − vτ, (3.1c)
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where v is the traveling wave propagation velocity.
The computational technique used to solve the NLEE is described as follows [24].

Step 1. Reduce partial differential equation (3.1a) to the ordinary differential equation (3.1b)
by considering the traveling wave transformation (3.1c).

Step 2. Expand the solution of (3.1b) in the form

Φ
(
η
)
=

n∑
i=0

aiϕ
i(η), (3.2a)

where the new variable ϕ(η) is a solution of the following ordinary differential equation:

dϕ
(
η
)

dη
=∈
√√√√ r∑

j=0

cjϕj
(
η
)
, ∈= ±1. (3.2b)

Step 3. Substituting (3.2b) into (3.1b) and balancing the highest derivative term with the
highest nonlinear term lead to a relation between n and r, from which the different possible
values of n and r can be obtained. These values lead to the different series expansions of the
solutions.

Step 4. Substituting the expansions (3.2a)–(3.2b) into (3.1b) and setting the coefficients of all
powers of ϕi and ϕidϕ/dη to zero will give a system of algebraic equations, from which the
parameters ai (i = 0, 1, . . . , n) and cj (j = 0, 1, . . . , r) can be found explicitly.

Step 5. Substituting the parameters cj (j = 0, 1, . . . , r) obtained in Step 4 into (3.2b) gives all
the possible solutions ϕ(η).

It is remarked here that the solutions of (3.1a) depend on the explicit solvability of
(3.2b). The solutions of (3.2b) will get a series of fundamental solutions such as polynomial,
exponential, soliton, rational, triangular periodic, Jacobi, and Weierstrass elliptic doubly
periodic solutions.
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4. Explicit Solutions for the KdV Equation

For KdV equation (2.5a), the traveling wave transformation (3.1c) leads to

−v d

dη
Φ
(
η
)
+AΦ

(
η
) d

dη
Φ
(
η
)
+ B

d3

dη3
Φ
(
η
)
= 0. (4.1)

Balancing the highest derivative term with the highest nonlinear term leads to a
relation between n and r as r = n + 2. Taking n = 2 gives r = 4 and leads to

Φ
(
η
)
= a0 + a1ϕ

(
η
)
+ a2ϕ

2(η), (4.2a)

dϕ

dη
=∈
√
c0 + c1ϕ

(
η
)
+ c2ϕ2

(
η
)
+ c3ϕ3

(
η
)
+ c4ϕ4

(
η
)
. (4.2b)

Substituting (4.2a)–(4.2b) into (4.1) and equating coefficients of all powers of ϕi and ϕidϕ/dη
to zero will get a system of algebraic equations, from which the parameters ai (i = 0, 1, 2) and
cj (j = 0, 1, . . . , 4) can be found explicitly. Substituting cj into (4.2b) and using the symbolic
software package Maple give explicit solutions of (4.2b).

Substituting the coefficients ai and (4.2a) into (4.1) and using the symbolic software
package Maple, we obtain, for KdV equation (4.1), the following solutions:

Φ
(
η
)
= a0 − 3

(Aa0 − v)
A

sech2

⎛
⎝1

2

√
(v −Aa0)

B
η

⎞
⎠, c0 = c1 = c4 = 0,

(v −Aa0)
B

> 0,

(4.3)

Φ
(
η
)
= a0 − 3

(Aa0 − v)
A

sec2
⎛
⎝1

2

√
(Aa0 − v)

B
η

⎞
⎠, c0 = c1 = c4 = 0,

(v −Aa0)
B

< 0,

(4.4)

Φ
(
η
)
= a0 +

3
2
(Aa0 − v)

A
tan2

⎛
⎝1

2

√
(v −Aa0)

2B
η

⎞
⎠, c0 /= 0,

c1 = c3 = 0,
(v −Aa0)

B
> 0,

(4.5)
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Φ
(
η
)
= a0 − 3

2
(Aa0 − v)

A
tanh2

⎛
⎝1

2

√
(Aa0 − v)

2B
η

⎞
⎠, c0 /= 0,

c1 = c3 = 0,
(v −Aa0)

B
< 0,

(4.6)

Φ
(
η
)
= a0 + 3

(Aa0 − v)
A

csch2

(
1
2

√
(v −Aa0)

B
η

)
,

c0 = c1 = c3 = 0,
(v −Aa0)

B
> 0,

(4.7)

Φ
(
η
)
= a0 − 3

(Aa0 − v)
A

csc2
⎛
⎝1

2

√
(Aa0 − v)

B
η

⎞
⎠,

c0 = c1 = c3 = 0,
(v −Aa0)

B
< 0,

(4.8)

Φ
(
η
)
=

v

A
− 12B
Aη2

, c0 = c1 = c3 = 0,
(v −Aa0)

B
= 0, (4.9)

Φ
(
η
)
= a0 − 3

(Aa0 − v)
A

m2

(2m2 − 1)
cn2

(
1
2

√
Aa0 − v

B(1 − 2m2)
η

)
, c0 /= 0,

c1 = c3 = 0,
v − a0A

B
> 0,

(4.10)

Φ
(
η
)
= a0 + 3

(Aa0 − v)
A

1
(m2 − 2)

dn2

(
1
2

√
Aa0 − v

B (m2 − 2)
η

)
, c0 /= 0,

c1 = c3 = 0,
v − a0A

B
> 0,

(4.11)

Φ
(
η
)
= a0 − 3

(Aa0 − v)
A

m2

(m2 + 1)
sn2

(
1
2

√
Aa0 − v

B(m2 + 1)
η

)
, c0 /= 0,

c1 = c3 = 0,
v − a0A

B
< 0,

(4.12)

Φ
(
η
)
=

v

A
− 3 3
√
4c23

B

A
℘

⎛
⎝ 3

√
c3
4
η;− 3

√
4
c3
c1,− c0

⎞
⎠, c2 = c4 = 0, c3 > 0. (4.13)

where m is the modulus of the Jacobi elliptic functions, a0, c0, c1, and c3 are arbitrary
constants, and ℘ is the Weierstrass elliptic doubly periodic function.

5. Results and Discussion

Solutions (4.3) and (4.6) are hyperbolic wave solutions. In Figure 1, a profile of the bell-
shaped solitary pulse is obtained for solution (4.3). Figures (1(a) and 1(b)) show that the
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soliton amplitude and width are sensitive to the relativistic factor γ0 and the temperatures
ratio σ. Also, the arbitrary value a0 gives the same effect of adding a higher-order
perturbation correction in increasing the amplitude and decreasing the width as shown in
Figure 1(c).

Solutions (4.4) and (4.5) are triangular solutions that develop solitons with singularity
at finite points, which are called “blowup” solutions [27] as in Figure 2(a). In Figure 2(b),
for some values of a0 the pulse does not vanish to infinity, so it has a localized form.
Therefore, the arbitrary value a0 plays a role in obtaining a pulse-shaped localized solution
[28]. Solutions (4.7) and (4.8) lead to the propagation of an explosive pulses [29]. In Figure 3,
the profiles of explosive (divergent) pulses are depicted for expression (4.7). For a0 = 0, the
solution gives a localized explosive pulse, as in Figure (2.3a) while a periodic solution is
obtained for a0 = 0.4, as shown in Figure (2.3b). The rational solution (4.9) may be helpful
to explain certain physical phenomena. Because a rational solution is a disjoint union of
manifolds, particle systems describing the motion of a pole of rational solutions for a KdV
equation were analyzed [30]. Equations (4.10)–(4.12) are three Jacobi elliptic doubly periodic
wave solutions. Whenm → 1, solutions (4.10) and (4.11) reduce to (4.3)while (4.11) reduces
to (4.6) [31]. In Figure 4, a profile of triangular periodic wave solution for expression (4.10)
for m = 2 is shown. On the other hand, (4.13) gives the Weierstrass elliptic doubly periodic
type solution as depicted in Figure 5.

In summary, it has been found that the amplitude and the width of the ion-acoustic
waves as well as parametric regime where the solitons can exist are sensitive to the relativistic
factor γ0 and the ratio of the ion to the electron temperatures σ. Moreover, solutions for KdV
equation have been obtained. It may be important to explain some physical phenomena in
some plasma environments, such as ionosphere region.
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