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Copyright q 2012 Z. Tang and J. Feng. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We consider a class of complex networks with both delayed and nondelayed coupling. In
particular, we consider the situation for both time delay-independent and time delay-dependent
complex dynamical networks and obtain sufficient conditions for their asymptotic synchronization
by using the Lyapunov-Krasovskii stability theorem and the linear matrix inequality (LMI). We
also present some simulation results to support the validity of the theories.

1. Introduction

A complex dynamical network is a large set of interconnected nodes that represent the
individual elements of the system and their mutual relationships. Owing to their immense
potential for applications to various fields, complex networks have been intensively inves-
tigated in the past decade in areas as diverse as mathematics, physics, biology, engineering,
and even the social sciences [1–3]. The synchronization problem for complex networks was
first posed by Saber and Murray [4, 5]who also introduced a theoretical framework for their
investigation by viewing them as the adjustments of the rhythms of their interaction states
[6] and many different kinds of synchronization phenomena and models have also been
discovered such as complete synchronization, phase synchronization, lag synchronization,
antisynchronization, impulsive synchronization, and projective synchronization.

Time delays are an important consideration for complex networks although these
were usually ignored in early investigations of synchronization and control problems
[6–11]. To make up for this deficiency, uniformly distributed time delays have recently
been incorporated into network models [12–25] and Wang et al. [18] even considered
networks with both delayed and nondelayed couplings and obtained sufficient conditions for
asymptotic stability. Similarly, Wu and Lu [19] investigated the exponential synchronization
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of general weighted delay and nondelay coupled complex dynamical networks with different
topological structures. There remains, however, much room for improvement in both the
scope of the systems considered by Wang and Xu as well as in their methods of proofs.

The main contributions of this paper are two-fold. Firstly, we present a more general
model for networks with both delayed and nondelayed couplings and derive criteria for their
asymptotical synchronization. Secondly, we apply the Lyapunov-Krasovskii theorem and the
LMIs to ensure the inevitable attainment of the required synchronization.

The rest of the paper is organized as follows. In Section 2, we present the general
complex dynamical network model under consideration and state some preliminary
definitions and results. In Section 3, we present themain results of this paper. In particular, we
consider the situation for both time delay-independent and time delay-dependent complex
dynamical networks and derive sufficient conditions for their asymptotic synchronization by
using the Lyapunov-Krasovskii stability theorem and the linear matrix inequality (LMI). In
Section 4, we present some numerical simulation results that verify our theoretical results.
The paper concludes in Section 5.

2. Preliminaries and Model Description

In general, a linearly coupled ordinary differential equation system (LCODES) can be des-
cribed as follows:

dxi(t)
dt

= f(xi(t)) + c1
N∑

j /= i,j=1

bijAxj(t) + c2
N∑

j /= i,j=1

b′ijA
′xj(t − τ). (2.1)

Since xi − xi = 0 for all i = 1, . . . ,N, we can choose any values for aii in the above equations.
Hence, letting bii = −∑N

j /= i,j=1 bij and b′ii = −∑N
j /= i,j=1 b

′
ij , the above equations can be rewritten

as follows:

dxi(t)
dt

= f(xi(t)) + c1
N∑

j=1

bijAxj(t) + c2
N∑

j=1

b′ijA
′xj(t − τ), (2.2)

where N is the number of nodes, xi(t) = (xi1, xi2, . . . , xiN)T ∈ Rn are the state variables of the
ith node, t ∈ [0,+∞) and f : Rn → Rn is a continuously differentiable function. The constants
c1 and c2 (possibly distinct) are the coupling strengths, bij ≥ 0, b′ij > 0 (for i, j = 1, . . . ,N),
A,A′ ∈ Rn×n are inner-coupled matrices, B, B′ ∈ Rn×n are coupled matrices with zero-sum
rows with bij , b

′
ij ≥ 0 for i /= j that determines the topological structure of the network. We

assume that B and B′ are symmetric and irreducible matrices so that there are no isolated
nodes in the system.

If all the eigenvalues of a matrix A ∈ Rn×n are real, then we denote its ith eigenvalue
by λi(A) and sort them by λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). A symmetric real matrixA is positive
definite (semidefinite) if xTAx > 0 (≥ 0) for all nonzero x and denoted by A > 0 (A ≥ 0).
Finally, I stands for the identity matrix and the dimensions of all vectors and matrices should
be clear in the context.
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Definition 2.1. A complex network with delayed and nondelayed coupling (2.2) is said to
achieve asymptotic synchronization if

x1(t) = x2(t) = · · · = xN(t) = s(t), t −→ +∞, (2.3)

where s(t) is a solution of the local dynamics of an isolated node satisfying ˙s(t) = f(s(t)).

Definition 2.2. A matrix L = (lij)
N
i,j=1 is said to belong to the class A1, denoted by L ∈ A1 if

(1) lij ≤ 0, i /= j, lii = −∑N
j=1,j /= i lij , i = 1, 2, . . . ,N,

(2) L is irreducible.

If L ∈ A1 is symmetrical, thenwe say that L belongs to the classA2, denoted by L ∈ A2.

Lemma 2.3 (see [26]). If L ∈ A1, then rank(L) = N − 1, that is, 0 is an eigenvalue of L with
multiplicity 1, and all the nonzero eigenvalues of L have positive real part.

Lemma 2.4 (Wang and Chen [11]). IfG = (gij)N×N satisfies the above conditions, then there exists
a unitary matrix Φ = (φ1, . . . , φN) such that

GTφk = λkφk, k = 1, 2, . . . ,N, (2.4)

where λi, i = 1, 2, . . . ,N, are the eigenvalues of G.

Lemma 2.5 (Schur complement [22]). The linear matrix inequality (LMI)

(
Q(x) S(x)
S(x)T R(x)

)
> 0, (2.5)

where Q(x) and R(x) are symmetric matrices and S(x) is a matrix with suitable dimensions is
equivalent to one of the following conditions:

(i) Q(x) > 0, R(x) − S(x)TQ(x)−1S(x) > 0;

(ii) R(x) > 0, Q(x) − S(x)R(x)−1S(x) > 0.

Lemma 2.6 ((the Lyapunov-Krasovskii stability theorem). (Kolmanovskii and Myshkis, Hale
and Verduyn Lunel [16])). Consider the delayed differential equation

x(t) = ḟ(t, x(t)), (2.6)

where f : R×C → Rn is continuous and takes R× (bounded subsets of C) into bounded subsets of Rn,
and let u, v,w : R+ → R+ be continuous and strictly monotonically nondecreasing functions with
u(s), v(s), w(s) being positive for s > 0 and u(0) = v(0) = 0. If there exists a continuous functional
V : R × C → R such that

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖),
V̇ (t, x(t, x(t))) ≤ −w(‖x(t)‖),

(2.7)
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where V̇ is the derivative of V along the solutions of the above delayed differential equation, then the
solution x = 0 of this equation is uniformly asymptotically stable.

Remark 2.7. The functional V is called a Lyapunov-Krasovskii functional.

Lemma 2.8 (Moon et al. [22]). Let a(·) ∈ Rna , b(·) ∈ Rnb and M(·) ∈ Rna×nb be defined on an
interval Ω. Then, for any matrices X ∈ Rna×na , Y ∈ Rna×nb , and Z ∈ Rnb×nb , one has

−2
∫

Ω
a(x)TMb(x)dx ≤

∫

Ω

[
a(x)
b(x)

]T[
X Y −M

YT −MT Z

][
a(x)
b(x)

]
dx, (2.8)

where

[
X Y
YT Z

]
≥ 0. (2.9)

Lemma 2.9. For all positive-definite matrices P and vectors x and y, one has

−2xTy ≤ inf
P>0

{
xTPx + yTP−1y

}
. (2.10)

Lemma 2.10 (see [16]). Consider the delayed dynamical network (2.2). Let

0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN,

0 = μ1 > μ2 ≥ μ3 ≥ · · · ≥ μN

(2.11)

be the eigenvalues of the outer-coupling matrices B and B′, respectively. If the n-dimensional linear
time-delayed and nontime delayed system

ẇi(t) = J(t)wi(t) + c1λiAwi(t) + c2μiA
′wi(t − τ), k = 2, 3, . . . ,N, (2.12)

of N − 1 differential equations is asymptotically stable about their zero solutions for some Jacobian
matrix J(t) ∈ Rn×n of f(x(t)) at s(t), then the synchronized states (2.3) are asymptotically stable.

3. The Criteria for Asymptotic Synchronization

In this section, we derive the conditions for the asymptotic synchronization of time-delayed
coupled dynamical networks when they are either time-dependent or time-independent.
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3.1. Case 1: The Time Delay-Independent Stability Criterion

Theorem 3.1. Consider the general time delayed and non-time delayed complex dynamical network
(2.2). If there exist two positive definite matrices P and Q > 0 such that

[
J(t)TP + PJ(t) + 2c1λiA +Q c2μNPA′

c2μNA′P −Q

]
> 0, (3.1)

then the synchronization manifold (2.3) of network (2.2) can be asymptotically synchronized for all
fixed time delay τ > 0.

Proof. For each fixed i = 1, 2, . . . ,N, choose the Lyapunov-Krasovskii functional

Vi(t) = wi(t)TPwi(t) +
∫ t

t−τ
wi(s)TQwi(s)ds (3.2)

for some matrices P > 0 and Q > 0 to be determined. Then the derivative of Vi(t) along the
trajectories of (3.2) is

dVi(t)
dt

= ẇi(t)TPwi(t) +wi(t)TPẇi(t) +wi(t)TQwi(t) −wi(t − τ)TQwi(t − τ) (3.3)

which, upon substitution of (2.12), gives

V̇i(t) =
[
J(t)wi(t) + c1λiAwi(t) + c2μiA

′wi(t − τ)
]T
Pwi(t) +wi(t)TP

× [J(t)wi(t) + c1λiAwi(t) + c2μiA
′wi(t − τ)

]
+wi(t)TQwi(t) −wi(t − τ)TQwi(t − τ)

= wi(t)TJ(t)Twi(t) +wi(t)TλiATPwi(t) +wi(t − τ)TμiA
′Pwi(t)

+wi(t)TPJ(t)wi(t) +wi(t)Tc1λiAwi(t) +wi(t)TPc2μiA
′wi(t − τ)

+wi(t)TQwi(t) −wi(t − τ)TQwi(t − τ)

= wi(t)T
[
J(t)TP + PJ(t) + 2c1λiA +Q

]
wi(t) + 2wi(t)Tc2μiPA

′wi(t − τ)

−wi(t − τ)TQwi(t − τ).
(3.4)

Now, by using the inequality in Lemma 2.9, we have

2wi(t)Tc2μiPA
′wi(t − τ) ≤ wi(t − τ)TQwi(t − τ) +wi(t)Tc22μi

2PA′QA′Pwi(t), (3.5)

which, upon substituting (3.5) into (3.2), gives

V̇i(t) ≤ wi(t)T
[
J(t)TP + PJ(t) + 2c1λiA + c2μi

2wi(t)TPA′QA′Aw(t) +Q
]
wi(t). (3.6)
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It therefore follows from the Schur complement (Lemma 2.5) and the linear matrix inequality
(3.1) that V̇i(t) < 0 for all theN−1 equations in the general time delayed and non-time delayed
system (2.12) and hence the system (2.12) is asymptotically synchronized by the Lyapunov-
Krasovskii stability theorem. So, by Theorem 3.1, the synchronization manifold (2.3) of the
network (2.2) is asymptotically synchronized. This completes the proof of the theorem.

The following corollaries follow immediately from the above theorem.

Corollary 3.2. Consider the general non-time delayed complex dynamical network

ẋi(t) = f(xi(t)) + c1
N∑

j=1

bijAxj(t). (3.7)

If there exists a positive definite matrix P > 0 such that

J(t)TP + c1λiAP < 0, (3.8)

then the synchronization manifold (2.3) of network (3.7) can be asymptotically synchronized.

Proof. From Lemma 2.10, we have

ẇi(t) = J(t)wi(t) + c1λiAwi(t) (3.9)

and the result follows by choosing the Lyapunov functional Vi(t) = (1/2)wi(t)
TPwi(t).

Corollary 3.3. Consider the general time delayed complex dynamical network

ẋi(t) = f(xi(t)) + c2
N∑

j=1

b′ijA
′xj(t − τ). (3.10)

If there exist two positive definite matrices P > 0 and Q > 0 such that

[
J(t)TP + PJ(t) +Q c2μNPA′

c2μNA′P −Q

]
< 0, (3.11)

then the synchronization manifold (2.3) of network (3.10) can be asymptotically synchronized.

Remark 3.4. The results of [16] are obtainable as particular cases of Theorem 3.1.

Remark 3.5. The above analysis is applicable to a general system with arbitrary time delays.
A simpler synchronization scheme, however, could be applied to systems with time delays
that are already known and are small in value.
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3.2. Case 2: The Criterion for Time Delay-Dependent Stability

Theorem 3.6. Consider the general time delayed and non-time delayed complex dynamical network
(2.2) with a fixed time delay τ ∈ (0, h] for some small h. If there exist three positive definite matrices
P,Q,Z > 0, such that

[
(1, 1) Pc2μiA

′ − Y + h(J(t) + c1λiA)TZc2μiA
′

c2μiA
′TP − YT + hc2μiA

′TZ(J(t) + c1λiA) hc2μi
2A

′TZA′ −Q

]
< 0

(3.12)

with

(1, 1) =
(
J(t) + c1λiA + c2μiA

′)TP + P
(
J(t) + c1λiA + c2μiA

′) + hX

+ YT + Y +Q + h(J(t) + c1λiA)T (J(t) + c1λiA)
[
X Y
YT Z

]
≥ 0,

(3.13)

then the synchronization manifold (2.3) of network (2.2) can be asymptotically synchronized.

Proof. For each fixed i = 1, 2, . . . ,N, choose the Lyapunov-Krasovskii functional

Vi(t) = wi(t)TPwi(t) +
∫ t

t−τ
wi(s)TQwi(s) +

∫0

−τ

∫ t

t+β
ẇi(s)TZẇi(s)dsdβ (3.14)

for some matrices P,Q,Z > 0 to be determined and let

V1 = ẇi(t)TPwi(t), V2 =
∫ t

t−τ
wi(s)TQwi(s),

V3 =
∫0

−τ

∫ t

t+β
ẇi(s)TZẇi(s)dsdβ.

(3.15)

Then, Vi(t) = V1 + V2 + V3 and it follows from the Newton-Leibniz equation that

∫ t

t−τ
ẇi(ξ)dξ = wi(t) −wi(t − τ) (3.16)

so that (2.12) can be transformed into

ẇi(t) =
(
J(t) + c1λiA + c2μiA

′)wi(t) − c2μiA
′ ∫ t

t−τ ẇi(s)ds. (3.17)
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Hence

V1 = ẇi(t)TPwi(t) +wi(t)TPẇi(t)

= wi(t)T
[(
J(t) + c1λiA + c2μiA

′)TP + P
(
J(t) + c1λiA + c2μiA

′)]wi(t)

− 2wi(t)TPc2μiA
′
∫ t

t−τ
ẇi(s)ds

(3.18)

and so, by Lemma 2.9, we have

− 2wi(t)TPc2μiA
′
∫ t

t−τ
ẇi(s)ds

= −2
∫ t

t−τ
wi(t)T

(
Pc2μiA

′)ẇi(s)ds

≤
∫ t

t−τ

[
wi(t)
ẇi(s)

]T[
X Y − Pc2μiA

′

YT −A
′Tc2μiP Z

][
wi(t)
ẇi(s)

]
dx

=
∫ t

t−τ
wi(t)TXwi(t)ds +

∫ t

t−τ
ẇi(s)TZẇi(s)ds + 2

∫ t

t−τ
wi(t)T

(
Y − Pc2μiA

′)ẇi(s)ds

= τwi(t)TXwi(t) + 2wi(t)T
(
Y − Pc2μiA

′)
∫ t

t−τ
ẇi(s)ds +

∫ t

t−τ
ẇi(s)TZẇi(s)

= τwi(t)TXwi(t) + 2wi(t)T
(
Y − Pc2μiA

′)wi(t) − 2wi(t)T
(
Y − Pc2μiA

′)wi(t − τ)

+
∫ t

t−τ
ẇi(s)Zẇi(s)

(3.19)

and so

V1 ≤wi(t)T
[(
J(t) + c1λiA + c2μiA

′)TP + P
(
J(t) + c1λiA + c2μiA

′)]wi(t)

+ 2wi(t)T
(
Pc2μiA

′ − Y
)
wi(t − τ) +

∫ t

t−τ
ẇi(s)TZwi(s)ds.

(3.20)
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Similarly, we have

V2 = wi(t)TQwi(t) −wi(t − τ)TQwi(t − τ),

V3 = τẇi(t)TZẇi(t) −
∫ t

t−τ
ẇi(s)TZẇi(s)ds ≤ h

[
(J(t) + c1λiA)wi(t) + c2μiA

′wi(t − τ)
]T

× Z
[
(J(t) + c1λiA)wi(t) + c2μiA

′wi(t − τ)
] −
∫ t

t−τ
ẇi(s)TZẇi(s)ds

= hwi(t)T (J(t) + c1λiA)TZ(J(t) + c1λiA)wi(t) + hwi(t)T

× (J(t)t + c1λiA)TZc2μiA
′wi(t − τ) + hwi(t − τ)Tc2μiA

′TZT

× (J(t) + c1λiA)wi(t) + hwi(t − τ)Tμi
2A

′TZA′wi(t − τ) −
∫ t

t−τ
ẇi(s)TZẇi(s)ds

= hwi(t)T (J(t) + c1λiA)TZ(J(t) + c1λiA)wi(t) + 2hwi(t)T

× (J(t) + c1λiA)TZc2μiA
′wi(t − τ) + hwi(t − τ)Tμi

2A
′TZA′wi(t − τ)

−
∫ t

t−τ
ẇi(s)TZẇi(s)ds

(3.21)

and so

V̇i(t) = V1 + V2 + V3

≤ wi(t)T
[(
J(t) + c1λiA + c2μiA

′)TP + P
(
J(t) + c1λiA + c2μiA

′)

+hX + YT + Y +Q + h(J(t) + c1λiA)T (J(t) + c1λiA)
]
wi(t)

+wi(t − τ)T
[
hμi

2A
′TZA′ −Q

]
wi(t − τ)

+ 2wi(t)T
[(
Pc2μiA

′ − Y
)
+ h(J(t) + c1λi)

TZc2μiA
′
]
wi(t − τ).

(3.22)

Finally, we have

V̇i(t) ≤
[

wi(t)
wi(t − τ)

]T[(1, 1) (1, 2)
(2, 1) hc2μ

2A
′TZA′

Q

][
wi(t)

wi(t − τ)

]
, (3.23)
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where

(1, 1) =
(
J(t) + c1λiA + c2μiA

′)TP + P
(
J(t) + c1λiA + c2μiA

′) + hX

+ YT + Y +Q + h(J(t) + c1λiA)T (J(t) + c1λiA)

(1, 2) = Pc2μiA
′ − Y + h(J(t) + c1λiA)TZc2μiA

′

(2, 1) = c2μiA
′TP − YT + hc2μiA

′TZ(J(t) + c1λiA)
[
X Y
YT Z

]
≥ 0.

(3.24)

It now follows from Lemma 2.5 that the conditions of the theorem are equivalent to V̇i(t) < 0
and that by the Lyapunov-Krasovskii Stability Theorem all the nodes of the system (2.12) are
asymptotically stable when (3.12) and (3.13) hold for i = 1, 2, . . . ,N. This completes the proof
of Theorem 3.6.

Corollary 3.7. Consider the general time delayed complex dynamical network (3.10)with a fixed time
delay τ ∈ (0, h]

ẋi(t) = f(xi(t)) + c2
N∑

j=1

b′ijA
′xj(t − τ) (3.25)

for some h < +∞. If there exist two positive definite matrices, P,Q > 0, X, Y, and Z such that

[
(1, 1) c2μiPA

′ − Y + hJ(t)TZc2μiA
′

c2μ
′T
AP − YT + hc2μiA

′TZJ(t) hc2
2μi

2A
′TZA′ −Q

]
< 0, (3.26)

where (1, 1) = PJ(t) + J(t)T + hX + YT + Y +Q + hJ(tTZJ(t)), then the synchronization manifold
(2.3) of network (3.10) is asymptotic synchronization.

Remark 3.8. The proof can be found in [16]. Those are the two results of general complex
dynamical network with fixed time-invariant delay τ ∈ (0, h] for some h < +∞; the
conclusions are less conservative than the time-independent delay. The delay-dependent
stability is another method applying to the delayed system. And it could provide a useful
andmeaningful upper bound of the delay h, which could ensure the delayed system achieves
asymptotic synchronization only if the time delay is less than h.

4. Numerical Simulations

The above criteracould be applied to networks with different topologies and different size.
We put two examples to illustrate the validity of the theories.
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Example 4.1. We use a three-dimensional stable nonlinear system as an example to illustrate
the main results, Theorem 3.1, of our paper; this is the time delay-independent situation. The
model could be described as follows:

⎡

⎣
ẋi1

ẋi2

ẋi3

⎤

⎦ =

⎡

⎣
−xi1 + x2

i2
−2xi2

−3xi3 + xi2xi3

⎤

⎦, i = 1, 2, 3. (4.1)

The solution of the 3-dimensional stable nonlinear system equations can be written as

xi1 = c1e
−t − ce−4t, xi2 = c2e

−2t, xi3 =
c3e

−3t − c2e
2t

2
, (4.2)

which is asymptotically stable at the equilibrium point of the system s(t) = 0, where c = −c22/3
and c1, c2, c3 are all constants. It is easy to see that the Jacobian matrix is J = diag{−1,−2,−3}.
We assume the inner-coupling matrices A, A′ are all identity matrices, namely, A = A′ =
diag{1, 1, 1}, and the outer coupling configuration matrices

B = B′ =

⎡
⎢⎢⎣

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 2

⎤
⎥⎥⎦. (4.3)

The eigenvalues of the coupling matrices are λ(B) = λ(B′) = {0,−1.5,−1.5}. We choose the
coupling strength c1 = 0.5, c2 = 1. By using Theorem 3.1 and the LMI Toolbox in MATLAB,
we obtained the following common two positive-definite matrices:

P = diag{1.1204, 12.3091, 10.165}, Q = diag{2.3710, 22.5713, 26.0849}. (4.4)

According to the conditions in Theorem 3.1, we know the synchronized state s(t) is global
asymptotically stable for any fixed delay. The quantity

E(t) =

√√√√
(∑N

i=1 |xi(t) − s(t)|2
N

)
(4.5)

is used to measure the quality of the synchronization process. We plot the evolution of E(t)
in the upper part in Figure 1. For the time delay here we choose τ = 0.1. The lower subplot
indicates the synchronization results of the network.

Example 4.2. We use a 4-nodes networks model as another example to illustrate the
Theorem 3.6; this is the time delay-dependent situation. The model could be described as
follows:

⎡

⎣
ẋi1

ẋi2

ẋi3

⎤

⎦ =

⎡

⎣
−xi1

−2xi2 + x2
i3

−3xi3 + xi2xi3

⎤

⎦, i = 1, 2, 3, 4. (4.6)
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Figure 1: Synchronization evolution E(t) for the delay-independent network with c1 = 0.5, c2 = 1, and
τ = 0.1.

We choose the same coupling strength c1 = 0.5, c2 = 1; the eigenvalues of the coupling
matrices are λ(B) = λ(B′) = {0,−2,−2,−4}. By using Theorem 3.6 and the LMI Toolbox in
MATLAB, we obtained the following matrices:

P = diag{1.4078, 1.4057, 1.4054}, Q = {1.4157, 1.4157, 1.4157},
Z = {−1.4218,−1.4303,−1.4367}, X = {18.3024, 19.6808, 21.0815},
Y = {0.0221, 0.0208, 0.0196}.

(4.7)

By using Theorem 3.6 in this paper, it is found that the maximum delay bound for the
complex dynamical network to form asymptotic synchronization is h = 1. E(t) are defined
the same as in the example. We plot the evolution of E(t) in upper part in Figure 2. The lower
subplot indicates the synchronization results of the network. It can be seen from the figures
that the network in this example can achieve asymptotic synchronization.

5. Conclusion

This paper considered a class of complex networks with both time delayed and non-time
delayed coupling. We derived, respectively, a sufficient criterion for time delay-dependent
and time delay-independent asymptotic synchronization which are more general than those
obtained in previous works. These asymptotic synchronization results were obtained by
using the Lyapunov-Krasovskii stability theorem and the linearmatrix inequality. Two simple
examples were also used to validate the theoretical analysis.
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Figure 2: Synchronization evolution E(t) for the delay-dependent network with c1 = 0.5, c2 = 1, and
τ = 0.1.
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