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We will explain Arnold’s 2-dimensional (shortly, 2D) projective geometry (Arnold, 2005) by means
of lattice theory. It will be shown that the projection of the set of nontrivial triangular r-matrices is
the pencil of tangent lines of a quadratic curve on Arnold’s projective plane.

1. Introduction

We briefly describe Arnold’s projective geometry [1]. We recall the ordinary projective plane
P(R3) over the real field. We replace R

3 to the set of the quadratic functions ̂Q := ap2 +
2bpq + cq2 on the canonical symplectic plane (R2 : p, q). The quadratic functions form into a
Lie subalgebra of the canonical Poisson algebra on the symplectic plane. This Lie algebra
is isomorphic to sl(2,R); that is, Arnold introduced a projective plane P(sl(2,R)). By the
projection, a (nontrivial) quadratic function ̂Q corresponds to a point Q on the projective
plane, and the Killing form on sl(2,R) corresponds to a quadratic curve on the projective
plane, because it is a symmetric bilinear form. Since the Killing form is nondegenerate, the
associated curve defines a duality (so-called polar system) between the projective lines and
the projective points. Arnold showed that the Poisson bracket { ̂Q1, ̂Q2} corresponds to the
pole point of the projective line throughQ1 andQ2. As an application, it was shown that given
a good triangle composed of three points (Q1, Q2, Q3), the three altitudes intersect the same
point (altitude theorem). Interestingly, the altitude theorem is shown by the Jacobi identity
(see Figure 1).

The monomials of double brackets {{ ̂Qi, ̂Qj}, ̂Qk} correspond to the three bold lines,
via the line-point duality. By the Jacobi identity, the three monomials are linearly dependent.
This implies that the three lines intersect the same point.

We suppose that 2D projective geometry is encoded in the Lie algebra. However some
information on the Lie algebra is lost in the process of constructing projective geometry;
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besides, it is not clear why it has to happen, conceptually. So we will reformulate the Arnold
construction by means of lattice theory. Since the lattice is an algebra, the problem becomes
more clear. We will prove, when the characteristic of the ground field is not 2, that each
3D simple Lie algebra admits a modular lattice structure. This proposition explains why 2D
projective geometry can be encoded in sl(2).

It is crucial to consider the Plücker embedding for the algebraic Arnold construction.
When g is 3D and simple, the Lie algebra multiplication μ : g ∧ g → g, x ∧ y �→ [x, y] is an
isomorphism, which induces an isomorphism P(g ∧ g) ∼= P(g). We will show that the line-
point duality on P(g) is equivalent with the isomorphism P(g ∧ g) ∼= P(g), up to the Plücker
embedding.

As an application we study a projective geometry of triangular r-matrices, when
g = sl(2). We will prove that the projection of the set of nontrivial triangular r-matrices is
equivalent to the pencil of tangent lines on the quadratic curve made from the Killing form.
This proposition is equivalently translated as follows: the classical Yang-Baxter equation
{r, r} = 0 on sl(2) is equivalent to the quadratic curve on the projective plane.

2. Algebraic Arnold Construction

2.1. Subspace Lattices

A lattice is, by definition, a set equipped with two commutative associative multiplications,
� and �, satisfying the following two identities:

x �
(

x � y
)

= x,

x �
(

x � y
)

= x.
(2.1)

A lattice has a canonical order ≤ defined by

x ≤ y ⇐⇒ x = x � y
(

⇐⇒ y = x � y
)

. (2.2)
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A lattice is called a modular lattice when it satisfies the inequality (modular rule)

x ≤ z =⇒ x �
(

y � z
)

=
(

x � y
)

� z (2.3)

The notion of lattice morphism is defined by the usual manner.

Example 2.1 (subspace lattices). Let V be a vector space. Consider the set of subspaces of
V : Latt(V ) := {S | S ⊂ V }. Define two natural multiplications (cup- and cap-products) on
Latt(V ) by

S1 � S2 := S1 + S2,

S1 � S2 := S1 ∩ S2,
(2.4)

where S1, S2 ∈ Latt(V ). Then Latt(V ) becomes a modular lattice. The induced order is the
natural inclusion relation S1 ⊂ S2. Given a linear injection f : V1 → V2, an associated lattice
morphism Latt(f) is naturally defined by Latt(f)(S) := f(S).

The subspace lattices are complementary; that is, the zero space 0 is the unit element
with respect to � and the total space V is �. If V is split for each S, then there exists a
cosubspace S satisfying S � S = V and S � S = 0. The subspace S (resp., S) is called
a complement1 of S (resp., S). Such a lattice is called a complemented lattice. If V is finite
dimensional, then the subspace lattice is a complemented-modular-lattice. A projective geometry
is axiomatically defined as a complemented-modular-lattice satisfying some additional
properties.

Definition 2.2. When V is (n + 1)-dimensional, the subspace lattice Latt(V ) is called an n-
dimensional projective geometry over V .

The 1D subspaces are regarded as projective points, 2D subspaces are projective lines
and so on. The zero space 0 is regarded as the empty set. For instance, given two 2D subspaces
S1 and S2, the intersection S1 � S2(= S1 ∩ S2) is the common point of two projective lines (if
it exists).

2.2. Lie Algebra Construction of Projective Plane

Let (g, [−,−]) be a 3D K-Lie algebra with a nondegenerate symmetric invariant pairing (−,−),
where K is the ground field char(K)/= 2. We assume that [g, g] = g, or equivalently, the Lie
bracket is an isomorphism from g ∧ g to g. This assumption is needed in order to construct
projective geometry. Such a Lie algebra is simple. In particular, when K is a closed field, g is
isomorphic to sl(2,K).

We denote by p(x) the 1D subspace generated by x ∈ g and denote by l(x, y) the 2D
subspace generated by x, y ∈ g. We define new cup-and cap-products �′ and �′ on Latt(g).

Definition 2.3 (Arnold products). (i) p(x)�′p(y) := p⊥([x, y]), p(x)/= p(y), where ⊥means the
orthogonal space with respect to the invariant pairing (−,−).

(ii) l(x, y)�′l(z,w) := p([[x, y], [z,w]]), l(x, y)/= l(z,w).
(iii) S1�

′S2 := S1 � S2 and S1�
′S2 := S1 � S2, in all other cases.
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Proposition 2.4. The set Latt(g) with Arnold products becomes a lattice and it is the same as the
classical subspace lattice.

Proof. By the invariancy of the pairing, we have ([x, y], x) = ([x, y], y) = 0. This gives

p⊥
([

x, y
])

= p(x) + p
(

y
)

= l
(

x, y
)

. (2.5)

Hence we have p(x)�′p(y) = p(x)� p(y). We prove that l(x, y)∩l(z,w) = p([[x, y], [z,w]]).
Since ⊥⊥ = id, we have l⊥(x, y) = p([x, y]), l⊥(z,w) = p([z,w]), and p⊥([[x, y], [z,w]]) =
l([x, y], [z,w]). Thus we obtain

p⊥
([[

x, y
]

, [z,w]
])

= l
([

x, y
]

, [z,w]
)

= p
([

x, y
])

+ p([z,w])

= l⊥
(

x, y
)

+ l⊥(z,w)

=
(

l
(

x, y
)

∩ l(z,w)
)⊥
,

(2.6)

which gives l(x, y)�′l(z,w) = l(x, y)� l(z,w).

In the following, we omit the “prime” on the Arnold products.

Remark 2.5 (Lie algebra identities versus lattice identities). We put l([x, y]) := l(x, y). Then
the Arnold products are coherent with the Lie bracket, namely,

p(x)� p
(

y
)

= l
([

x, y
])

,

l(x)� l
(

y
)

= p
([

x, y
])

.
(2.7)

Tomihisa [2] discovered an interesting identity on sl(2,R):

[[[

x1, y
]

, [x2, z]
]

, x3
]

+ cyclic permutation w.r.t. (1, 2, 3) = 0, (2.8)

where y, z are fixed. The Tomihisa identity induces a lattice identity

((

l1 � ly
)

� (l2 � lz)
)

� l3

≤
(((

l2 � ly
)

� (l3 � lz)
)

� l1
)

�
(((

l3 � ly
)

� (l1 � lz)
)

� l2
)

,
(2.9)

where li := l(xi), ly := l(y), and lz := l(z). In a study by Aicardi in [3], it was shown that
the projection of Tomihisa identity is equivalent to the Pappus theorem. (The author also
proved this proposition around winter 2007.) We leave it to the reader to write down the
lattice identity associated with the Jacobi identity.
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Given a coordinate (ξ1, ξ2, ξ3) on the projective plane, the symmetric pairing is regarded
as a defining equation of a nondegenerate quadratic curve (so-called polar system):

(−,−) =
∑

aijξiξj . (2.10)

We give an example of the quadratic curve made from the pairing.

Example 2.6 (see, [1, 2]). We assume that g := sl(2,R) generated by the standard basis
(X,Y,H) satisfying the following relations:

[H,X] = 2X, [X,Y ] = H, [H,Y ] = −2Y. (2.11)

The symmetric pairing is equivalent with the Killing form. We define the scale of the form by

(X,Y ) :=
1
2
, (H,H) := 1, (2.12)

and all others zero. We set a point Q := ξ1Y + ξ2H + ξ3X, ξ1, ξ2, ξ3 ∈ R. It is on the quadratic
curve, that is, (Q,Q) = 0 if and only if ξ1ξ3 − (ξ2)

2 = 0, and this condition is equivalent with
(x0)

2 = (x1)
2 + (x2)

2, via the coordinate transformation

x0 + x1 = ξ1, x2 = ξ2, x0 − x1 = ξ3. (2.13)

Hence the quadratic curve is regarded as a circle on the projective plane with coordinate
[1 : x1 : x2].

Remark 2.7. The pairing induces a metric (− + +) on (R3 : x0, x1, x2). It is well known that the
inside of the circle (so-called timelike subspace) is a hyperbolic plane. The altitude theorem
is strictly a theorem on the hyperbolic plane because a metric is needed to define the notion
of altitude.

Given a point p = (p1, p2, p3), a line is defined by

(

p,−
)

=
∑

aijpiξj = 0. (2.14)

This line is called the polar line of the point; conversely the point is called the pole of the line.
Namely, the orthogonal space p := l⊥ is the pole of the line l.

Corollary 2.8 (see [1]). Given a line l(x, y), p([x, y]) is the pole of the line.

Figure 2 is depicting the duality defined by an ellipse.
The line l is the polar line of the point p which is inside an ellipse. The line and point

are connected by the tangent lines and chords of the ellipse. This figure has been drawn in a
book by Kawada in [4].
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Figure 2

We did not use Jacobi identity in this section. So we will discuss the Jacobi identity on
the Lie algebra in the next section.

2.3. Jacobi Identity

Proposition 2.9. Let V be a 3D K-vector space equipped with a skew-symmetric bracket product
[−,−] and a nondegenerate symmetric invariant pairing (−,−). Then the bracket satisfies the Jacobi
identity.

Proof. When x, y, z ∈ V are linearly dependent, Jacobi identity holds. So we assume that
x, y, z is linear independent.

Case 1. By the invariancy of the pairing, we have

([[

x, y
]

, z
]

+
[

y, [x, z]
]

, x
)

=
([

x, y
]

, [z, x]
)

−
(

[x, z],
[

y, x
])

= 0. (2.15)

We assume that [x, [y, z]] = 0. Then we obtain

([[

x, y
]

, z
]

+
[

y, [x, z]
]

, y
)

=
([

x, y
]

,
[

z, y
])

=
(

y,
[

x,
[

y, z
]])

= 0,
([[

x, y
]

, z
]

+
[

y, [x, z]
]

, z
)

= −
(

[x, z],
[

y, z
])

=
(

z,
[

x,
[

y, z
]])

= 0.
(2.16)

Since the pairing is nondegenerate, we have [[x, y], z] + [y, [x, z]] = 0, which gives the Jacobi
identity [x, [y, z]] = [[x, y], z] + [y, [x, z]](= 0).

Case 2. Assume that [x, [y, z]]/= 0. We already saw that ([[x, y], z] + [y, [x, z]], x) = 0. We
show that ([[x, y], z]+[y, [x, z]], [y, z]) = 0. Since dim(V ) = 3, one can put [y, z] = ax+by+cz,
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for some a, b, c ∈ K. Then we have

([[

x, y
]

, z
]

+
[

y, [x, z]
]

,
[

y, z
])

=
([[

x, y
]

, z
]

+
[

y, [x, z]
]

, ax + by + cz
)

=
([[

x, y
]

, z
]

+
[

y, [x, z]
]

, by + cz
)

=
([[

x, y
]

, z
]

, by
)

+
([

y, [x, z]
]

, cz
)

= b
([

x, y
]

,
[

z, y
])

− c
(

[x, z],
[

y, z
])

= b
([

x, y
]

,−cz
)

− c
(

[x, z], by
)

= −bc
(

x,
[

y, z
])

− cb
(

x,
[

z, y
])

= 0.

(2.17)

Therefore [[x, y], z]+[y, [x, z]] is orthogonal with the independent two elements x and [y, z].
(If x and [y, z] are linearly dependent, then [x, [y, z]] = 0.) The monomial [x, [y, z]] is also
orthogonal with x and [y, z]. Thus we obtain

[

x,
[

y, z
]]

= λ
([[

x, y
]

, z
]

+
[

y, [x, z]
])

, λ(/= 0) ∈ K. (2.18)

We can assume that ([x, [y, z]], y)/= 0 or ([x, [y, z]], z)/= 0, because the pairing is nondegen-
erate. We assume that ([x, [y, z]], y)/= 0 without loss of generality. Then we obtain λ = 1,
because

([

x,
[

y, z
]]

, y
)

= −
([

y, z
]

,
[

x, y
])

= λ
([[

x, y
]

, z
]

, y
)

= λ
([

x, y
]

,
[

z, y
])

. (2.19)

The proposition above indicates that the Jacobi identity is a priori invested in the
projective plane.

2.4. Duality Principle

Let μ be the Lie algebra structure on g; that is, μ : g ∧ g → g, x ∧ y �→ [x, y]. Since μ is an
isomorphism, it induces a lattice isomorphism

Latt
(

μ
)

: Latt(g ∧ g) −→ Latt(g). (2.20)

Let Line := {p(x) � p(y)} be the set of all lines in Latt(g). One can define an injection pl :
Line → Latt(g ∧ g) as

pl : p(x)� p
(

y
)

�−→ p
(

x ∧ y
)

. (2.21)

This mapping is called a Plücker embedding.
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Proposition 2.10. The diagram below is commutative:

����
⊥

pl

�����

i

����(g ∧ g)
����(μ)

����(g)

(2.22)

where Point is the set of points on the projective plane and ⊥ is the duality correspondence.

Namely, the Lie algebra multiplication is equivalent to the duality principle.

3. r-Matrices

In this section, we assume that g = sl(2,K), Q ⊂ K. We consider a graded commutative
algebra

∧

g :=
3
∧

g ⊕
2
∧

g ⊕ g. (3.1)

A graded Poisson bracket {−,−} with degree −1 is uniquely defined on
∧

g by the axioms of
graded Poisson algebra and the condition

{A,B} := [A,B], if A,B ∈ g. (3.2)

This bracket is called a Schouten-Nijenhuis bracket. Let r be a 2 tensor in
∧2g. The Maurer-

Cartan (MC) equation {r, r} = 0 is called a classical Yang-Baxter equation and the solution is
called a classical triangular r-matrix. For instance, r := X∧H is a solution of the MC-equation.

Remark 3.1. When g = o(3,R), there is no nontrivial triangular r-matrix.

Proposition 3.2. The set of points p(r) associated with nontrivial triangular r-matrices

P(r) :=
{

p(r) ∈ Latt(g ∧ g) | {r, r} = 0, r /= 0
}

(3.3)

bijectively corresponds to the pencil of tangent lines of the quadratic curve made from the symmetric
pairing, or, equivalently, P(r) bijectively corresponds to the quadratic curve.

Proof. Since dim g = 3, one can write r = r1∧r2 for some r1, r2 ∈ g. By the biderivation property
of the Schouten-Nijenhuis bracket, we have

{r, r} = (±)r1 ∧ [r1, r2] ∧ r2. (3.4)

Hence {r, r} = 0 if and only if [r1, r2] is linearly dependent on r1 and r2.

Lemma 3.3. The set of lines l(x, y) including the pole p([x, y]) corresponds to P(r), via the Plücker
embedding.
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If p([x, y]) ≤ l(x, y), then the pairing ([x, y], [x, y]) vanishes, because ([x, y], [x, y]) =
([x, y], λx + μy) = 0. Hence p([x, y]) is on the quadratic curve. It is easy to check that l(x, y)
is not cross over the curve. Hence the line is tangent to the curve at p([x, y]).

Lemma 3.4. A line is tangent to the quadratic curve if and only if the pole is on the line, and the
tangent point is the pole of the line (see Figure 3).

Therefore P(r) is identified with the pencil of tangent lines of the quadratic curve. The
proof of the proposition is completed.
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Endnotes

1. The complement is not unique in general.
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