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The entanglement of states on n-independent C∗ subalgebras is considered, and equivalent
conditions are given for C∗ subalgebras to be independent.

1. Introduction

Quantum correlations have been one of the most hottest subjects in the last two decades,
many scholars devoted to the study [1–11]. In this paper, themost special correlation between
quantum systems is investigated, that is “independence,” which is closely related to the
entanglement of the states.

In quantum mechanics, the state entanglement is the property of two particles with
a common origin whereby a measurement on one of the particles determines not only its
quantum state but also the quantum state of the other particle as well, which is characterized
as follows.

Definition 1.1. Let H1 and H2 be Hilbert spaces and H = H1 ⊗ H2, and a state φ of B(H1 ⊗
H2) = B(H1) ⊗ B(H2) is called to be separable if it is a convex combination of product states
φ1
i ⊗ φ2

i , that is

φ(A ⊗ B) =
n∑

i=1

piφ
1
i (A)φ2

i (B), where
n∑

i=1

pi = 1, pi ≥ 0. (1.1)

Otherwise, φ is called entanglement.
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In the algebraic quantum theory, the observable is represented by an adjoint operator
in a C∗ algebra. Naturally an interesting problem is raised.

Problem 1. In a C∗ algebraA, what is the condition of the commuting C∗ subalgebras A1 and
A2, under which the entanglement of states can be considered, where Ai is the C∗ algebra
generated by an observable Ai.

Notice that the problem is to seek the condition of commuting C∗ algebrasA1 andA2,
such that C∗(A1,A2) = A1 ⊗A2 holds true.

In fact the condition is that A1 and A2 are C∗ independent.

Haag and Kastler [12] introduced a notion called statistical independence. If A and
B represent the algebras generated by the observables associated with two quantum
subsystems, the statistical independence of A and B can be construed as follows: any two
partial states on the two subsystems can be realized by the same preparation procedure. The
statistical independence ofA and B in the category of C∗ algebras is called C∗ independence,
which is defined as follows: if for any state φ1 onA and φ2 on B, there is a state φ onC∗(A,B),
such that φ|A = φ1 and φ|B = φ2, where C∗(A,B) denotes the unital C∗ algebra generated by
A,B.

Roos [13] gave a characterization of C∗ independence. He showed if A and B are
commuting subalgebras of a C∗ algebra, then A and B are C∗ independent, if and only
if 0/=A ∈ A and 0/=B ∈ B imply that AB/= 0. Later, Florig and Summers [14] studied
the relation between C∗ independence and W∗ independence and showed if A and B are
commuting subalgebras of a σ-finite W∗ algebra W, then they are C∗ independent if and
only if they are W∗ independent, where A and B are W∗ independent if for every normal
state φ1 on A and every normal state φ2 on B, there exists a normal state φ on W, such that
φ|A = φ1 and φ|B = φ2. Bunce and Hamhalter [15] gave some equivalent conditions by the
faithfulness of the state on the C∗ algebras. Jin et al. in [16–18] proved if A and B are C∗

subalgebras of A, they are C∗ independent if and only if for any observables A ∈ A and
B ∈ B, W(A,B) = W(A) × W(B), where W(A,B) is the joint numerical range of operator
tuple (A,B), if and only if for any observables A ∈ A and B ∈ B, σ(A,B) = σ(A) × σ(B),
where σ(A,B) is the joint spectrum. By the theorem, we know the states on C∗(A,B) are
“almost” separable (i.e., not entangled), which will be characterized and more detailed in the
following.

The entanglement of n (n ≥ 3) particles is very important, and many problems are
different from the case of two particles, such as “the maximal entangled pure states” [1]. To
consider the entanglement of n particles in a C∗ algebra, we introduce the independence of
n C∗ subalgebras as follows.

Definition 1.2. Let (Ai)
n
i=1 be commuting unital C∗ subalgebras of a C∗ algebraA, whereAi is

generated by the observable Ai, and they are C∗ independent if for any state φi on Ai, there
is a state φ on A, such that φ|Ai = φi.

To study the entanglement of independent quantum systems, equivalent conditions
are given for n quantum systems to be independent.

Theorem 1.3. Let (Ai)
n
i=1 be commuting unital C∗ subalgebras of a C∗ algebra A, where Ai is

generated by the observable Ai, then the following statements are equivalent.
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(1) (Ai)
n
i=1 are C

∗ independent.

(2) For any Ai ∈ Ai,

W(A1, . . . , An) =W(A1) × · · · ×W(An), (1.2)

whereW(A1, . . . , An) denotes the joint numerical range.

(3) For any Ai ∈ Ai, Ai /= 0 (i = 1, . . . , n) imply that
∏n

i=1Ai /= 0.

(4) For any Ai ∈ Ai,

σ(A1, . . . , An) = σ(A1) × · · · × σ(An), (1.3)

where σ(A1, . . . , An) denotes the joint spectrum.

Remark 1.4. By the theorem, it is seen that the separable states on C∗(A1, . . . , An) are dense in
the state spaces, since the set of pure states corresponding to points of σ(A1) × · · · × σ(An)
is a dense subset of the state spaces. In particular, if C∗(A1, . . . , An) is finite dimensions as a
Banach space, every state of

C(σ(A1, . . . , An)) = C(σ(A1)) ⊗ · · · ⊗ C(σ(An)) (1.4)

is a convex combination of pure states, pure states correspond to points of σ(A1) × · · · ×
σ(An), and point masses are pure product states; thus there is not any entangled states
on C∗(A1, . . . , An), which gave us some hints that the entangled states are caused by those
nonindependent and noncommutative observables.

2. Some Lemmas and Proof of the Theorem

It is a well-known result by Gelfand andNaimark that ifA is a unital commutativeC∗ algebra
andMA is its maximal ideal space, thenA is isometrical ∗-isomorphismwith C(MA). In case
of (Ai)

n
i=1 being commutative normal operators, denote byMC∗(A) the maximal ideal space of

C∗(A), and the joint spectrum of A = (A1, . . . , An) is the set

σC∗(A)(A1, . . . , An) =
{(
f(A1), . . . , f(An)

) ∈ C
n; f ∈MC∗(A)

}
. (2.1)

The joint numerical range of A = (A1, . . . , An) is the set

W(A1, . . . , An) =
{(
φ(A1), . . . , φ(An)

) ∈ C
n; φ is a state on A}

. (2.2)

Notice that the joint numerical range of A = (A1, . . . , An) is the joint measurement of
commuting observables Ai. It was shown in [19] that σ(A1, . . . , An) is a nonempty compact
set in C

n.
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Lemma 2.1 (see [20]). LetA = (A1, . . . , An) be a commuting n-tuple of adjoint operators in a unital
C∗ algebraA, then

Ex(W(A1, . . . , An)) ⊆ σ(A1, . . . , An), (2.3)

where Ex(X) are the extreme points of the set X.

Proof of Theorem 1.3. (1)⇒(2) Let Ai ∈ Ai, and it suffices to prove

W(A1, . . . , An) ⊇W(A1) × · · · ×W(An). (2.4)

By the definition,

W(Ai) =
{
φi(Ai); φi is a state on Ai

}
. (2.5)

It follows by the condition of Ai being C∗ independent that there is a state on A, such that
φ|Ai = φi, that is φi(Ai) = φ(Ai), so

(
φ1(A1), . . . , φn(An)

)
=
(
φ(A1), . . . , φ(An)

) ∈W(A1, . . . , An), (2.6)

thus

W(A1, . . . , An) ⊇W(A1) × · · · ×W(An). (2.7)

(2)⇒(3) Let Ai ∈ Ai be any nonzero observables and λi = ||Ai||, then λi ∈ Ex(W(Ai)),
so

(λ1, . . . , λn) ∈ Ex(W(A1, . . . , An)). (2.8)

By Lemma 2.1,

(λ1, . . . , λn) ∈ σ(A1, . . . , An), (2.9)

so there is a multiplicative linear functional φ on C∗ (A1, . . . , An), such that

φ(Ai) = λi, (2.10)

therefore

φ(A1 · · ·An) = φ(A1) · · ·φ(An), (2.11)
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thus
∥∥∥∥∥

n∏

i=1

Ai

∥∥∥∥∥ ≥ φ
(

n∏

i=1

Ai

)
=

n∏

i=1

φ(Ai)/= 0, (2.12)

that is
∏n

i=1Ai /= 0.
(3)⇒(4) This easily follows by Urysohn’s lemma.
(4)⇒(1) By the Gelfand-Naimark theorem, the C∗ algebra generated by the commut-

ing observables Ai is isometrical ∗-isomorphism with C(σ(A1, . . . , An)),

γ : C∗(A1, . . . , An) −→ C(σ(A1, . . . , An)), (2.13)

by condition (4), it has

C(σ(A1, . . . , An)) = C(σ(A1)) ⊗ · · · ⊗ C(σ(An)), (2.14)

where the tensor product is the minimal C∗ cross-norm.
Let φi be any state on Ai, then φi · γ−1 = ψi is a state on C(σ(Ai)), and it is seen that

ψ = ψ1 ⊗ · · · ⊗ ψn (2.15)

is a state on C(σ(A1))⊗ · · · ⊗C(σ(An)) = C(σ(A1, . . . , An)); thus the state φ = (ψ1 ⊗ · · · ⊗ψn) · γ
is a state on C∗(A1, . . . ,An), which satisfies φ|Ai = φi.
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