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Most quantum logics do not allow for a reasonable calculus of conditional probability. However,
those ones which do so provide a very general and rich mathematical structure, including classical
probabilities, quantum mechanics, and Jordan algebras. This structure exhibits some similarities
with Alfsen and Shultz’s noncommutative spectral theory, but these twomathematical approaches
are not identical. Barnum, Emerson, and Ududec adapted the concept of higher-order interference,
introduced by Sorkin in 1994, into a general probabilistic framework. Their adaption is used here to
reveal a close link between the existence of the Jordan product and the nonexistence of interference
of third or higher order in those quantum logics which entail a reasonable calculus of conditional
probability. The complete characterization of the Jordan algebraic structure requires the following
three further postulates: a Hahn-Jordan decomposition property for the states, a polynomial
functional calculus for the observables, and the positivity of the square of an observable. While
classical probabilities are characterized by the absence of any kind of interference, the absence of
interference of third (and higher) order thus characterizes a probability calculus which comes close
to quantum mechanics but still includes the exceptional Jordan algebras.

1. Introduction

The interference manifested in the two-slit experiments with small particles is one of the
best known and most typical quantum phenomena. It is somewhat surprising therefore that
quantum mechanics rules out third-order interference. This was discovered by Sorkin [1]
considering measures on the “sets of histories” with experimental set-ups like the well-
known two-slit experiments but with three and more slits. He introduced the interference
terms I2 and I3 and detected that, although the second-order interference is a typical quantum
phenomenon (I2 /= 0), the third-order interference does not occur in quantum mechanics
(I3 = 0).
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In the present paper, Sorkin’s interference terms I2 and I3 are ported to the framework
of quantum logics with unique conditional probabilities which was introduced by the author
in [2, 3]. In [3] it was shown that each such quantum logic can be embedded in an order-
unit space where a specific type of positive projections then represents the probability
conditionalization similar to the Lüders-von Neumann quantum measurement process.

In this general framework, the identity I3 = 0 is not automatically given, and its role
in a reconstruction of quantum mechanics from a few basic principles or in an axiomatic
access to quantum mechanics based on a few interpretable postulates is analysed in the
paper. It is shown that the absence of third-order interference (I3 = 0) has some important
consequences. It entails the existence of a product in the order-unit space generated by the
quantum logic, which can be used to characterize those quantum logics that can be embedded
in the projection lattice in a Jordan algebra. Most of these Jordan algebras can be represented
as operator algebras on a Hilbert space, and a reconstruction of quantum mechanics up to
this point is thus achieved.

Besides the identity I3 = 0, two further typical properties of quantum mechanics
distinguishing it from more general theories are identified; these are a novel bound for
quantum interference and a symmetry property of the conditional probabilities. This latter
property was discovered by Alfsen and Shultz who used it as a postulate to derive the Jordan
product for the quantum mechanical observables from it in their approach [4], and it was
used in a similar way in [3], but a physical justification for it is hard to find. With the main
result of the present paper, it can now be replaced by another postulate with a clearer physical
meaning, namely, the absence of third-order interference (I3 = 0).

The next two sections summarize those parts of [2, 3] which are relevant for the
subsequent sections. In Section 4, the second- and third-order interference terms (I2 and I3)
are considered and ported to the quantum logics with unique conditional probabilities. The
bound for quantum interference and the symmetry property of the quantum mechanical
conditional probabilities are studied in Sections 5 and 6. In Section 7, a useful type of
linear maps is introduced, which is used in Section 8 to analyse the case I3 = 0. A certain
mathematical condition, the Jordan decomposition property, is outlined in Section 9 and then
used in Section 10 to derive the product in the order-unit space from the identity I3 = 0.
Section 11 finally addresses the question under which further conditions the order-unit space
becomes a Jordan algebra.

2. Quantum Logics with Unique Conditional Probabilities

A quantum logic is the mathematical model of a system of quantum events or propositions.
Logical approaches use the name “proposition”, while the name “event” is used in proba-
bility theory and will also be preferred in the present paper. The concrete quantum logic of
standard quantum mechanics is the system of closed linear subspaces of a Hilbert space or,
more generally, the projection lattice in a von Neumann algebra.

Usually, an abstract quantum logic is assumed to be an orthomodular partially ordered
set and, very often, it is also assumed that it is lattice. For the purpose of the present
paper, however, a more general and simpler mathematical structure without order relation
is sufficient. Only an orthocomplementation, an orthogonality relation, and a sum operation
defined for orthogonal events are needed. The orthocomplementation represents the logical
negation, orthogonality means mutual exclusivity, and the sum represents the logical and
operation in the case of mutual exclusivity. The precise axioms were presented in [2] and
look as follows.
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The quantum logic E is a set with distinguished elements 0 and 1, an orthogonality
relation ⊥ and a partial binary operation + such that the following six axioms hold for e, f ,
g ∈ E:

(OS1) if e ⊥ f , then f ⊥ e; that is, the relation ⊥ is symmetric;

(OS2) e+f is defined for e ⊥ f , and then e+f = f +e; that is, the sum operation is commutative.

(OS3) if g ⊥ e, g ⊥ f , and e ⊥ f , then g ⊥ e + f , f ⊥ g + e and g + (e + f) = (g + e) + f ; that
is, the sum operation is associative;

(OS4) 0 ⊥ e and e + 0 = e for all e ∈ E;

(OS5) for every e ∈ E, there exists a unique e′ ∈ E such that e ⊥ e′ and e + e′ = 1;

(OS6) there exists d ∈ E such that e ⊥ d and e + d = f if and only if e ⊥ f ′.

Then 0′ = 1 and e′′ = e for e ∈ E. Note that an orthomodular partially ordered set
satisfies these axioms with the two definitions:

(i) e ⊥ f if and only if f ≤ e′;

(ii) the sum e + f is the supremum of e and f for e ⊥ f .

The supremum exists in this case due to the orthomodularity.
A state is a map μ : E → [0, 1] such that μ(1) = 1 and μ(e + f) = μ(e) + μ(f) for

orthogonal pairs e and f in E. Then μ(0) = 0 and μ(e1 + · · · + ek) = μ(e1) + · · · + μ(ek) for
mutually orthogonal elements e1, . . . , ek in E. Denote by S the set of all states on E. With a
state μ and μ(e) > 0 for an e ∈ E, another state ν is called a conditional probability of μ under
e if ν(f) = μ(f)/μ(e) holds for all f ∈ E with f ⊥ e′. Furthermore, the following axioms were
introduced in [2].

(UC1) If e, f ∈ E and μ(e) = μ(f) for all μ ∈ S, then e = f .

(UC2) If e ∈ E and μ ∈ S with μ(e) > 0, there is one and only one conditional probability of μ
under e.

If these axioms are satisfied, E is called a UCP space named after the major feature
of this mathematical structure which is the existence of the unique conditional probability,
and the elements in E are called events. The unique conditional probability of μ under e is
denoted by μe and, in analogy with classical mathematical probability theory, μ(f | e) is often
written instead of μe(f) with f ∈ E. The above two axioms imply that there is a state μ ∈ S
with μ(e) = 1 for each event e /= 0, that the difference d in (OS6) becomes unique, and that
e ⊥ e if and only if e ⊥ 1 if and only if e = 0 (e ∈ E).

Note that the following identity which will be used later holds for convex combina-
tions of states μ, ν ∈ S (0 < s < 1):

(
sμ + (1 − s)ν

)
e =

1
sμ(e) + (1 − s)ν(e)

(
sμ(e)μe + (1 − s)ν(e)νe

)
. (2.1)

A typical example of the above structure is the projection lattice E in a von Neumann
algebra M without type I2 part; E = {e ∈ M : e∗ = e = e2}. The conditional probabilities then
have the shape:

μe

(
f
)
= μ

(
f | e) =

1
μ(e)

μ̂
(
efe

)
, (2.2)
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with e, f ∈ E, μ ∈ S, and μ(e) > 0. Note that μ̂ onM is the unique positive linear extension of
the state μ originally defined only on the projection lattice; this extension exists by Gleason’s
theorem [5] and its later enhancements to finitely additive states and arbitrary von Neumann
algebras [6–9]. The linear extension μ̂ does not exist ifM contains a type I2 part.

For the proof of (2.2), suppose that the state ν on E is a version of the conditional
probability of the state μ under e and use the identity f = efe + efe′ + e′fe + e′fe′. From
ν(e′) = 0 and the Cauchy-Schwarz inequality applied with the positive linear functional ν̂ it
follows 0 = ν̂(efe′) = ν̂(e′fe) = ν̂(e′fe′) and thus ν(f) = ν̂(efe). By the spectral theorem,
efe can be approximated (in the norm topology) by linear combinations of elements in {d ∈
E : d ⊥ e′} = {d ∈ E : d ≤ e} for which ν coincides with μ/μ(e). The continuity of ν̂ (due its
positivity) then implies ν(f) = ν̂(efe) = μ̂(efe)/μ(e). Therefore the conditional probability
must have this shape and its uniqueness is proved. Its existence follows from efe ≥ 0 and
efe = f for f ≤ e, since then ν(f) := μ̂(efe)/μ(e) indeed owns all the properties of the
conditional probability.

Equation (2.2) reveals the link to the Lüders-von Neumann quantum measurement
process. The transition from a state μ to the conditional probability μe is identical with the
transition from the state prior to the measurement to the state after the measurement where
e represents the measurement result.

3. The Embedding of the Quantum Logic in an Order-Unit Space

A quantum logic with a sufficiently rich state space as postulated by (UC1) can be embedded
in the unit interval of an order-unit space. In the present section, it will be shown that the
existence and the uniqueness of the conditional probabilities postulated by (UC2) give rise to
some important additional structure on this order-unit space, which was originally presented
in [3].

A partially ordered real vector space A is an order-unit space if A contains an
Archimedean order unit 1 [10–12]. The order unit 1 is positive and, for all a ∈ A, there is
t > 0 such that −t1 ≤ a ≤ t1. An order unit 1 is called Archimedean if na ≤ 1 for all n ∈ N

implies a ≤ 0. An order-unit space A has a norm given by ‖a‖ = inf{t > 0 : −1t ≤ a ≤ 1t}.
Each x ∈ A can be written as x = a − b with positive a, b ∈ A (e.g., choose a = ‖x‖1 and
b = ‖x‖1 − x). A positive linear functional ρ : A → R on an order-unit space A is bounded
with ‖ρ‖ = ρ(1) and, vice versa, a bounded linear functional ρ with ‖ρ‖ = ρ(1) is positive.

The order-unit space A considered in the following is the dual space of a base-norm
space V and, therefore, the unit ball of A is compact in the weak-∗-topology σ(A,V ). For
ρ ∈ V and x ∈ A define ρ̂(x) := x(ρ); the map ρ → ρ̂ is the canonical embedding of V in its
second dual V ∗∗ = A∗. Then ρ ∈ V is positive if and only if ρ̂ is positive on A.

For any setK in A, denote by lin K the σ(A,V )-closed linear hull ofK and by conv K
the σ(A,V )-closed convex hull ofK. For a convex set K, denote by ext K the set of its extreme
points which may be empty unless K is compact. A projection is a linear map U : A → A
with U2 = U and, for a ≤ b, define [a, b] := {x ∈ A : a ≤ x ≤ b}. Suppose that E is a subset of
[0,1] in A such that

(a) 1 ∈ E,

(b) 1 − e ∈ E if e ∈ E, and

(c) d + e + f ∈ E if d,e, f , d + e, d + f , e + f ∈ E.
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Define e′ := 1 − e and call e, f ∈ E orthogonal if e + f ∈ E. Then E satisfies the axioms
(OS1),. . .,(OS6), and the states on E and the state space S can be considered as in Section 2.

Proposition 3.1. Suppose that A is an order-unit space with order unit 1 and that A is the dual of the
base-norm space V. Moreover, suppose that E is a subset of [0,1] satisfying the three above conditions
(a), (b), (c) and that the following two conditions hold

(i) A = lin E, and for each μ ∈ S there is a σ(A,V )-continuous positive linear functional
μ̂ on A with μ̂(e) = μ(e) for e ∈ E.

(ii) For each e ∈ E there is a σ(A,V )-continuous positive projection Ue : A → A such that
Ue1 = e,UeA = lin{f ∈ E : f ≤ e} and μ̂ = μ̂Ue for μ ∈ S with μ(e) = 1.

Then E is a UCP space. The conditional probabilities have the shape μ(f | e) = μ̂(Uef)/μ(e) for
e, f ∈ E and μ ∈ S with μ(e) > 0.

Proof. For e, f ∈ E with e /= f there is ρ ∈ V+ with ρ(e − f)/= 0. The restriction of ρ/ρ(1) to E
then yields a state μ ∈ Swith μ(e)/=μ(f). Therefore (UC1) holds.

Suppose e ∈ E and μ ∈ S with μ(e) > 0. It is rather obvious that the map g →
μ̂(Ueg)/μ(e) on E provides a conditional probability of μ under e. Now assume that ν is a
further conditional probability of μ under e. Then ν(e) = 1 and thus ν̂ = ν̂Ue. From Ueg ∈
lin{f ∈ E : f ≤ e} it follows that ν(g) = ν̂(Ueg) = μ̂(Ueg)/μ(e) for g ∈ E. Therefore, (UC2)
holds as well.

Note that the linear extension μ̂ in (i) is unique sinceA = lin E. It will now be seen that
the situation of Proposition 3.1 is universal for the quantum logics with unique conditional
probabilities; that is, each UCP space has such a shape as described there.

Theorem 3.2. Each UCP space E is a subset of the interval [0,1] in some order-unit space A with
predual V as described in Proposition 3.1.

Proof. Define V := {sμ − tν : μ, ν ∈ S, 0 � s, t ∈ R}, which is a linear subspace of the
orthogonally additive real-valued functions on E, and consider for ρ ∈ V the norm

∥∥ρ
∥∥ := inf

{
r ∈ R : r ≥ 0, ρ ∈ r conv(S ∪ −S)}. (3.1)

Then |ρ(e)| ≤ ‖ρ‖ for every e ∈ E. Let A be the dual space of the base-norm space V and
let μ̂ be the canonical embedding of μ ∈ V in V ∗∗ = A∗. If μ̂(x) ≥ 0 for all μ ∈ S, the element
x ∈ A is called positive and in this case write x ≥ 0. Equipped with this partial ordering, A
becomes an order-unit space with the order unit 1 := π(1), and the order-unit norm of an
element x ∈ A is ‖x‖ = sup{|μ̂(x)| : μ ∈ S}. With e ∈ E define π(e) in A via π(e)(ρ) := ρ(e)
for ρ ∈ V . Then 0 ≤ ‖π(e)‖ ≤ 1, and π(e + f) = π(e) + π(f) for two orthogonal events e and
f in E. Moreover, A is the σ(A,V )-closed linear hull of π(E).

Now the positive projectionUe will be defined for e ∈ E. Suppose x ∈ A and sμ−tν ∈ V
with μ, ν ∈ S and 0 � s, t ∈ R. Then define (Uex)(sμ− tν) := sμ(e)μ̂e(x)− tν(e)ν̂e(x). Here, μ̂e

and ν̂e are the canonical embeddings of the conditional probabilities μe and νe inA∗; they do
not exist in the cases μ(e) = 0 or ν(e) = 0 and then define μ(e)μ̂e(x) := 0 and ν(e)ν̂e(x) := 0,
respectively. It still has to be shown that Ue is well defined for sμ − tν = s′μ′ − t′ν′ with μ,
μ′, ν, ν′ ∈ S and 0 ≤ s, s′, t, t′. Then s − t = (sμ − tν)(1) = (s′μ′ − t′ν′)(1) = s′ − t′ and



6 Advances in Mathematical Physics

s + t′ = s′ + t. If s + t′ = 0, s = s′ = t = t′ = 0 and Uex is well defined. If s + t′ > 0, then
either sμ(e) + t′ν′(e) = s′μ′(e) + tν(e) = 0 and sμ(e) = t′ν′(e) = s′μ′(e) = tν(e) = 0, or
(sμ + t′ν′)/(s + t′) = (s′μ′ + tν)/(s′ + t) ∈ S and calculating the conditional probability under
e for both sides of this identity by using (2.1) yields sμ(e)μe + t′ν′(e)ν′e = s′μ′(e)μ′

e + tν(e)νe.
In all cases, Ue is well defined.

If μ(e) = 1 for μ ∈ S, then μ = μe and μ̂(Uex) = (Uex)(μ) = μ̂(x); that is, μ̂ = μ̂Ue.
Thus, (UeUex)(μ) = μ(e)μ̂e(Uex) = μ(e)μ̂e(x) = (Uex)(μ) for all μ ∈ S and hence for all
ρ ∈ V . Therefore UeUe = Ue, that is, Ue is a projection. Its positivity, σ(A,V )-continuity as
well as Ue1 = π(e) and Ueπ(f) = π(f) for f ∈ E with f ≤ e follow immediately from the
definition.

Therefore lin{π(f) : f ∈ E, f ≤ e} ⊆ UeA. Assume Uex /∈ lin{π(f) : f ∈ E, f ≤ e} for
some x ∈ A. By the Hahn-Banach theorem, there is ρ ∈ V with ρ̂(Uex)/= 0 and ρ(f) = 0 for f ∈
E with f ≤ e. Suppose ρ = sμ− tν with μ, ν ∈ S and 0 � s, t ∈ R. Then sμ(f) = tν(f) for f ∈ E
with f ≤ e and thus sμ(e)μe(f) = tν(f)νe(f). The uniqueness of the conditional probability
implies sμ(e)μe(f) = tν(f)νe(f), that is, ρ̂(Uef) = 0 for all f ∈ E and hence ρ̂Ue = 0 which
contradicts ρ̂(Uex)/= 0. This completes the proof of Theorem 3.2 after identifying π(E) with
E.

Lemma 3.3. If e and f are events in a UCP space E with e ≤ f , then Uef = e = Ufe and UeUf =
UfUe = Ue. If e, f ∈ E are orthogonal, then Uef = 0 = Ufe, UeUf = UfUe = 0 and Ue′Uf ′ =
U(e+f)′ = Uf ′Ue′ .

Proof. Suppose e ≤ f and μ ∈ S. Then 1 = μe(e) ≤ μe(f) ≤ 1 for the conditional probability μe

implies μe(f) = 1 and hence μ̂eUf = μ̂e. Therefore μ̂UeUf = μ(e)μ̂eUf = μ(e)μ̂e = μ̂Ue

for all μ ∈ S and thus UeUf = Ue. The identity UfUe = Ue immediately follows from
(ii) in Proposition 3.1. Moreover e = Ue1 = UeUf1 = Uef and e = Ue1 = UfUe1 =
Ufe.

Now assume that e and f are orthogonal. Then e � f ′. Hence e = Uef
′ = Ue(1 − f) =

e − Uef , and Uef = 0. In the same way it follows that Ufe = 0. Therefore Uf vanishes on
UeA = lin{d ∈ E : d ≤ e} and UfUe = 0. The identity UeUf = 0 follows in the same
way.

Moreover, 0 ≤ Ue′Uf ′x ≤ Ue′Uf ′1 = Ue′f
′ = Ue′1−Ue′f = e′ −f = (e + f)′ for x ∈ [0,1].

Therefore μ̂Ue′Uf ′ = 0 = μ̂U(e+f)′ for μ ∈ S with μ((e + f)′) = 0. Now consider μ ∈ S with
μ((e + f)′) > 0 and define ν := μ̂Ue′Uf ′/μ((e + f)′) ∈ S. From (e + f)′ ≤ e′ and (e + f)′ ≤
f ′, it follows that Ue′Uf ′(e + f)′ = (e + f)′ and ν((e + f)′) = 1. Hence ν = ν̂U(e+f)′ . From
Ue′U(e+f)′ = U(e+f)′ = Uf ′U(e+f)′ it follows that ν = μ̂U(e+f)′/μ((e + f)′) and thus μ̂Ue′Uf ′ =
μ̂U(e+f)′ . This identity now holds for all states μ and therefore Ue′Uf ′ = U(e+f)′ . In the same
way it follows that Uf ′Ue′ = U(e+f)′ .

The projections Ue considered here are similar to but not identical with the so-called
P -projections considered by Alfsen and Shultz in their noncommutative spectral theory [13].
A P -projection P has a quasicomplement Q such that Px = x if and only if Qx = 0 (and
Qx = x if and only if Px = 0) for x ≥ 0. If Uex = x, then Ue′x = Ue′Uex = 0 by Lemma 3.3,
but Ue′x = 0 does not imply Uex = x.

An element P(1)with a P-projection P is called a projective unit by Alfsen and Shultz.
In the case of spectral duality of a base-norm space V and an order-unit spaceA, the system of
projective units inA is a UCP space if each state on the projective units has a linear extension
to A (as with the Gleason theorem or in condition (i) of Proposition 3.1).
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4. The Interference Terms I2 and I3

With two disjoint events e1 and e2, the classical conditional probabilities satisfy the rule
μ(f | e1 + e2)μ(e1 + e2) = μ(f | e1)μ(e1) + μ(f | e2)μ(e2). Only because violating this rule,
quantum mechanics can correctly model the quantum interference phenomena observed in
nature with small particles.

For instance, consider the two-slit experiment and let e1 be the event that the particle
passes through the first slit, e2 the event that it passes through the second slit, and f the event
that it is registered in a detector located at a fixed position somewhere behind the screen with
the two slits. Then μ(f | e1)μ(e1) is the probability that the particle is registered in the detector
when the first slit is open and the second one is closed, μ(f | e2)μ(e2) is the probability that
the particle is registered in the detector when the second slit is open and the first one is closed,
and μ(f | e1+e2)μ(e1+e2) is the probability that the particle is registered in the detector when
both slits are open. If the above rule were valid, it would rule out the interference patterns
observed in the quantum physical experiments and correctly modelled by quantum theory.
Therefore, a first interference term is defined by

I
μ,f

2 (e1, e2) := μ
(
f | e1 + e2

)
μ(e1 + e2) − μ

(
f | e1

)
μ(e1) − μ

(
f | e2

)
μ(e2), (4.1)

where μ is a state, f any event, and e1, e2 an orthogonal pair of events. While I
μ,f

2 (e1, e2) = 0
in the classical case, it is typical of quantum mechanics that Iμ,f2 (e1, e2)/= 0.

With three orthogonal events e1, e2, e3, a next interference term can be defined in the
following way:

I
μ,f

3 (e1, e2, e3) := μ
(
f | e1 + e2 + e3

)
μ(e1 + e2 + e3)

− μ
(
f | e1 + e2

)
μ(e1 + e2) − μ

(
f | e1 + e3

)
μ(e1 + e3) − μ

(
f | e2 + e3

)
μ(e2 + e3)

+ μ
(
f | e1

)
μ(e1) + μ

(
f | e2

)
μ(e2) + μ

(
f | e3

)
μ(e3).

(4.2)

Similar to the two-slit experiment, now consider an experiment where the screen has
three instead of two slits. Let ek be the event that the particle passes through the kth slit
(k = 1, 2, 3) and f again the event that it is registered in a detector located somewhere behind
the screen with the slits. Then μ(f | ek)μ(ek) is the probability that the particle is registered in
the detector when the kth slit is open and the other two ones are closed, μ(f | ei + ej)μ(ei + ej)
is the probability that the particle is registered in the detector when the ith slit and the jth
are open and the remaining third slit is closed, and μ(f | e1 + e2 + e3)μ(e1 + e2 + e3) is the
probability that the particle is registered in the detector when all three slits are open. The
interference term I

μ,f

3 (e1, e2, e3) is the sum of these probabilities with negative signs in the
cases with two slits open and positive signs in the cases with one or three slits open. The
sum would become zero if these probabilities were additive in e1, e2, e3 as they are in the
classical case. However, this is not the only case; Iμ,f3 (e1, e2, e3) = 0 means that the detection
probability with three open slits is a simple linear combination of the detection probabilities in
the three cases with two open slits and the three cases with one single open slit. If the situation
with three slits involves some new interference, the detection probability should not be such
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a linear combination and I
μ,f

3 (e1, e2, e3) should not become zero. The fascinating question now

arises whether Iμ,f3 (e1, e2, e3) = 0 or not.
Considering experiments with three and more slits, this third-order interference term

and a whole sequence of further higher order interference terms were introduced by Sorkin
[1], but in another form. He used probability measures on “sets of histories”. When porting
his third-order interference term to conditional probabilities, it gets the above shape. The
same shape is used by Barnum et al. [14]who adapted Sorkin’s third-order interference term
into an operational probabilistic framework. The further higher-order interference terms will
not be considered in the present paper. It may be interesting to note that the absence of the
third-order interference implies the absence of the interference of all orders higher than three.

Using the identity μ(f | e) = μ̂(Uef)/μ(e), the validity of Iμ,f3 (e1, e2, e3) = 0 for all
states μ is immediately equivalent to the identity

Ue1+e2+e3f −Ue1+e2f −Ue2+e3f −Ue1+e3f +Ue1f +Ue2f +Ue3f = 0. (4.3)

If this will hold also for all events f , this means

I3(e1, e2, e3) := Ue1+e2+e3 −Ue1+e2 −Ue2+e3 −Ue1+e3 +Ue1 +Ue2 +Ue3 = 0. (4.4)

The term I3(e1, e2, e3) does not any more depend on a state or the event f , but only on the
orthogonal event triple e1, e2, e3. Note that I3(e1, e2, e3) is a linear map on the order-unit space
Awhile Iμ,f3 (e1, e2, e3) = μ̂(I3(e1, e2, e3)f) is a real number.

This interference term shall now be studied in a von Neumann algebra where the
conditional probability has the shape μ(f | e) = μ̂(efe)/μ(e) for projections e, fand a state μ
with μ(e) > 0, and hence Uef = efe. Then

Ue1+e2+e3f −Ue1+e2f −Ue2+e3f −Ue1+e3f +Ue1f +Ue2f +Ue3f

= (e1 + e2 + e3)f(e1 + e2 + e3)

− (e1 + e2)f(e1 + e2) − (e2 + e3)f(e2 + e3)

− (e1 + e3)f(e1 + e3)

+ e1fe1 + e2fe2 + e3fe3 = 0.

(4.5)

Therefore, in a von Neumann algebra and in standard quantum mechanics, the iden-
tity I

μ,f

3 (e1, e2, e3) = 0 always holds, which was already seen by Sorkin. This becomes a
first interesting property of quantum mechanics distinguishing it from the general quantum
logics with unique conditional probabilities (UCP spaces). It is quite surprising that quantum
mechanics has this property because there is no obvious reason why I

μ,f

3 (e1, e2, e3) should

vanish while I
μ,f

2 (e1, e2) does not. Likewise surprising are the bounds which quantum
mechanics imposes on I

μ,f

2 (e1, e2) and which will be presented in the next section.
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5. A Bound for Quantum Interference

Suppose that E is a UCP space. By Theorem 3.2, it can be embedded in an order-unit space A
such that Proposition 3.1 holds. For each event e ∈ E define a linear map Se on A by

Sex := 2Uex + 2Ue′x − x (x ∈ A). (5.1)

Then Se1 = 1. Furthermore, SeSe′x = Se′Sex = x for x ∈ A; that is, Se′ is the inverse of the
linearmap Se and Se is a linear isomorphism. If it were positive, it would be an automorphism
of the order-unit space A, but this is not true in general. It will now be studied what the
positivity of the maps Se would mean for the conditional probabilities.

Suppose e, f ∈ E. Then 0 � Sef means f � 2Uef + 2Ue′f , and this is equivalent to the
following inequality for the conditional probabilities:

μ
(
f
)

� 2μ
(
f | e)μ(e) + 2μ

(
f | e′)μ(e′) (5.2)

or, equivalently,

I
μ,f

2

(
e, e′

) ≤ μ
(
f | e)μ(e) + μ

(
f | e′)μ(e′) (5.3)

holding for all states μ. Exchanging f by f ′ yields from 0 � Sef
′

1 − μ
(
f
)
= μ

(
f ′) � 2μ

(
f ′ | e)μ(e) + 2μ

(
f ′ | e′)μ(e′)

= 2
(
1 − μ

(
f | e))μ(e) + 2

(
1 − μ

(
f | e′))μ(e′)

= 2 − 2μ
(
f | e)μ(e) − 2μ

(
f | e′)μ(e′)

(5.4)

and thus a second inequality:

μ
(
f
)

� 2μ
(
f | e)μ(e) + 2μ

(
f | e′)μ(e′) − 1 (5.5)

or, equivalently,

I
μ,f

2

(
e, e′

) ≥ μ
(
f | e)μ(e) + μ

(
f | e′)μ(e′) − 1. (5.6)

The above inequalities (5.3) and (5.6) introduce an upper bound and a lower bound for the
interference term I

μ,f

2 (e, e′). How these bounds limit the interference is shown in Figure 1
using the inequalities (5.2) and (5.5) and not this specific interference term. The dashed
diagonal line represents the classical case without interference, while the inequalities (5.2)
and (5.5) allow the whole corridor between the two continuous lines and forbid the area
outside this corridor.

In a von Neumann algebra, Uef = efe for projections e, fand hence Sex = 2exe +
2e′xe′ − x = (e − e′)x(e − e′) with x in the von Neumann algebra. Therefore the maps Se are
positive and the above inequalities for the conditional probabilities ((5.2) and (5.5) illustrated
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(f

)

µ( f |e)µ(e) + µ( f |e)µ(e)

Figure 1

in Figure 1) and the resulting bounds for the interference term I
μ,f

2 (e, e′) (inequalities (5.3)
and (5.6)) hold in this case. This is a second interesting property of quantum mechanics
distinguishing it from other more general theories.

6. A Symmetry Property of the Quantum Mechanical
Conditional Probabilities

Alfsen and Shultz introduced the following symmetry condition for the conditional proba-
bilities in [4] and used it to derive a Jordan algebra structure from their noncommutative
spectral theory:

μ
(
f ′ | e)μ(e) + μ

(
f | e′)μ(e′) = μ

(
e′ | f)μ(f) + μ

(
e | f ′)μ

(
f ′). (A1)

This condition arose mathematically and a physical meaning is not immediately at hand.
Alfsen and Shultz’s interpretation was “The probability of the exclusive disjunction of two system
properties is independent of the order of the measurements of the two system properties.” However,
the exclusive disjunction is not an event or proposition.

The first summand on the left-hand side μ(f ′ | e)μ(e) is the probability that a
first measurement testing e versus e′ provides the result e and that a second successive
measurement testing f versus f ′ then provides the result f ′ (= “not f”). The second summand
on the left-hand side and the two summands on the right-hand side can be interpreted in the
same way with exchanged roles of e, e′, f , f ′.

Figure 2 displays a measuring arrangement consisting of two successive measure-
ments M1 and M2; the first one tests e versus e′ and the second one f versus f ′. After the
second one, the particle is let pass only in the two cases if the result of the first measurement
is e and the result of the second one is f ′ or if the result of the first one is e′ and the result of
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f ′
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the second one is f . In the other two cases, if the result of the first measurement is e and the
result of the second one is f or if the result of the first one is e′ and the result of the second
one is f ′, the particle is absorbed after the second measurement. Figure 3 displays the same
measuring arrangement as Figure 2, but with exchanged roles of e and f .

Condition (A1) now means that the probability that a particle passes through the
measuring arrangement shown in Figure 2 is identical with the probability that a particle
passes through the measuring arrangement shown in Figure 3.

The symmetry condition for the conditional probabilities (A1) also plays a certain role
in the study of different compatibility/comeasurability levels in [15].

Condition (A1) will now be rewritten using the interference term I
μ,f

2 (e1, e2) for two
orthogonal events e1 and e2. To remove the dependence on f and the state μ, first define in
analogy to (4.4)

I2(e1, e2) := Ue1+e2 −Ue1 −Ue2 , (6.1)

which is a linear operator on the order-unit space A generated by an UCP space E. Note that
I
μ,f

2 (e1, e2) = μ̂(I2(e1, e2)f), recalling the identity μ(f | e)μ(e) = μ̂(Uef) for states μ and events
e and f . The validity of (A1) for all states μ is immediately equivalent to the identity

Uef
′ +Ue′f = Ufe

′ +Uf ′e. (6.2)

It implies

0 = Uef
′ +Ue′f −Ufe

′ −Uf ′e

= e −Uef +Ue′f − f +Ufe −Uf ′e

= I2
(
f, f ′)e + 2Ufe − I2

(
e, e′

)
f − 2Uef

(6.3)
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and hence

I2
(
e, e′

)
f − I2

(
f, f ′)e = 2Ufe − 2Uef. (6.4)

Reconsidering the von Neumann algebras whereUef = efe, (6.2) becomes e(1− f)e+
(1 − e)f(1 − e) = f(1 − e)f + (1 − f)e(1 − f). Both sides of this equation are identical
to e + f − ef − fe. Therefore (A1) holds for all states and all events in a von Neumann
algebra and in the standard model of quantummechanics. This is a third interesting property
of quantum mechanics distinguishing it from the general quantum logics with unique
conditional probabilities (UCP spaces). However, it is a mathematical property without a
clear physical reason behind it and the absence of third-order interference (I3 = 0) is the more
interesting property from the physical point of view.

7. The Linear Maps Te

In addition to the Ue, a further useful type of linear maps Te on the order-unit space A
generated by a UCP space E will now be defined for e ∈ E:

Tex :=
1
2
(x +Uex −Ue′x), x ∈ A (7.1)

In a von Neumann algebra, this becomes Tex = (ex + xe)/2, which is the Jordan product
of e and x. This is a first reason why some relevance is expected from the maps Te on the
order-unit space A.

A second reason is that (A1) holds for all states μ if and only if Tef = Tfe. This follows
from (6.2). Thus, using the linear maps Te, the symmetry condition (A1) for the conditional
probabilities is transformed to the very simple equation Tef = Tfe. Actually, this is what
brought Alfsen and Shultz to the discovery of (A1).

Some further important characteristics of these linear maps will now be collected.
Suppose e ∈ E and x ∈ A. Using the above definition of Te immediately yields Tex + Te′x = x.
Moreover,

Tex =
1
2
(x +Uex −Ue′x) +Uex + 0 Ue′x, (7.2)

is the spectral decomposition of Te, and hence Te has the three eigenvalues 0, 1/2, 1.
Furthermore,

TeUex =
1
2

(
Uex +U2

ex − 0
)
= Uex,

TeUe′x =
1
2

(
Ue′x + 0 −U2

e′x
)
= 0.

(7.3)

Therefore

T2
e x =

1
2
(Tex + TeUex − TeUe′x) =

1
2
(Tex +Uex) (7.4)
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and thus

Ue = 2T2
e − Te. (7.5)

Originally, the Te were derived from theUe, and (7.5)means that theUe can be reconstructed
from the Te.

The norm of the operator Te will now be calculated. From Ue[−1,1] ⊆ [−e, e] and
Ue′[−1,1] ⊆ [−e′, e′] it follows that

(Ue − Ue′)[−1,1] ⊆ [−1,1] (7.6)

and therefore ‖Ue − Ue′ ‖ ≤ 1. Hence ‖Te‖ ≤ 1. Since Tee = e and ‖e‖ = 1 for e /= 0, it follows
that ‖Te‖ = 1 unless e = 0 and Te = 0.

Lemma 7.1. If two events e and f in an UCP space E are orthogonal, then the linear maps Te and Tf
on the order-unit space A generated by E commute: TeTf = TfTe.

Proof. By Lemma 3.3 the four projectionsUe,Ue′ ,Uf ,Uf ′ commute pairwise. The linear maps
Te and Tf then commute by (7.1).

An important link between the linear maps Te(e ∈ E) and Sorkin’s interference term
I3 will be considered in the next sections.

8. Quantum Logics with I3 = 0

The interference term I
μ,f

2 (e1, e2) vanishes for all states μ and all events f if and only if
I2(e1, e2) = Ue1+e2 − Ue1 + Ue2 = 0. The general validity of this identity for all orthogonal
event pairs e1, e2 means that the map e → Ue is orthogonally additive in e. It will later be
seen in Proposition 8.2 that the general validity of I3(e1, e2, e3) = 0 for all orthogonal event
triples e1, e2, e3 means that the map e → Te is orthogonally additive in e. This will follow
from the next lemma.

Lemma 8.1. Suppose that E is a UCP space and that A is the order-unit space generated by E.

(i) If e1, e2, e3 are three orthogonal events in E, then

I3(e1, e2, e3) = Ue1+e2+e3I3
(
(e2 + e3)′, e2, e3

)
. (8.1)

(ii) If e and f are two orthogonal events in E, then

Te + Tf − Te+f =
1
2
I3
(
e, f,

(
e + f

)′)
. (8.2)
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Proof. (i) I3((e2+e3)′, e2, e3) = U1 −Ue′3 −Ue′2 −Ue2+e3 +Ue1 +Ue2 +Ue3 and then by Lemma 3.3,

Ue1+e2+e3I3
(
(e2 + e3)′, e2, e3

)
= Ue1+e2+e3 −Ue1+e2 −Ue1+e3 −Ue1+e3 +Ue1 +Ue2 +Ue3

= I3(e1, e2, e3).
(8.3)

(ii)With e1 := e, e2 := f and e3 := (e + f)′, it follows for x ∈ A:

Te+fx =
1
2
(x +Ue1+e2x −Ue3x),

Tex =
1
2
(x +Ue1x −Ue2+e3x),

Tfx =
1
2
(x +Ue2x −Ue1+e3x),

(8.4)

and thus

Tex + Tfx − Te+fx =
1
2
(x +Ue1x −Ue2+e3x) +

1
2
(x +Ue2x −Ue1+e3x) −

1
2
(x +Ue1+e2x −Ue3x)

=
1
2
(x −Ue1+e2x −Ue2+e3x −Ue1+e3x +Ue1x +Ue2x +Ue3x)

=
1
2
I3(e1, e2, e3)x.

(8.5)

Proposition 8.2. Suppose that E is a UCP space. Then the following three conditions are equivalent.

(i) I3(e1, e2, e3) = 0 for all orthogonal events e1, e2, e3 in E.

(ii) I3(e1, e2, e3) = 0 for all orthogonal events e1, e2, e3 in E with e1 + e2 + e3 = 1.

(iii) Te+f = Te + Tf for all orthogonal events e and f in E.

Proof. The implication (i) ⇒ (ii) is obvious, the implication (ii) ⇒ (iii) follows from Lemma
8.1 (ii), and the implication (iii) ⇒ (i) from Lemma 8.1(i) and (ii) both.

It now becomes clear that the symmetry condition (A1) for the conditional probabili-
ties implies the absence of third-order interference, that is, I3(e1, e2, e3) = 0 for all orthogonal
events e1, e2, e3. Recall that (A1) implies the identity Tef = Tfe for all events e and f .
Therefore, Te is orthogonally additive in e and I3(e1, e2, e3) = 0 follows from Proposition
8.2.

9. Jordan Decomposition

In this section, the orthogonal additivity of Te in e (by Lemma 7.1) will be used to define
Tx for all x in the order-unit space A. The Te are not positive and this involves some
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difficulties, which can be overcome when the real-valued bounded orthogonally additive
functions on the UCP space E satisfy the so-called Jordan decomposition property or the
stronger Hahn-Jordan decomposition property. These decomposition properties are named
after the French mathematician Camille Jordan (1838–1922) who originally introduced the
first one for functions of bounded variation and signed measures. The Jordan algebras are
named after another person; this is the German physicist Pascual Jordan (1902–1980).

Consider functions ρ : E → R which are orthogonally additive (i.e., ρ(e + f) = ρ(e) +
ρ(f) for orthogonal elements e and f in E) and bounded (i.e., sup{|ρ(e)| : e ∈ E} < ∞). Let
R denote the set of all these functions ρ on E. Then R comprises the state space S. The UCP
space E is said to have the Jordan decomposition property if each ρ ∈ R can be written in
the form ρ = sμ − tν with two states μ and ν in S and nonnegative real number s and t. It
has the ε-Hahn-Jordan decomposition property if the following stronger condition holds: for
each ρ ∈ R and every ε > 0 there are two states μ and ν in S, nonnegative real number s and t
and an event e in E such that ρ = sμ− tν and μ(e) < ε as well as ν(e′) < ε. This ε-Hahn-Jordan
decomposition property was studied in the framework of quantum logics by Cook [16] and
Rüttimann [17]. The usual Hahn-Jordan decomposition property for signed measures is even
stronger requiring that μ(e) = 0 = ν(e′).

Note that the projection lattices of von Neumann algebras have the Jordan decompo-
sition property and the ε-Hahn-Jordan decomposition property, but this is not obvious. It is
well known that these types of decomposition are possible for the bounded linear functionals
on the algebra, but they are needed for the orthogonally additive real functions on the
projection lattice. Bunce and Maitland Wright [18] showed that each such function on the
projection lattice has a bounded linear extension to the whole algebra (this is the last step of
the solution of the Mackey-Gleason problem which had been open for a long time), and then
the decomposition of this extension provides the desired decomposition by considering the
restrictions of the linear functionals to E.

Lemma 9.1. Suppose that E is a UCP space with the Jordan decomposition property and I3(e1,
e2, e3) = 0 for all orthogonal events e1, e2, e3 in E. Then, for each x in the order-unit space A generated
by E, the map e → Tex from E toA has a unique σ(A,V )-continuous linear extension y → Tyx on
A.

Proof. Consider V as defined in the proof of Theorem 3.2. In the general case, only the
inclusion V ⊆ R holds, but the Jordan decomposition property ensures that V = R.

For each ρ in V and each x in A, define a function ρx on E by ρx(e) := ρ̂(Tex). By
Proposition 8.2, ρx is orthogonally additive in e. Moreover, |ρx(e)| � ‖ρ‖‖Te‖‖x‖ � ‖ρ‖‖x‖
for e ∈ E. Thus ρx is bounded and lies inR = V . Let ρ̂x be its canonical embedding in V ∗∗ = A∗

and, with y ∈ A, consider the real-valued bounded linear map ρ → ρ̂x(y) on V . It defines an
element Tyx in V ∗ = A such that the map y → Tyx is linear as well as σ(A,V )-continuous on
A and coincides with the original Tex for y = e ∈ E.

10. The Product on the Order-Unit Space

Under the assumptions of the last lemma, a product can now be defined on the order-unit
space A by y�x := Tyx. It is linear in x as well as in y, but there is certain asymmetry
concerning its σ(A,V )-continuity. The product y�x is σ(A,V )-continuous in y ∈ A with
x ∈ A fixed and it is σ(A,V )-continuous in x ∈ Awith y = e ∈ E fixed, but generally not with
other y ∈ A. Moreover, 1�x = x and y�1 = y,e�e = e and ‖e�x‖ ≤ ‖x‖ for the elements x and
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y inA and the events e in E. However, the inequality ‖y�x‖ ≤ ‖y‖‖x‖ is not yet available; this
requires the ε-Hahn-Jordan decomposition property and will follow from the next lemma.

Lemma 10.1. Suppose that E is a UCP space with the ε-Hahn-Jordan decomposition property. Then
[−1,1] is identical with the σ(A,V )-closed convex hull of the set {e − e′ : e ∈ E} in A, and [0,1]
coincides with the σ(A,V )-closed convex hull of E. Moreover, the extreme points of [0,1] lie in the
σ(A,V ) closure of E.

Proof. The inclusion conv{e − e′ : e ∈ E} ⊆ [−1,1]is obvious, and it will now be shown
that[−1,1] ⊆ conv{e − e′ : e ∈ E}. Assume that an x exists in the interval [−1,1] which does
not lie in the set conv{e − e′ : e ∈ E}. By the Hahn-Banach theorem, there is ρ ∈ V with
ρ(x) > sup{ρ(e − e′) : e ∈ E}. From 0 = (e − e′)/2 + (e′ − e)/2 for any e ∈ E, it follows that
0 ∈ conv{e − e′ : e ∈ E}. Hence ρ(x) > 0 and ρ /= 0.

Suppose ε > 0. Due to the ε-Hahn-Jordan decomposition property, there are two states
μ and ν in S, nonnegative real number s and t and an event f in E such that ρ = sμ − tν and
μ(f) < ε as well as ν(f ‘) < ε. Then

ρ
(
f ′ − f

)
= sμ

(
f ′) − sμ

(
f
) − tν

(
f ′) + tν

(
f
)

= s − 2sμ
(
f
)
+ t − 2tν

(
f ′)

≥ s + t − 2ε(s + t) = (1 − 2ε)(s + t).

(10.1)

Recall from the proof of Theorem 3.2 that ‖ρ‖ = inf{r ∈ R : r ≥ 0 and ρ ∈ r conv(S∪−S)}. The
case s = t = 0 cannot occur since this would imply ρ = 0. Therefore write

ρ = (s + t)
(

s

s + t
μ − t

s + t
ν

)
, (10.2)

to see that ‖ρ‖ ≤ s + t.
Finally ρ(x) ≤ ‖ρ‖‖x‖ ≤ ‖ρ‖ ≤ s + t ≤ ρ(f ′ − f)/(1 − 2ε). With ε small enough such that

(1 − 2ε)ρ(x) > sup{ρ(e − e′) : e ∈ E}, an event f in E is found with ρ(f ′ − f) ≥ (1 − 2ε)ρ(x) >
sup{ρ(e − e′) : e ∈ E}, which is the desired contradiction with e := f ′.

Thus [−1,1] = conv{e − e′ : e ∈ E}. The map x → (x + 1)/2 is a σ(A,V )-continuous
affine isomorphismmapping [−1,1] to [0,1] and {e−e′ : e ∈ E} to E; therefore [0,1] = convE.
The Krein-Milman theorem then yields that the extreme points of [0,1] lie in the σ(A,V )-
closure of E.

Lemma 10.2. Suppose that E is a UCP space with the ε-Hahn-Jordan decomposition property and
I3(e1, e2, e3) = 0 for all orthogonal events e1, e2, e3 in E. Then ‖y�x‖ ≤ ‖y‖‖x‖ for all elements x, y
in A.

Proof. Suppose e ∈ E and x ∈ A with ‖x‖ ≤ 1; that is, x ∈ [−1,1]. Then ‖(e − e′)�x‖ =
‖e�x−e′�x‖ = ‖Tex−Te′x‖. Moreover, Tex−Te′x = Uex−Ue′x by (7.1) andUex−Ue′x ∈ [−1,1]
by (7.6). Therefore, ‖(e − e′)�x‖ ≤ 1. This holds for all e ∈ E. Lemmas 9.1 and 10.1 then imply
that ‖y�x‖ ≤ 1 for all y ∈ [−1,1].

So far it has been seen that the Jordan decomposition property and the absence of
third-order interference entail a product y�x on the order-unit spaceA generated by the UCP
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space E which is linked to the conditional probabilities via the identityUex = 2e�(e�x)− e�x
holding for the events e and the elements x in A. This follows from (7.5).

The product y�x is neither commutative nor associative and thus far away from
the products usually considered in mathematical physics. The common product of linear
operators is not commutative but associative and the Jordan produc a ◦ b := (ab + ba)/2
is not associative but commutative.

11. Jordan Algebras

The elements of a UCP space E represent the events or propositions; they can be considered
also as observables with the simple discrete spectrum {0, 1} representing a yes/no test
experiment. However, what is the meaning of the elements x in the order-unit space A
generated by E? One might expect that they represent other observables with a larger and
possibly nondiscrete spectrum and that μ̂(x) is the expectation value of the observable
represented by x in the state μ. If it is assumed that they do so, one would also expect a
certain behaviour.

First, one would like to identify the elements x2 = x�x and, more generally, xn

(inductively defined by xn+1 := x�xn) in A with the application of the usual polynomial
functions t → t2 or t → tn to the observable.

Second, the expectation value of the square x2 should be nonnegative; this means that
μ̂(x2) � 0 for all x in A and for all states μ, and therefore x2 ≥ 0 in the order-unit space A.

Third, one would like to have the usual polynomial functional calculus allocating an
element p(x) in A to each polynomial function p such that p1(x)�p2(x) = q(x) whenever p1
and p2 are two polynomial functions and the polynomial function q is their product. Since the
product inA is not associative, xn �xm do not need to be identical with xn+m. If xn �xm = xn+m

holds for all x in A and for all natural numbers n and m, A is called power-associative. The
availability of the polynomial functional calculus for all elements inAmeans thatA is power
associative and vice versa.

The following theorem shows that these requirements make A a commutative Jordan
algebra; that is, the product is Abelian and satisfies the Jordan condition x�(x2 �y) =
x2 �(x�y). The Jordan condition is stronger than power associativity and, in general, power
associativity does not imply the Jordan condition.

Theorem 11.1. Suppose that E is a UCP space with the ε-Hahn-Jordan decomposition property and
with I3(e1, e2, e3) = 0 for all orthogonal events e1, e2, e3 in E. Furthermore, assume that the order-
unit space A generated by E, together with the multiplication �, is power associative and that x2 ≥ 0
for all x in A. Then the multiplication � is commutative and A is a Jordan algebra. Moreover, E is a
σ(A,V )-dense subset of {e ∈ A : e2 = e}.
Proof. Suppose x, y ∈ A. The positivity of the squares implies the Cauchy-Schwarz inequality
(μ̂(x � y))2 � μ̂(x2)μ̂(y2) with states μ. Then, with y = 1, (μ̂(x))2 � μ̂(x2). Recall from the
proof of Theorem 3.2 that ‖x‖ = sup{|μ̂(x)| : μ ∈ S}. Therefore

∥∥∥x2
∥∥∥ � ‖x‖2 = sup

{(
μ̂(x)

)2 : μ ∈ S
}
≤ sup

{
μ̂
(
x2
)
: μ ∈ S

}
=
∥∥∥x2

∥∥∥ (11.1)

and hence

∥∥∥x2
∥∥∥ = ‖x‖2. (11.2)
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Moreover,

∥
∥
∥x2 + y2

∥
∥
∥ = sup

{
μ̂
(
x2
)
+ μ̂

(
y2

)
: μ ∈ S

}
≥ sup

{
μ̂
(
x2
)
: μ ∈ S

}
=
∥
∥
∥x2

∥
∥
∥. (11.3)

A second commutative product is now introduced on A by x ◦ y := (x�y + y�x)/2.
Note that, due to the power associativity, xn is identical with the two products. Equipped
with this new commutative product, A then becomes a Jordan algebra. This follows from a
result by Iochum and Loupias [19] (see also [20]).

Since A is the dual of V , A with ◦ is a so-called JBW algebra [12]. The JBW algebras
represent the Jordan analogue of theW∗ algebras and these are the same as the von Neumann
algebras but characterized by a different and more abstract set of axioms. The extreme points
of [0,1] in a JBW algebra are the idempotent elements. Then, by Lemma 10.1, E ⊆ {e ∈ A :
e2 = e} = ext[0,1] ⊆ E and hence E is σ(A,V ) dense in {e ∈ A : e2 = e}.

Suppose e ∈ E. If μ is any state on E with μ(e) > 0, the map f → μ̂(2e ◦ (e ◦ f) − e ◦
f)/μ(e) for f ∈ E defines a version of the conditional probability (which was shown in [2])
and must coincide with μ̂(Uef)/μ(e). Therefore Uef = 2e ◦ (e ◦ f) − e ◦ f and

e�f = Tef =

(
f +Uef −Ue′f

)

2
= e ◦ f (11.4)

for all e and f in E. The product on a JBW algebra is σ(A,V ) continuous in each component.
It then follows in a first step that e�y = e ◦ y for all e in E and y in A, and in the second step
that x�y = x ◦y for all x and y inA. Note that the order of the two steps is important because
of the asymmetry of the σ(A,V ) continuity of the product x�y. Thus finally x�y = y�x.

When the starting point is the projection lattice E in a JBW algebra M (e.g., the self
adjoint part of a von Neumann algebra with the Jordan product) without type I2 part, the
order-unit space A generated by E is the second dual A = M∗∗ of M. It contains M by the
canonical embedding in its second dual but is much larger (unlessM has a finite dimension);
M is the norm-closed linear hull of E in A, while A is the σ(A,V )-closed linear hull of E.

A rich theory of Jordan algebras is available and most of them can be represented as a
Jordan subalgebra of the self-adjoint linear operators on a Hilbert space. The major exception
is the Jordan algebra consisting of the 3 × 3 matrices with octonionic entries, and the other
exceptions are the so-called exceptional Jordan algebras which all relate to this one [12].

A reconstruction of quantummechanics up to this point has thus been achieved from a
few basic principles. The first one is the absence of third-order interference and the second one
is the postulate that the elements of the constructed algebra exhibit a behaviour which one
would expected from observables. The third one, the ε-Hahn-Jordan decomposition property,
is less conceptional and more a technical mathematical requirement.

12. Conclusions

The combination of a simple quantum logical structure with the postulate that unique
conditional probabilities exist provides a powerful general theory which includes quantum
mechanics as a special case. It is useful for the reconstruction of quantum mechanics from
a few basic principles as well as for the identification of typical properties of quantum
mechanics that distinguish it from other more general theories. Three such properties
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have been studied: a novel bound for quantum interference, a symmetry condition for the
conditional probabilities, and the absence of third-order interference (I3 = 0); the third
property has been the major focus of this paper.

In the framework of the quantum logics with unique conditional probabilities, the
absence of third-order interference (I3 = 0) has some important consequences. It entails the
existence of a product in the order-unit space generated by the quantum logic, which can
be used to characterize those quantum logics that can be embedded in the projection lattice
in a Jordan algebra. Most of these Jordan algebras can be represented as operator algebras
on a Hilbert space, and a reconstruction of quantum mechanics up to this point is thus
achieved.

As the identity I2 = 0 distinguishes the classical probabilities, the identity I3 = 0
thus characterizes the quantum probabilities. It may be expected that there are other more
general theories with I3 /= 0, and the quantum logics with unique conditional probabilities
may provide an opportunity to establish them. For the time being, however, the projection
lattices in the exceptional Jordan algebras are the only known concrete examples which
do not fit into the quantum mechanical standard model but still have all the properties
discussed in the present paper and do not exhibit third-order interference. Further examples
can be expected from Alfsen and Shultz’s spectral duality, but unfortunately all the known
concrete examples of this theory are either covered by the Jordan algebras or do not satisfy
the Gleason-like extension theorem (part (i) of Proposition 3.1). Besides the examples with
I3 /= 0, it would also be interesting to find examples where the identity I3 = 0 holds, but where
the product on the order-unit space is not power associative or where the squares are not
positive or where the symmetry condition (A1) for the conditional probabilities does not
hold.

The possibility that no such examples exist is not anticipated but cannot be ruled out
as long as no one has been found. It would mean that every quantum logic with unique
conditional probabilities can be embedded in the projection lattice in a Jordan algebra and
that third-order interference never occurs. Moreover, the further postulates concerning the
behaviour of the observables (power associativity, positive squares) would then as well
become redundant in the reconstruction of quantum mechanics. If this could be proved, the
reconstruction process could be cleared up considerably.

In any case, it seems that third-order interference can play a central role in the
reconstruction of quantum mechanics from a few basic principles, in an axiomatic access
to quantum mechanics with a small number of interpretable axioms, as well as in the
characterisation of the projection lattices in von Neumann algebras or their Jordan analogue,
the JBW algebras, among the quantum logics. Mathematically, the symmetry property (A1)
of the conditional properties (see Section 6) can play the same role, which was shown by
Alfsen and Shultz [4] and by the author [3]. However, it has a less clear physical meaning
than the third-order interference and, therefore, the approach of the present paper seem to be
superior form a physical point of view.
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