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We discuss the concept of “hydrodynamic” stochastic theory, which is not based on the traditional
Markovian concept. A Wigner function developed for friction is used for the study of operators
in quantum physics, and for the construction of a quantum equation with friction. We compare
this theory with the quantum theory, the Liouville process, and the Ornstein-Uhlenbeck process.
Analytical and numerical examples are presented and compared.

1. Introduction

Stochastic theories model systems which develop in time and space in accordance with
probabilistic laws. (The space is not necessarily the familiar Euclidean space for everyday
life. We distinguish between cases which are discrete and continuous in time or space. See
Doob [1] or Taylor and Karlin [2] for a mathematical definition of stochastic processes,
which is not replicated here. Briefly, the usual situation is to have a set of random variables
{Xt} defined for all values of the real number t (say time), which could be discrete or
continuous. The outcome of a random variable is a state value (often a real number). The
set of random variables are called a stochastic process, which is completely determined if the
joint distribution of the set of random variables {Xt} is known. A realization of the stochastic
process is an assignment to each t in the set {Xt}, a value ofXt.) Essential in stochastic theories
is how randomness is accounted for. For Markov [3] processes (in the narrowest sense, a
stochastic process has theMarkov property if the probability of having stateXt+Δt at time t+h,
conditioned on having the particular state xt at time t, is equal to the conditional probability
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of having that same state Xt+Δt but conditioned on its value for all previous times before t.
See Feller [4] for a broader definition.), which are an important class of stochastic processes,
a recurrence relation is used such that the state value of Xt+Δt at time t + Δt is given by the
state value at time t, plus a state value of a random variable at time t. (By “counting up”
the different realizations (tracks) in the state space the joint distribution can be constructed.
Although counting up all different realizations in general constructs the joint probability,
the inverse does not hold. Hence the joint probability of the set of random variables {Xt}
does not lead to a unique recurrence relation.) A random “disturbance” in a Markov process
may possibly influence all subsequent values of the realization. The influence may decrease
rapidly as the time point moves into the future. (A Markov process may be deterministic,
that is, all values of the process at time t′ > t are determined when the value is given at
time t. Or a process may be nondeterministic, that is, a knowledge of the process at time t
is only probabilistically useful in specifying the process at time t′ > t.) This paper considers
a so-called “hydrodynamic” approach to account for randomness. We specify constitutive
relations in an equation set akin to what is used in hydrodynamic formulations of gas flow
(e.g., [5]).

Consider the variables as position and velocity for illustration, but the method applies
generally. By integrating the equation for the joint distribution for two stochastic variables
with respect to the second variable (velocity), the well-known equation for the conservation
of probability in space is found. This equation, which is only the conservation of probability,
can be used without referring to any stochastic theory. The equation includes the so-called
current velocity. It is well known that in Boltzmann kinetic theory or in most Langevin
models, the total derivative of the current velocity is equal to the classical force minus a
term that is proportional to 1/ρX(x, t) times the space derivative of Var(Yt/Xt)ρX(x, t), where
Var(Yt/Xt) is the variance of Yt at time t given the position of Xt, and ρX(x, t) is the density
of Xt [6]. Now, the equation for the conservation of probability in space is a first partial
differential equation. As a second equation, set the total derivative of the current velocity
equal to the classical force minus a term that is proportional to 1/ρX(x, t) times the space
derivative of −ρX(x, t)Var(Yt/Xt) as in Boltzmann’s kinetic theory or in Langevin models.
Thus randomness can be accounted for by constitutive relations for Var(Yt/Xt) without
postulating a relation for a joint or quasi joint distribution (Larsen 1978, [5]). For the Liouville
process realizations in the position- velocity space (phase space) cannot cross. In addition,
for a conservative classical force, all realizations that start at the same position will have
a unique velocity at a given position when applying the Liouville process, which implies
Var(Yt/Xt) = 0. The equation for the total derivative of the current velocity, which now equals
the classical force, can be integrated in space to give the familiar Hamilton-Jacobi equation
in classical mechanics as a special case. More generally, the total derivative of the current
velocity of the Liouville and the Ornstein-Uhlenbeck [7] processes (assuming uncorrelated
Gaussian noise) has also been analyzed when assuming initial conditions in position and
velocity that are independent and Gaussian distributed. It has been shown that Var(Yt/Xt) is
independent of x, but time dependent for the free particle or for the harmonic oscillator [8–
10]. We believe that this hydrodynamic method can be useful when experimental data pertain
to the variables in the equation set, and there is no direct experimental access to microscopic
dynamics.

We follow the idea that stochastic processes could in some way be used to understand
quantum mechanics [11–13] (Kaniadakis [14]) by studying the Liouville process and the
Ornstein-Uhlenbeck process more carefully in relation to the well-known and so-called
“operator ordering problem” in quantum physics [15–21]. A relation for the operator
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ordering of p2q2 is important for quantization of the kinetic energy in a curved space. We
use an approach different from that usually presented in the literature (see also Moxnes and
Hausken [22].)

Quantum mechanics based on the Schrödinger equation makes it difficult to describe
irreversible processes like the decay of unstable particles and measurements processes.
The fact that classical and quantum systems must be coupled by a dissipative rather than
reversible dynamics follows from the no-go theorem, where it was shown in a general
framework that the information of the measured object cannot be transmitted to values of
macroscopic observables as long as the dynamics of the total system is reversible in time
[23, 24]. (see Appendix B. See also Bell [25], Bell [26], Haag [27], Blanchard and Jadczyk
[28], Haag [29], Machida and Namiki [30], Araki [31], Araki [32], Ozawa [24], Olkiewicz
[33] for the literature related to the measuring problem.)

Macroscopic systems are usually described either by classical physics of a few classical
parameters or by quantum statistical mechanics if the quantum nature is essential. But in
the Machida-Namiki model of measurement a new formulation of describing the process
of measurement is given. The measured object is microscopic but the measuring apparatus is
describedmacroscopically [24, 30–32]. However, there are examples of macroscopic quantum
phenomena where a large number of particles can be described by a few degrees of freedom.
In these cases the evolution of the quantum object depends on the classical environment,
but also a modification of the dynamics of the classical system through some expectations
values appears. Friction arises from the transfer of collective translational kinetic energy
into nearly random motion and can formally be considered as resulting from the process
of eliminating the microscopic degrees of freedom. This paper does not review the various
attempts to solve the difficulties associated with the measuring problem, but we observe that
one of the many attempts to overcome the difficulties has led to the development of the so-
called collapse theories, that is, to the dynamical reduction program [34]. This theory accepts
a modification of the standard evolution law such that micro processes and macro processes
are governed by a unique dynamics. The dynamics implies that the micro-macro interaction
in a measurement process leads to the wave packed reduction. (See Giancarlo Chirardi (2007)
at http://www.plato.stanford.edu/entries/qm-collapse, for review of collapse theories and
Efinger [35] for a nonlinear unitary framework for quantum state reduction. See Bassi et al.
[36] for experiments that could be crucial to check the dynamical reduction models versus
quantum mechanics.)

A linear friction term together with an uncorrelated random Gaussian noise term is
inherent in most classical Langevin models. The Boltzmann distribution is achieved as a
steady-state solution. Notice that when friction and the random term are zero, every solution
for the joint density of the type ρ(t, x, y) = ρ(H) is a steady-state solution of the Liouville
equation, whereH is the Hamiltonian. This shows the importance of linear friction to achieve
the Boltzmann distribution as the steady-state asymptotic classical behavior. Interestingly,
models accounting for friction have been further developed into so-called quantum Langevin
models for quantum noise [37]. The transformation to quantum mechanics is pursued
by using the Heisenberg picture of quantum mechanics. That is, the transformation to
quantum mechanics is achieved by letting position and momentum be transformed to the
corresponding operators. In the Heisenberg picture the concept of a Hamiltonian is not
generally necessary, and friction can be incorporated. To study the “measuring problem”
this paper does not use the common Heisenberg picture but instead a nonlinear quantum
equation accounting for linear friction in the Schrödinger picture. We use a differential
equation for the Wigner function including linear friction to establish a quantum equation
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accounting for linear friction. The friction describes the interaction with the measuring device
[22].

Section 2 considers second-order processes and joint distributions. Section 3 develops
a general stochastic theory not based on joint distributions. Section 4 considers the operator
problem. Section 5 formulates the quantum equation with friction. Section 6 compares
different solutions from the Liouville and the Ornstein-Uhlenbeck processes with different
solutions from the quantum equation with and without friction. Section 7 concludes.

2. Some Relations That Follow for Phase-Space Functions

In classical physics or in the phase-space formulation of quantum physics, two dimensional
systems are generally described by a phase-space distribution or quasi distribution. In this
section we study the following equation for the phase-space function:
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where “def” means definition and “mod” means model assumptions. β(t) is some function.
It can be shown that β(t) can be related to correlation [38, 39]. However, as it stands in
(2.1) such an interpretation is not needed. But for simplicity we call β(t) a correlation factor.
g2Y (t, x), g3Y (t, x), g4Y (t, x), . . . are some functions, and ρ(t, x, y) is a so-called quasi joint
distributionwhich does not have to be positive definite for all parametric functions. Examples
of special cases of (2.1) are the Ornstein-Uhlenbeck process [7], the Liouville process, and
the differential equation for the Wigner [15] function as defined by Gardiner and Zoller [37,
page 126] or Appendix C for further details. Equation (2.1) corresponds to adding terms to
the Liouville equation that includes higher-order derivative of the momentum (velocity).
Integrating (2.1) gives
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This gives that
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and finally that
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Π(t, x) def= vX(t, x)2 − v2(t, x) + β(t), Var
(
Yt
Xt

)
= vX(t, x)2 − v2(t, x). (2.4c)

Equation (2.4a) is the familiar conservation of probability density in space. Notice that if
ρ(t, x, y) is a Dirac delta function in y, the term (vX(t, x)

2 − v2(t, x)) becomes zero. This is
achieved for the Liouville process and a conservative force if the initial values in position
are a Dirac delta function, which means that all realizations start from a common position.
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Then the Liouville process can be given a more simplified expression through the well known
Hamilton-Jacobi equation.

The equations in (2.4a)–(2.4c) are not closed due to f̃Y (x) and v2(t, x) (or alternatively
Var(Yt/Xt)). Var(Yt/Xt) can be calculated explicitly for a Gaussian initial distribution by
applying the Gaussian uncorrelated noise [9]. It is found that the term is independent of
x and that for a free particle for the Ornstein-Uhlenbeck [7] process
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The initial distribution is in this case chosen as two independent Gaussian
distributions. a2 is the initial variance in position and b2 the variance in velocity. q = g2Y/2 is
the diffusion coefficient that is now assumed to be constant. The Liouville solution follows as
a special case when the diffusion coefficient q is set to zero.

3. The Hydrodynamic Method: A Stochastic Theory Not Based on
Joint Distributions

By using (2.1), (2.4a)–(2.4c) follows for the Ornstein-Uhlenbeck [7] process, the Liouville
process or the quantum theory based on the Wigner function. Generally, Boltzmann kinetics
also allows the same mathematical structure [6]. More generally, we formulate a stochastic
theory by constitutive equations in the equation for the total derivative of the current velocity,
akin to what is used for hydrodynamic theories, to read
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The stochastic theory is fully described by postulating a so-called “constitutive” relation for
Π(t, x). A joint or quasi joint phase-space distribution is not used. It follows from (3.1a) and
(3.1b) that
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Ë(Xt) =
∂

∂t

∫
ρX(t, x)vX(t, x)dx =

∫
(
ρ̇X(t, x)vX(t, x) + v̇X(t, x)ρX(t, x)

)
dx

=
∫
(v̇X(t, x) + vX(t, x)D1vX(t, x))ρX(t, x)dx

=
∫
(
ρX(t, x)f(x) +D1

(
ρX(t, x)Π(t, x)

))
dx = E

(
f(x)

)
.

(3.2)



Advances in Mathematical Physics 7

Thus we fulfill our crucial equation Ë(X(t)) = E(f(X(t))). As three test examples, we set the
constitutive relation in (3.1a) and (3.1b) as
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(3.3e)

Alternative 1 (superscriptQ) corresponds to the quantum theory as wewill show. Alternative
2 (superscript QC) corresponds to what we call quantum theory with exponential correlation.
Alternative 3 (superscript OUC) mimics the classical results for the Ornstein-Uhlenbeck [7]
process. Correlation is included through the correlation factor β(t) [38, 39]. As an example,
alternative 4 gives an ideal fluid where KρX(t, x) is the “pressure”.

We now show the well-known results that the constitutive equation (3.3a) leads to the
Schrödinger equation. First we set that the current velocity is a gradient, to read v
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We use the traditional mathematical trick and introduce the well-known Madelung decom-

position, to read ψ(t, x) def= ρ
Q
X(t, x)

1/2Exp(i S(t, x)). This allows the two nonlinear equations
in (3.4a) and (3.4b) to be written as one linear equation for the in general complex ψ(t, x), to
read [12]
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2
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which is the Schrödinger equation. (We use units such that the mass m = 1 and the reduced
Planck constant � = 1.) For alternative 2 we achieve that
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The constant λ is arbitrary. Equation (3.6) is a kind of Schrödinger equation accounting for
correlation. Without correlation β(t) = 0. For alternative 3 we achieve
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Notice that when β(t) = 0 and a2b2 = 1/4 we achieve the Schrödinger equation. In ordinary
units a2b2 = 1/4 means that Var(Xt0)Var(Yt0) = (1/4)�2/m. Alternative 4 simply gives (3.6)
without the D2

1 term.

4. Operators

When the equation set (3.1a) and (3.1b) is postulated together with a constitutive equation
forΠ(t, x) for a stochastic theory, the equation set does not show a way of calculating E(Ytn),
simply because there is, as such, no stochastic variable Yt (velocity or momentum) in the
theory. But this has caused problems in quantum physics. Briefly, Following the traditional
concept in quantum physics, we write
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It follows that
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where the p operator raised to the power of m becomes pmop
def= (−iD1)
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Expanding the terms in (4.4) gives Var(p) ≥ −α(1 + αVar(q)). The right-hand side
has a maximum for α = −1/(2Var(q)). This gives Var(q)Var(p) ≥ 1/4, which is the
uncertainty relation. However, these equations above in this section are well known,
purely mathematical and follow as seen directly from the definitions. No physics is
involved so far. So why is p associated with velocity (or momentum)? Say that we
calculate ∂/∂t E(Xt). By using the Madelung decomposition we set for any stochastic theory
vX(t, x) = D1(1/2i)Ln(ψ(t, x)/ψ∗(t, x)). We find when using the conservation of probability
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in space that

Ė(Xt) =
∂

∂t

∫
ρX(t, x)x dx =

∫
ρ̇X(t, x)x dx =

∫
x
(−D1

(
ρX(t, x)vX(t, x)

))
dx

=
∫
ψ(t, x)ψ∗(t, x)D1

1
2i
Ln

(
ψ(t, x)
ψ∗(t, x)

)
dx =

∫
ψ∗(−iD1)ψ dx.

(4.5)

Thus we find quite generally that ∂/∂tE(Xt) = E(p). Then the next question is why is
∂/∂tE(Xt) associated with the expectation of velocity, or more generally E(Ytm) → E(pm)?
The arrowmeans association in the sense that the right-hand side of the arrow is associated to
mean the same as the left-hand side. The velocity is a classical concept when “trajectories” are
differentiable. Notice that the formulation of quantummechanical operators from its classical
counterpart is straightforward as long as the classical quantity is either a function of x(q) or
y(p), or if it is the sum of such functions. One merely replaces p by the operator of p and q
by the operator of q. But if the classical counterpart contains product terms of q and p, then
difficulties arise, because the received quantum theory gives no unique way of forming the
quantum mechanical operator. The phase-space formulation of quantum mechanics gives a
solution to the operator problem. Once a quasi phase-space probability density is chosen,
each such function would lead to a unique operator ordering, and any chosen operator
ordering for qnpm leads to a unique quasi probability distribution [15–21]. These quantum
quasi distributions have been widely used in quantum optics and in optical image processing
[40–42]. The Margenau-Hill quasi probability density distribution is equivalent to the rule of
symmetrization. Thus logically, there are an infinite number of quantum theories, one for
each chosen phase-space quasi joint distribution. However, interestingly, for the special case
qp a unique operator seems to be given. That means that the operator is independent of the
chosen type of quasi joint distribution. This operator is found by the association E(XtYt) →
(1/2)∂E(X2

t )/∂t. In general an association is E(Xn
t Yt) → (∂/∂t)(1/(n + 1))E(Xn+1

t ). Thus the
operator of xny is assumed to be found by simply calculating (∂/∂t)(1/(n+ 1))E(Xt

n+1). This
is not only associations but actually mathematical deductions if we use a joint or quasi joint
distribution of the type in (2.1), to read

Ė
(
Xn
t

)
=
∂

∂t

∫
ρ
(
t, x, y

)
xndx dy =

∫
ρ̇
(
t, x, y

)
xndx dy

=
∫
⎛

⎜⎜
⎝

−D1
(
ρ
(
t, x, y

)
y
) −D2

(
ρ
(
t, x, y

)
fY
(
x, y
)) − β(t)D1D2

(
ρ
(
t, x, y

))

+
(
1
2

)
D2

2

(
ρ
(
t, x, y

)
g2Y
(
x, y
)
+ · · · )

⎞

⎟⎟
⎠xndx dy

= nE
(
Xn−1
t Yt

)
.

(4.6)

Thus the Liouville process and the Ornstein-Uhlenbeck [7] process allow taking the
time derivative inside the expectation. But notice that the results are based on a specific joint
distribution or a quasi joint distribution of the type in (2.1). So ∂/∂t E(Xt) is found to be the
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expectation of the velocity if a joint or quasi joint distribution of the type in (2.1) is postulated.
The reason why the time derivative can be taken inside the expectation is that (2.1) does not
have terms of the type Dn

1 , n ≥ 2.
By using that vX(t, x) = (1/2i)Ln(ψ(t, x)/ψ∗(t, x)) we have

E
(
Xn
t Yt
)
=
∂

∂t

1
n + 1

∫
xn+1ρX(t, x)dx =

1
n + 1

∫
xn+1

(−D1
(
ρX(t, x)vX(t, x)

))
dx

=
∫
xnρX(t, x)vX(t, x)dx =

∫
xnψ(t, x)ψ∗(t, x)D1

1
2i
Ln

(
ψ(t, x)
ψ∗(t, x)

)
dx

=
1
2

∫
(
ψ∗(t, x)xn(−iD1)ψ(t, x) + ψ∗(t, x)(−iD1)

(
xnψ(t, x)

))
dx

=
1
2

∫
ψ∗(xnpop + popxn

)
ψdx, pop

def= −iD1 = −i ∂
∂x

.

(4.7)

The well-known rule of symmetrization states E(Xn
t X

m
t ) → (1/2)

∫
ψ∗(pmopx

n + xnpmop)ψ dx,

the rule of Born-Jordan states E(Xn
t Y

m
t ) → (1/(m + 1))

∫
ψ∗(
∑m

l=0 p
m−l
op xnplop)ψ dx, while the

Weyl rule states E(Xn
t Y

m
t ) → (1/2n)

∫
ψ∗(( nl )

∑m
l=0 x

n−lpmopx
l)ψ dx [43]. For m = 1 we have

more explicitly

E
(
Xn
t Yt
) −→ 1

2

∫
ψ∗(popxn + xnpop

)
ψ dx, symmetrization,

E
(
Xn
t Yt
) −→ 1

2

∫
ψ∗(popxn + xnpop

)
ψ dx, Born-Jordan,

E
(
Xn
t Yt
) −→ 1

2n

∫
ψ∗
(
xnpop + nxn−1popx +

n × (n − 1)
1 × 2

xn−2popx2 + · · · popxn
)
ψ dx, Weyl.

(4.8)

Only for n = 0 and n = 1 the rules do give the same answer ifm = 1. Notice that when
n = 0, we achieve the same result as in (4.5). In general (4.7) equals the rule of symmetrization
and the rule of Born-Jordan, corresponding to the Margenau-Hill [44] quasi density function
and the Born-Jordan quasi density function.

A fundamental conceptual problem in quantum physics or when using (3.1a) and
(3.1b) is to associate something to E(Xn

t Y
2
t ). A solution to this operator problem in quantum

mechanics can be used for quantization of the kinetic energy in a curved space. Equation (2.1)
(leading to (2.4a)–(2.4c)) gives

E
(
Xn
t Y

2
t

)
=
∫
ρ
(
t, x, y

)
xny2dx dy =

∫
v2(t, x)ρX(t, x)xndx

=
∫(

vX(t, x)2 −Π(t, x) + β(t)
)
ρX(t, x)xndx.

(4.9)
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This equation can further be developed if the constitutive model forΠQ(t, x) given in (3.3a)–
(3.3e) is used. However, logically we can base a quantum theory on the equation set (3.1a)
and (3.1b) and (3.3a) together with the association rules E(XtYt) → (1/2)∂E(X2

t )/∂t =∫
xvX(t, x)ρX(t, x)dx, E(Xn

t Y
2
t ) → ∫

(vX(t, x)
2 −Π(t, x) + β(t))ρX(t, x)xndx. Using (3.3a)with

β(t) = 0, or (3.3b), implies [45]

E
(
Xn
t Y

2
t

)
=
∫(

vX(t, x)2 −Π(t, x) + κ(t)
)
ρX(t, x)xndx

=
∫(

vX(t, x)2 − 1
4ρX(t, x)

(

D2
1ρX(t, x) −

(
D1ρX(t, x)

)2

ρX(t, x)

))

ρX(t, x)xndx.

(4.10)

Using again vX(t, x) = D1(1/2i)Ln(ψ(t, x)/ψ∗(t, x)) it follows that

E
(
Xn
t Y

2
t

)

= −1
4

∫

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

((
D1ψ(t, x)
ψ(t, x)

)2

− 2
(
D1ψ(t, x)
ψ(t, x)

)(
D1ψ(t, x)∗

ψ(t, x)∗

)
+
(
D1ψ(t, x)∗

ψ(t, x)∗

)2)

×ψ(t, x)ψ(t, x)∗xn

−
(
ψ(t, x)∗D1ψ(t, x) + ψ(t, x)D1ψ(t, x)∗

)2

ψ(t, x)∗ψ(t, x)
xn + xnD2

1ρX(t, x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

dx

=
∫(

xn
(
D1ψ(t, x)∗

)(
D1ψ(t, x)

) − 1
4
xnD2

1ρX(t, x)
)
dx.

(4.11)

We can develop (4.11) further since

E
(
Xn
t Y

2
t

)

=
∫(

xn
(
D1ψ(t, x)∗

)(
D1ψ(t, x)

) − 1
4
xnD2

1ρX(t, x)
)
dx

=
1
4

∫(4xn
(
D1ψ(t, x)∗

)(
D1ψ(t, x)

)

−xn(ψ(t, x)D2
1ψ(t, x)

∗ + 2
(
D1ψ(t, x)∗

)(
D1ψ(t, x)

)
+ ψ(t, x)∗D2

1ψ(t, x)
)

)

dx

=
1
4

∫(
xn
(
−ψ(t, x)

(
D2

1ψ(t, x)
∗
)
+ 2
(
D1ψ(t, x)∗

)
xn
(
D1ψ(t, x)

) − ψ(t, x)∗xnD2
1ψ(t, x)

))
dx

=
1
4

∫(
−ψ(t, x)∗D2

1

(
xnψ(t, x)

) − 2ψ(t, x)∗D1
(
xnD1ψ(t, x)

) − ψ(t, x)∗xnD2
1ψ(t, x)

)
dx

=
1
4

∫
ψ∗
(
p2opx

n + 2popxnpop + xnp2op
)
ψ dx.

(4.12)
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Thus none of the rules stated after (4.7) are generally in agreement with (4.12). However, for
n = 0 all the rules give the same answer and equal the results in (4.3). For the particular case
n = 2, (4.12) equals the Weyl rule. For the cases we have examined we have found that

E
(
Xn
t Y

m
t

)
=

1
2m

∫
ψ∗
((

m

l

)
m∑

l=0

pn−lop x
nplop

)

ψ dx,

m = 1 =⇒ E
(
Xn
t Y

m
t

)
=

1
2

∫
ψ∗(popxn + xnpop

)
ψ dx,

m = 2 =⇒ E
(
Xn
t Y

m
t

)
=

1
4

∫
ψ∗
(
p2opx

n + 2popxnpop + xnp2op
)
ψ dx.

(4.13)

More explicitly we can write form = 2,

E
(
Xn
t Y

2
t

)
−→ 1

2

∫
ψ∗
(
p2opx

n + xnp2op
)
ψ dx, symmetrization, (4.14a)

E
(
Xn
t Y

2
t

)
−→ 1

3

∫
ψ∗
(
p2opx

n + popxnpop + xnp2op
)
ψ dx, Born-Jordan, (4.14b)

E
(
Xn
t Y

2
t

)
−→ 1

2n

∫
ψ∗
(
xnp2op + nx

n−1p2opx +
n × (n − 1)

1 × 2
xn−2p2opx

2 + · · · p2opxn
)
ψ dx, Weyl,

(4.14c)

E
(
Xn
t Y

2
t

)
=

1
4

∫
ψ∗
(
p2opx

n + 2popxnpop + xnp2op
)
ψ dx (4.13). (4.14d)

The rule in (4.13) for n = 0,m = 2 can also be found more directly. A joint distribution
of the type in (2.1) allows, as shown, taking the time derivative inside the expectation. This
gives

E
(
Yt

2
)
=

1
2
∂2

∂t2
E
(
X2
t

)
− E(Xtf(Xt)

)
= Ė(XtYt) − E

(
Xtf(Xt)

)

=
∫
(
ρ̇X(t, x)vX(t, x)x + ρX(t, x)v̇X(t, x)x

)
dx − E(Xtf(Xt)

)

=
∫
(−vX(t, x)xD1

(
ρX(t, x)vX(t, x)

)
+ ρX(t, x)v̇X(t, x)x

)
dx − E(Xtf(Xt)

)

=
∫
(ρX(t, x)vX(t, x)2 + xρX(t, x)(v̇X(t, x) + vX(t, x)D1vX(t, x))dx − E(Xtf(Xt)

)

=
∫(

ρX(t, x)vX(t, x)2 + xρX(t, x)f(x) + xD1
(
ρX(t, x)Π(t, x)

))
dx − E(Xtf(Xt)

)

=
∫(

ρX(t, x)vX(t, x)2 + xD1
(
ρX(t, x)Π(t, x)

))
dx =

∫(
vX(t, x)2 −Π(t, x)

)
ρX(t, x)dx.

(4.15)
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Thus to shortly summarize, based on assumptions (2.1) and (3.3a)–(3.3e)we conclude
(4.13)which is a new rule of operator ordering.

5. A Quantum Equation Accounting for Friction

Quantum physics does not in general handle friction, but the formulation of the theory in
phase space gives such possibilities. The equation for the Wigner function accounting for
friction is given by Gardiner and Zoller (see [37, page 126] or Appendix C for further details).
The equation is a special case of (2.1), to read

ρ̇
W(

t, x, y
)
= −D1

(
ρW
(
t, x, y

)
y
)
+D2

((
D1V (x) + εy

)
ρW
(
t, x, y

))

+
∞∑

k=1

(i�/2)2k

(2k + 1)!
D2k+1

2

(
D2k+1

1 V (x)
)
ρW
(
t, x, y

)
.

(5.1)

We set that the classical force is f(x, y) = −D1V (x) − εy. The last term in (5.1) is negligible
for the harmonic oscillator, a linear potential, or a free particle. However, there is still a
subtle difference with the classical results for the Liouville equation since the possible initial
conditions are restricted. The reason is that the initial distribution, for saymomentum, should
be given through the θ(t0, p), which is the Fourier transform of ψ(t0, p). Thus a given ψ(t0, q)
gives a unique distribution for momentum. This also implies Var(q)Var(p) ≥ �

2/4. Inserting
f(x, y) = −D1V (x) − εy into (2.4a)–(2.4c) (choosing unit such that � = 1) gives

ρ̇X(t, x) +D1
(
ρX(t, x)vX(t, x)

)
= 0,

v̇X(t, x) + vX(t, x)D1vX(t, x) = f(x) − εvX(t, x) +
D1
(
v2
X(t, x) − v2(t, x)

)

ρX(t, x)

= −D1V (x) − εD1S(t, x) +D1

(
D2

1ρX(t, x)
1/2

2ρX(t, x)1/2

)

,

(5.2)

where we have assumed, most importantly, the same functional form for Var(Yt/Xt)(t, x) =
v2(t, x) − v2

x(t, x) as when without friction. We have that vX(t, x) = D1S(t, x) and again use
the Madelung decomposition. It follows after one integration in space that

−1
2
D2

1ψ(t, x) + V (x)ψ(t, x) + ε
1
2i
Ln

(
ψ(t, x)
ψ∗(t, x)

)
ψ(t, x) = iψ̇(t, x). (5.3)

This is a Schrödinger equation with a linear friction term. It is easily verified that with
correlation (5.3) becomes

−1
2
D2

1ψ(t, x) + V (x)ψ(t, x) + ε
1
2i
Ln

(
ψ(t, x)
ψ∗(t, x)

)
ψ(t, x)

−β(t)D1Ln
(
λψ(t, x)ψ(t, x)∗

)
= iψ̇(t, x)

(5.4)
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which accounts for phase dependency. Further we achieve without correlation

θ̇
(
p, t
)
=

1

(2π)1/2

∫
ψ̇(t, x)Exp

(−ixp)dx

=
1

(2π)1/2

∫(
−1
2
D2

1ψ(t, x) + V (x)ψ(t, x) + S(t, x)ψ(t, x)
)
Exp
(−ixp)dx

=
p2

2
θ
(
p, t
)
+ V (iD1)θ

(
p, t
)
+ S(t, iD1)θ

(
p, t
)
.

(5.5)

We solve (5.3) numerically in the next section. Notice that solutions of partial differential
equations yield more variety in the solutions than that obtained with nonpartial differential
equations since partial differential equations give solutions with an arbitrary number of
constants. For other types of nonlinear Schrødinger equations seeWeinberg [46] andDoebner
and Goldin [47].

6. Simulations and Comparisons of Different Stochastic Approaches

This section compares the Liouville, Ornstein-Uhlenbeck, and quantum solutions for the
harmonic oscillator with and without friction. The initial values are

(i)

ρLX(t0, x) = ρ
OU
X (t0, x), (6.1)

(ii)

ρLY
(
t0, y
)
= ρOU

Y

(
t0, y
)
, ρL
(
t0, x, y

)
= ρOU(t0, x, y

)
= ρLX(t0, x)ρ

L
Y

(
t0, y
)
. (6.2)

We set f(x, y) = −x − εy. For the quantum solution we choose the initial values

(iii)

ρ
Q
X(t0, x) = ρ

L
X(t0, x) = ρ

OU
X (t0, x). (6.3)

Quantum theory uses no ρQY (t0, y). We choose

(iv)

v
Q
X(t0, x) = v

L
X(t0, x) = v

OU
X (t0, x). (6.4)
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The initial marginal probability densities for the Liouville and the Ornstein-
Uhlenbeck processes are as an example assumed to be Gaussian distributions, that
is,

ρLX(t0, x) = ρ
OU
X (t0, x) =

(
2πa2

)−1/2
e−(x−x0)

2/(2a2),

ρLY
(
t0, y
)
= ρOU

Y

(
t0, y
)
=
(
2πb2

)−1/2
e−y

2/(2b2),

(6.5)

which imply vLX(t0, x) = vOU
X (t0, x) = 0. Notice that many different types of

ρLY (t0, y) = ρ
OU
Y (t0, y) lead to the same vLX(t0, x) = v

OU
X (t0, x) = v

Q
X(t0, x) = 0.

The analytical solution is for the Liouville and the Ornstein-Uhlenbeck processes with
a constant diffusion term, and without friction, given by [9]

ρX(t0, x) =
e−(x−x0 Cos t)

2/[2(a2Cos2t+b2Sin2t+(q/2)t−(q/2) Sin tCos t)]
[
2π
(
a2Cos2t + b2Sin2t +

(
q/2
)
t − (q/2) Sin tCos t)]1/2

, (6.6a)

ρY
(
t0, y
)
=

e−y
2/[2(b2Cos2t+a2Sin2t+(q/2)t+(q/2) Sin tCos t)]

[
2π
(
b2Cos2t + a2Sin2t +

(
q/2
)
t +
(
q/2
)
Sin tCos t

)]1/2 , (6.6b)

vX(t, x) =
(x − x0 Cos t)

(
Cos t Sin t

(
b2 − a2) + q Sin t)

a2Cos2t + b2Sin2t +
(
q/2
)
t − (q/2) Sin tCos t − x0 Sin t. (6.6c)

The Liouville solution is achieved when setting q = 0 in (6.6a)–(6.6c). Observe that the
variance when q = 0 (Liouville) is steady when a = b. When also x0 = 0, we achieve
additionally a steady-state density distribution.

The analytical solution of the quantum equation without friction is given by using the
well-known propagator, to read

ψQ(t, t0, x) =
∫∞

−∞
u(x, x0, t, t0)ψQ(t0, x0)dx0,

u(x, x0, t, t0) = [2πi Sin(t − t0)]−1/2ei[(x2+x02)Cos(t−t0)−2ixx0]/(2 Sin(t−t0)),

ψQ(t0, x) = ρ
Q
X(t0, x)

1/2eiS(t0,x), D1S(t0, x) = v
Q
X(t0, x).

(6.7)
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Inserting vQX(t0, x0) = 0 into (6.7) gives for x0 = 0

ψQ(t, x) =
∫∞

−∞
[2πi Sin(t)]−1/2ei[(x

2+p2)Cos(t)−2ixp]/(2 Sin(t))
(
2πa2

)−1/4
e−(p)

2/(4a2)dp

= (2πi Sin t)−1/2
(
2πa2

)−1/4
{

π
[
1/(4a2) − iCos t/(4βa Sin t)]

}1/2

× e−x2/[4(β2Sin2t−iβaCos t Sin t)]+ix2 Cos t/(4βa Sin t), β2
def=
(
4a2
)−1

, t0 = 0, x0 = 0,

S(t, x) = (2i)−1Ln
[
ψ(t, x)
ψ∗(t, x)

]

=
(1/2)x2 Cos t

(
1/
(
4a2
) − a2) Sin t

[a2Cos2t + 1/(4a2)Sin2t]
,

v
Q
X(t, x) = D1S(t, x), x0 = 0,

(6.8)

and more generally

ρ
Q
X(t, x) = ψ

Q(t, x)ψQ
∗
(t, x) =

e−(x−x0 Cos t)
2/[2(a2Cos2t+(4a2)−1Sin2t)]

[
2π
(
a2Cos2t + (4a2)−1Sin2t

)]1/2 . (6.9)

Inserting the special case a = 2−1/2 gives a steady variance of a2 = 1/2. When also x0 = 0 we
also achieve a steady-state density distribution.

The Liouville and Schrödinger solutions are in some special cases equal. Assuming as
a special case that b = 1/(2a) ⇒ a2b2 = 1/4 for the Liouville solution it follows directly
from (6.6a)–(6.6c) and (6.9) that the solutions are equal. This is also in agreement with
(2.5).

Figure 1 shows four different realizations of the Liouville process and the Ornstein-
Uhlenbeck process with uncorrelated Gaussian noise when b = 1/(2a), a2 = 1/2, x0 = 0. The
realizations are constructed as

Xt+h = Xt + hYt, Yt+h = Yt − hXt − εhYt + RandomY

[
Gauss

[
0, h2q

]]
, (6.10)

where ε different from zero gives friction, and q = 0 gives the Liouville solution.
Observe for the Liouville process the oscillating behavior without friction and the

movement towards zero with friction. The two Ornstein-Uhlenbeck processes reveal a more
“scattered” behavior with and without friction, in contrast to the smooth behavior of the two
Liouville processes.
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Figure 1: The Liouville and Ornstein-Uhlenbeck realizations as a function of time t.
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Figure 2: The variance as functions of time t. E(Xt0) = E(Yt0) = 0,Var(Xt0) = a2, and Var(Yt0) = b2, b =
1/(2a), a = 1.

Figure 2 shows the variances (standard deviations) as functions of time for four
different cases. The expectations are zero at all times in all cases. The Ornstein-Uhlenbeck
solutions without friction with q = constant are given by (6.6a), to read

Var
(
XOU
t

)
= a2Cos2t + b2Sin2t +

(q
2

)
t −
(q
2

)
Sin tCos t,

Var
(
YOU
t

)
= b2Cos2t + a2Sin2t +

(q
2

)
t +
(q
2

)
Sin tCos t.

(6.11)

The Liouville variance without friction is found by setting q = 0 in this formula. The
solution for the expectation and variance in the Liouville or Ornstein-Uhlenbeck [7] process
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with or without friction can simply be found to be given by the closed equation set (see
Appendix A)

ĖOU(Xt) = EOU(Yt), ĖOU(Yt) = −EOU(Xt) − εEOU(Yt),

V̇arOU(Xt) = 2CovOU(Xt, Yt), V̇arOU(Yt) = −2CovOU(Xt, Yt) − 2εVarOU(Yt) + q,

ĊovOU(Xt, Yt) = VarOU(Yt) − VarOU(Xt) − εCovOU(Xt, Yt).

(6.12)

q = 0 gives the Liouville solution. This shows that the expectation and variance and
covariance develop independently of the chosen form of the initial distribution, and thus the
variance equals (6.11) as long as the initial variance and covariance are fixed. A steady-state
solution can be found as

EOU(Xt) = EOU(Yt) = CovOU(Xt, Yt) = 0,

VarOU(Yt) = VarOU(Xt),

VarOU(Yt) =
q

(2ε)
,

(6.13)

where q = 0 gives the Liouville solution.
Observe in Figure 2 the oscillatory behavior of the Liouville process (and quantum

solution which is the same) without friction. The Liouville variance with friction approaches
zero which means that all realizations of the Liouville process with friction approach zero
with probability 1 as time t approaches infinity, as exemplified in Figure 2. The Ornstein-
Uhlenbeck variance without friction approaches infinity as time t approaches infinity. That is,
the diffusive term provides a broader density solution as time passes while the expected value
in this case equals zero for all t. Adding the friction term to the Ornstein-Uhlenbeck process
dampens the broadening of the solution. Studying the variance numerically, the variance
approaches the steady-state value q/(2ε)=1/2 as time t approaches infinity, as Figure 2 also
shows. Notice that the Ornstein-Uhlenbeck process with friction shows more equality with
the quantum solution with friction than the Liouville process with friction.

Figure 3 shows the density ρX(t, x) without friction (ε = 0) referred to as Sim1 as a
function of time t and position x. The distribution is started to the right with the expectation
x0 = 1.5, where t0 = 0. We have chosen values that give steady-state variance.

The variance a2 in Figure 3 stays stable through time. The Liouville solution is identical
to the quantum solution.

Changing from x0 = 1.5 to x0 = −1.5 to generate the mirror solution (i.e., starting to
the left rather than to the right), Figure 4 shows the density ρX(t, x) without friction referred
to as Sim2 when a2 = 1/2, x0 = −1.5, and ε = 0.

Figure 5 shows the average of the two mirror solutions in Figures 3 and 4, referred to
as (Sim1 + Sim2)/2. This is also a Liouville solution but not quantum solution.

Figure 6 shows the quantum solution as a function of time using the two initial
Gaussian distributions. The quantum solutions with friction are found by solving (5.3)
without correlation numerically.
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Figure 3: Quantum and Liouville solutions without friction as a function of space x and time t. ρQX(t0, x) =
ρLX(t0, x) = (2πa2)−1/2e−(x−x0)

2/(2a2), ρLY (t0, y) = (2πb2)−1/2e−y
2/(2b2), b = 1/(2a), a2 = 1/2, x0 = 1.5, and

ε = 0.
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Figure 4: Quantum and Liouville solutions without friction as a function of space x and time t. ρQX(t0, x) =
ρLX(t0, x) = (2πa2)−1/2e−(x−x0)

2/(2a2), ρLY (t0, y) = (2πb2)−1/2e−y
2/(2b2), b = 1/(2a), a2 = 1/2, x0 = −1.5, and

ε = 0.

Observe the difference between the Liouville solution in Figure 5 and the quantum
solution in Figure 6. The interference pattern is clearly visible in the quantum solution in
Figure 6. Figure 7 shows the quantum solution with the two initial Gaussian distributions
with friction with the magnitude of ε = 4.0, found by solving (5.3) without correlation
numerically.

Observe how the two Gaussian distributions in Figure 7 coalescence when time t
increases, in the sense that the density eventually approaches a narrow Gaussian distribution
with the variance equal to the initial variance a2 = 1/2. This effect is caused by the strong
nonlinearity of the quantum friction equation. Reducing the magnitude of the friction from
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Figure 5: The Liouville solution without friction as a function of space x and time t. ρLX(t0, x) =
(1/2)[(2πa2)−1/2e−(x−x01)

2/(2a2) +(2πa2)−1/2e−(x−x02)
2/(2a2)], ρLY (t0, y) = (2πb2)−1/2e−y

2/(2b2), b = 1/(2a), a2 =
1/2, x01 = 1.5, x02 = −1.5, and ε = 0.
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Figure 6: Quantum solution without friction as a function of space x and time t. ρQX(t0, x) = ρLX(t0, x) =
(1/2)[(2πa2)−1/2e−(x−x01)

2/(2a2) + (2πa2)−1/2e−(x−x02)
2/(2a2)], a2 = 1/2, x01 = 1.5, x02 = −1.5, and ε = 0.

ε = 4.0 to an arbitrarily small but positive number (e.g., ε = 0.01) still causes the density
ρX(t, x) to eventually reach a Gaussian distribution with a2 = 1/2 and expectation zero
after a sufficiently long time period t. We do not observe the typical interference pattern
in Figure 7. Figure 7 stands in stark contrast to Figure 6 without friction, where there is
an alternating narrowing and broadening of the density through time. Figure 8 shows the
difference between the Gaussian distribution with a2 = 1/2 and expectation zero and the
quantum equation with friction. We clearly see that the difference vanishes.

Generally we find that with friction the initial Gaussian solutions approach the
Gaussian steady-state solution with a2 = 1/2. Both the quantum solution with friction and
the Ornstein-Uhlenbeck process with friction approach a steady-state different from zero.
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Figure 7: Quantum solution with friction as a function of space x and time t. ρQX(t0, x) = ρLX(t0, x) =
(1/2)[(2πa2)−1/2e−(x−x01)

2/(2a2) + (2πa2)−1/2e−(x−x02)
2/(2a2)], a2 = 1/2, x01 = 1.5, x02 = −1.5, and ε =

4.0.
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Figure 8: The difference between the quantum solution with friction and a steady-state Gaussian
distribution with expectation zero and variance a2 = 1/2 as a function of space x and time t.

7. Conclusion

The paper discusses a new type of stochastic theory not based on a traditional Markovian
property, which is named hydrodynamic stochastic theories. The quantum theory is shown to
be a special kind of such a stochastic theory. The operator problem is studied, and a quantum
equation with friction is studied in relation to the measuring problem in quantum physics.
Different numerical solutions are compared.
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Appendices

A. The Derivation of the Differential Equation for
Expectation and Variance

The Fokker-Planck equation is

ρ̇OU(t, x, y
)
= −D1

(
ρOU(t, x, y

)
y
)
−D2

(
ρOU(t, x, y

)
fY
(
x, y
))

+ q D2
2

(
ρOU(t, x, y

))
,

f = fY
(
x, y
)
= −x − εy

(A.1)

which implies

ĖOU(Xt) =
∫
xρ̇OU(t, x, y

)
dx dy

=
∫
x
(
−D1

(
ρOU(t, x, y

)
y
)
−D2

(
ρOU(t, x, y

)
fY
(
x, y
))
+ qD2

2

(
ρOU(t, x, y

)))
dx dy

=
∫
yρOU(t, x, y

)
dx dy = EOU(Yt),

ĖOU(Yt) =
∫
yρ̇OU(t, x, y

)
dx dy

=
∫
y
(
−D1

(
ρOU(t, x, y

)
y
)
−D2

(
ρOU(t, x, y

)
fY
(
x, y
))
+ qD2

2

(
ρOU(t, x, y

)))
dx dy

=
∫
ρOU(t, x, y

)(
fY
(
x, y
))
dx dy = −EOU(Xt) − εEOU(Yt),

ĖOU
(
X2
t

)
=
∫
x2ρ̇OU(t, x, y

)
dx dy

=
∫
x2
(
−D1

(
ρOU(t, x, y

)
y
)
−D2

(
ρOU(t, x, y

)
fY
(
x, y
))
+ qD2

2

(
ρOU(t, x, y

)))
dx dy

=
∫
2x
((
ρOU(t, x, y

)
y
))
dx dy = 2EOU(XtYt),

ĖOU
(
Y 2
t

)
=
∫
y2ρ̇OU(t, x, y

)
dx dy

=
∫
y2
(
−D1

(
ρOU(t, x, y

)
y
)
−D2

(
ρOU(t, x, y

)
fY
(
x, y
))
+ qD2

2

(
ρOU(t, x, y

)))
dx dy

=
∫(

2y
(
ρOU(t, x, y

)
fY
(
x, y
))

+ q
(
ρOU(t, x, y

)))
dx dy

=
∫(

2y
(−x − εy)

(
ρOU(t, x, y

))
+ q
(
ρOU(t, x, y

)))
dx dy

= −2EL(XtYt) − 2εEL
(
Y 2
t

)
+ q,
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ĖOU(XtYt) =
∫
xyρ̇OU(t, x, y

)
dx dy

=
∫
xy
(
−D1

(
ρOU(t, x, y

)
y
)
−D2

(
ρOU(t, x, y

)
fY
(
x, y
))
+ qD2

2

(
ρOU(t, x, y

)))
dx dy

=
∫(

y
(
ρOU(t, x, y

)
y
)
+ x
(
ρOU(t, x, y

)
fY
(
x, y
)))

dx dy

= EOU
(
Y 2
t

)
− EOU

(
X2
t

)
− εEOU(XtYt)

(A.2)

which implies

ĖOU(Xt) = EOU(Yt), ĖOU(Yt) = −EOU(Xt) − εEOU(Yt),

V̇arOU(Xt) = ĖOU
(
X2
t

)
− 2EOU(Xt)ĖOU(Xt) = 2EOU(XtYt) − 2EOU(Xt)EOU(Yt)

= 2CovOU(Xt, Yt),

V̇arOU(Yt) = ĖOU
(
Y 2
t

)
− 2EOU(Yt)ĖOU(Yt)

= −2EOU(XtYt) − 2εEOU
(
Y 2
t

)
+ q − 2EOU(Yt)

(
−EOU(Xt) − εEOU(Yt)

)

= −2CovOU(Xt, Yt) − 2εVarOU(Yt) + q,

ĊovOU(Xt, Yt) = ĖOU(XtYt) − ĖOU(Xt)EOU(Yt) − EOU(Xt)ĖOU(Yt)

= EOU
(
Y 2
t

)
− EOU

(
X2
t

)
− εEOU(XtYt)

− EOU(Yt)2 − EOU(Xt)
(
−EOU(Xt) − εEOU(Yt)

)

= VarOU(Yt) − VarOU(Xt) − εCovOU(Xt, Yt).

(A.3)

B. The Measuring Problem

A main question is how a quantum mechanical object interacts with a classical object.
Friction in general tends to decrease the energy of a system. It is commonly believed that
the “measuring problem” is a purely quantum mechanical problem, but also in classical
mechanics a conceptual problem exists. Say, as an example, that a particle is moving
according to the equation ẍ = f(t, x, ẋ). What is the energy of the particle at time t and how
should we measure it? Say that we let the particle interact with a (macroscopic) object, and
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that during the interaction, the position of the particle is such that ẍ = f(t, x, ẋ) − ẋ when
t ≥ tm, and tm is the start time for the measuring process. The energy at time tm we define as

e(tm) = −
∫∞

tm

(
ẍ(u) − f(u, x(u), ẋ(u)))ẋ(u)du

= −
[
1
2
ẋ(∞)2 − 1

2
ẋ(tm)2

]
+
∫∞

tm

f(u, x(u), ẋ(u))ẋ(u)du

(B.1)

provided that the last integral exists. For the harmonic oscillator we achieve the well-known
result e(tm)= (1/2)ẋ(tm)

2 + (1/2)x(tm)
2.

If we use this kind of logic for a quantum system we need an equation describing
the interaction of the quantum system with the measuring device. Thus to overcome the
“measuring problem” we suggest to use the nonlinear quantum equation accounting for
friction. The equation accounting for friction is studied numerically and compared with other
types of solutions. The energy becomes

ė(tm) = −
∫∞

tm

∫∞

−∞

∂

∂t

(
ψ∗(t, u)ψ̇(t, u)

)
dudt = −

[∫∞

−∞
ψ∗(t, u)ψ̇(t, u)du

]∞

tm

=⇒ e(tm)

= −
[∫∞

−∞
ψ∗(t, u)

(
−1
2
D2ψ(t, u) + V (u)ψ(t, u) + ε

1
2i
Ln

(
ψ(t, u)
ψ∗(t, u)

)
ψ(t, u)

)
du

]∞

tm

.

(B.2)

C. The Harmonic Oscillator

The steady-state solutions of the Schrödinger solution for the harmonic oscillator are stated
in almost every book in quantum mechanics, to read when x0 = 0

ψ
Q
m(t, x) =

(π)−1/4e−x
2/2

[m!2m]1/2Hm(x)
, Hm() : Hermite,

H0 = 1, H1 = 2x, H2 = 4x2 − 2, H3 = 8x3 − 12x, . . . ,

ρ
Q
Xm(t, x) = ψ

Q
m(t, x)ψ

Q
m(t, x)

∗, v
Q
1 (t, x) = 0.

(C.1)

Inserting m = 0 into (C.1) gives the steady-state solution discussed above for a2 = 1/2
and x0 = 0. An interesting question is whether it is possible to construct other Liouville
solutions equivalent to the Schrödinger solutions in (C.1), for instance whether it is possible
to find other initial densities ρLY (t0, y) such that the Liouville solutions are equivalent to the
Schrödinger solutions. First note that every initial distribution for the Liouville density that
is independent in position and velocity and that is equal during interchange of x and y is a
steady-state solution for the Harmonic oscillator. Thus the Hermit functions are solutions to
the Liouville equation also as long as we choose the distribution for position and velocity
according to this rule. More generally, we find the same time-dependent solution when
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b = 1/(2a) for the Gaussian distribution. To answer this question, notice that the Hermit
solutions in (6.10) possess well-known and interesting mathematical properties. The Fourier
transform of a Hermit function is the same Hermit function multiplied with im, or, more
precisely,

θ̂m
(
t0, y
) def= (2π)−1/2

∫
ψ
Q
m(t0, x)e−ixydx =⇒ θ̂m

(
t0, y
)
= imψm

(
t0, y
)
. (C.2)

Thus a candidate to achieve match would be to choose the initial distribution in the velocity
for the Liouville process equal to the Fourier transformed distribution according to

θ̂
(
t0, y
)
= (2π)−1/2

∫
ψ
Q
m

(
t0,

x

a

)
e−ixydx, ρLYm

(
t0, y
)
= θ̂
(
t0, y
)
θ̂
(
t0, y
)∗
. (C.3)

We observe that choosing m = 0 gives the velocity distribution that has been shown to give
agreement with the quantum solution.

We can study this more carefully. The Wigner function is defined by

ρW
(
t, q, p

) def=
1
π�

∫
Exp
(
2ipu

�

)(∑
wλψλ

(
t, q − u)ψ∗

λ

(
t, q + u

)
)

du, (C.4)

wherewλ is the probability of being in the state λ, and {ψλ} is a complete set. For a pure state
we achieve

ρW
(
t, q, p

)
=

1
π�

∫
Exp
(
2ipu

�

)
ψλ
(
t, q − u)ψ∗

λ

(
t, q + u

)
du. (C.5)

We can perform the Fourier transform of ρW(q, p, t), to read (dropping the �)

∫
ρW
(
t, q, p

)
Exp
(−2ipx′)dp =

1
π

∫
Exp
(
2ip
(
u − x′))

(
∑

wλψλ
(
t, q − u)ψ∗

λ

(
t, q + u

)
)

dudp

=
∑

wλψλ
(
t, q − x′)ψ∗

λ

(
t, q + x′).

(C.6)
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We can perform the Fourier transform of the wave function, to read

ψ
(
t, q
)
=
∫
ρW
(
t, q, p

)
dp, θ

(
t, p
)
=
∫
ρW
(
t, q, p

)
dq,

θ
(
t, p
)
=

1

(2π)1/2

∫
ψ
(
t, q′
)
Exp
(−iq′p)dq′, ψ

(
t, q
)
=
∫
θ
(
t, p′
)
Exp
(
iqp′
)
dp′,

ρW
(
t, q, p

)
=

1
π

∫
Exp
(
2ipu

)
ψ∗(t, q + u

)
ψ
(
t, q − u)du

=
1
π

∫
1
2π

∫
θ
(
t, p′
)∗Exp

(−i(q + u)p′ + i(q − u)p′′ + 2ipu
)
θ
(
t, p′′
)
dp′dp′′du

=
1
π�

∫
θ
(
t, p + u

)∗
θ
(
t, p − u)Exp(−2iqu)du.

(C.7)

Thus ρW(t, q, p) exhibits the basic symmetry under the interchange between q and p.
Say that the classical potential can be Taylor expanded, to read

V
(
q + y

)
=

∞∑

k=0

yk

k!
V (k)(q

)
. (C.8)

By direct time derivation of ρW(t, q, p) and use of the Schrödinger equation it follows that
(introducing � again)

ρ̇
W(

t, q, p
)
=

∂

∂q

(
ρW
(
t, q, p

)) − ∂

∂q

(
−V ′(q

)
ρW
(
t, q, p

))

+

( ∞∑

k=1

1
(2k + 1)!

(
�

2i

)2n

V (k)(q
)
)

∂2k+1

∂p2k+1

(
ρW
(
t, q, p

))
.

(C.9)

The last term is negligible for the harmonic oscillator, a linear potential, or a free particle.
However, there is still a difference with the classical results for the Liouville equation since the
possible initial conditions are restricted in (C.9). The reason is that the initial distribution, for
say momentum, is given through the θ(t0, p), which is the Fourier transform of ψ(t0, p). Thus
a given ψ(t0, q) gives a unique distribution for momentum. This also implies Var(q)Var(p) ≥
�
2/4.

In thework of Gardiner and Zoller [37] an equation for theWigner function accounting
for linear friction is stated. It is found that the second term on the right-hand side in
(C.9) is equal to the term with friction in the Liouville equation, to read −(∂/∂p)((−V ′(q) −
εp)ρW(t, q, p)).
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