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We incorporate randomness into deterministic theories and compare analytically and numerically
some well-known stochastic theories: the Liouville process, the Ornstein-Uhlenbeck process, and a
process that is Gaussian and exponentially time correlated (Ornstein-Uhlenbeck noise). Different
methods of achieving the marginal densities for correlated and uncorrelated noise are discussed.
Analytical results are presented for a deterministic linear friction force and a stochastic force that
is uncorrelated or exponentially correlated.

1. Introduction

Stochastic theories model systems which develop in time and space in accordance with
probabilistic laws.! Essential in stochastic theories is how randomness is accounted for. For
Markov [1] processes?, which are an important class of stochastic processes, the state value
of Xi.ar at time t + At is given by the state value at time ¢, plus a state value of a “random

variable” at time £.° A random “disturbance” in a Markov process may possibly influence
all subsequent values of the realization. The influence may decrease rapidly as the time
point moves into the future. Five methods to account for randomness are (1) to assume
deterministic equations to determine the stochastic process for say a particle and apply Monte
Carlo simulations or analytical methods [2, 3] to find probability distributions, (2) to use
the Liouville equation with or without added terms for the probability density per se, for
example, for a particle, (3) to use ordinary differential equations for the statistical moments
of the probability distribution, (4) to use the “hydrodynamic approach,” which is to specify
constitutive relations in an equation set akin to what is used in hydrodynamic formulations of
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gas flow [4], and (5) in quantum physics one can use traditional quantization rules, Nelson’s
[5] stochastic version of quantum mechanics, or path integration methods. This article mainly
confines attention to method 1, addressed in all sections of the article. Method 2 is briefly
addressed in the last part of Section 4. Methods 3, 4, and 5 are briefly outlined in Appendix F.
We first outline methods 1 and 2 and thereafter specify the contribution of this article towards
the end of the introduction.

For method 1 allowing randomness in the initial values for a particle and for a
deterministic noise commonly implies more realistic models of physical situations than, for
example, the Liouville process where a realization of the stochastic process is constructed
deterministically allowing randomness only in the initial conditions of the particle. In
the Stratonovich [3] method noise is incorporated in a deterministic equation by adding
a deterministic noise term that can be integrated in the normal Riemann sense. The
Stratonovich integral occurs as the limit of time-correlated noise (so-called colored noise)
when the correlation time of the noise term approaches zero. Monte Carlo simulations or
analytical methods can be used to “count up” the probability density. The increment in the
Einstein-Smoluchowski theory of Brownian motion during a time interval At is proportional
with the so-called drift, plus a nondeterministic noise as a time-uncorrelated Gaussian
random term (called Gaussian white noise), with mean zero and variance proportional to
At. This mathematical model was first treated rigorously by Ito [2] (See also [6, 7]). The work
by Bachelier [8], Einstein [9, 10], Smoluchowski [11, 12], Wigner [13], Ornstein-Uhlenbeck
(1930), and Ito [2] constitute foundations. A system with time-uncorrelated noise is usually
just a coarse-grained version of a more fundamental microscopic model with correlation.
Thus depending on the problem in consideration, the Stratonovich (deterministic noise) or
the Ito model (stochastic noise) could be appropriate approximations. For additive noise the
Ito model gives the same answer as the Stratonovich model. But for multiplicative noise
the results are different. (For a recent treatment of different interpretations of stochastic
differential equations see, e.g.,, Lau and Lubensky [14].) Roughly, the reason for this
difference is that the Stratonovich integral, which is a Riemann integral, applies on functions
with bounded variations. The Ito integral applies on functions without bounded variations
(i.e., white noise).

In physics or engineering applications second-order ordinary differential equations
are often used as models. Unfortunately, second-order processes are more difficult to
address than first-order processes. The second-order differential equation is first written
as the mathematical equivalent set of two first-order equations, and then randomness is
incorporated into the first-order equations either by Ito or Stratonovich interpretations
by defining two stochastic differential equations for the two random variables {X;} and
{Y:} [6, 7]. In the well-known Langevin models used in physics, or in any second-order
process driven by noise force, a noise term is added to the velocity (say {Y;}), but not to
the position (say {X;}). The position follows as the integral of the velocity. The Ornstein-
Uhlenbeck (1930) theory of Brownian motion is expressed in terms of a Markov process in
the bi-dimensional phase space. Masoliver [15] studied second-order processes driven by a
dichotomous exponentially time-correlated noise force, while Heinrichs [16] studied second-
order processes driven by Gaussian exponential time-correlated noise force. See also Bag [17]
and Bag et al. [18] for studies on stochastic processes and entropy production. Langevin
models are very fruitful as a starting point for quantum noise phenomena [19].

In method 2, randomness is implemented without using differential equations and
Monte Carlo simulations, by studying the Liouville equation as such with our without added
terms, for example, for a particle. In the Liouville process the probability density is a solution
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of the so-called Liouville equation*. But a traditional picture of applying realistic randomness
is through collision integrals that fulfill local conservation laws of mass, momentum, and
energy [20, 21]. It is usually considered in direct reference to the Boltzmann kinetic theory.
Microscopic collision rules are established based on time symmetry, but then a rapid decay
of correlations amounts to assuming friction [22, 23]. For a second-order process driven by
dichotomous noise with exponential correlation Masoliver [15] found a third-order partial
equation for the joint density distribution. For a second-order process driven by Gaussian
noise with exponential correlation Hienrichs [16] found a Fokker-Planck equation with time
variable coefficients for the joint distribution. In the phase-space formulation of quantum
physics the Wigner quasijoint distribution is commonly used [24]. The equation for the joint
distribution includes additional terms compared to the bidimensional Liouville equation.
(See the review articles by Hillery et al. [25] and Lee [26] for a review of quantum phase-space
distributions.) No corresponding second-order stochastic differential equation is constructed.

A system with time-uncorrelated noise is usually just a coarse-grained version of
a more fundamental microscopic model with time correlation. It is therefore of interest
to study models with correlation. Bag et al. [18] introduced correlation by increasing the
number of differential equations and applying uncorrelated noise throughout. This approach
obviously increases the system complexity. This article shows that time-correlated noise can
be mimicked by time-uncorrelated noise and time-dependent noise without increasing the
number of equations in the equation set. To provide a benchmark we start in Section 2 by
considering a one-dimensional system based on recurrence relations without correlation. We
tirst show how the recurrence relation, which is usually applied for Gaussian noise only ( that
means corresponding to the Ito integral) can be used to develop equations for a more general
noise that is multifractal. We develop the equation for variances and covariances. Gaussian
processes give that higher-order moments follow from second-order moments. Our first order
system has not been analyzed in the manner proposed in this paper, which is needed to
develop alternative accounts of introducing correlation. We compare different methods of
achieving the main equations and study when the time-dependent uncorrelated noise can
mimic exponential correlated noise. Section 3 studies first order systems with correlation,
which are compared with the systems without correlation in Section 2. Such comparison has
not been made in the earlier literature. Section 4 considers second-order stochastic processes
driven by time-uncorrelated or correlated noise. Proceeding to the second-order allows
capturing a larger fraction of real life processes which makes the approach more realistic. We
show that a second-order system driven by an exponential time-correlated noise force can be
mimicked by adding time-uncorrelated noise both to the position and to the velocity®. Instead
of expanding the equation set, noise is added separately to each of the two dimensions
(exemplified with position and velocity) of the two-dimensional system. Section 5 concludes.

2. A First-Order Time-Uncorrelated Process with Additive Noise

This section provides a first order process which accounts for randomness. Assume that
the differential equation X(t) = f(X(t)) has been used to describe a physical phenomenon.
Assume that this equation is found to no longer hold due to results from a more developed
experimental set-up. The question is then as follows: how should this equation be (a)
modified or (b) reinterpreted, to be more realistic? Assume that we use (b), assuming that
the original equation is reinterpreted to mean O0E(X(t))/0t = E(f(X(t))), where E means
expectation of a stochastic process. (Another possibility is E(X(t)) = E(f(X(t))). These two
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interpretations are in general different since this one demands a derivative path.) The next
question is then how to construct a stochastic theory such that expectation, variance, and
higher-order moments can be calculated.

Stochastic or nonstochastic integrals can rarely be solved in analytic form, making
numerical algorithms an important tool. Assume that dX; is the change in this quantity
during a small time interval from t to t + h (we will let the time spacing approach zero).
Assume that this change is proportional with the time interval dt = h and with f(X;), which
gives the recurrence relation:

def

dX; = Xpn = Xy mod fXh, = X = Xe + f(Xi)h, (2.1)

where “mod” means that this is a model assumption and “def” means definition. When
constructing a more developed theory accounting for noise, we can, for instance, make the
initial values stochastic as in the Liouville approach or we can change the recurrence relation
in (2.1). In the study of nonlinear recurrence relations Glass and Mackey [27] showed that
it is possible to construct an infinite number of deterministic relations which are chaotic, but
which describe a given density distribution. Thus a given density distribution has no unique
recurrence relation. It appears that the broad class of Markovian theories incorporating
the Gaussian white noise input provides a satisfactory approximation for a large variety
of phenomena. We consider the more general stochastic equation, which we consider as a
stochastic differential equation with additive noise of the Ito form:

dX, X - X " F(X)h+dig(t b X)),
(2.2a)
d*g(t, h, X;) mod Randomy [Distribution[0, do, (t, h, X;)]],
E(dg(t,h, X;)) ™ 0, (2.2b)
E(H(X:, Hdg(t, h, X1)) ™ 0, (2.20)

where d*g(t, h, X¢) is not a differential in the Riemann sense and is therefore denoted by the
7 oy(t,h,X;) is a function and do,(t, h, X¢) is the differential change of o,(t, h, X;) with
respect to h during the time step h. We model d*g(t, h, X;) as a stochastic variable where
Distribution is a distribution of expectation zero and variance E(d*g?)= do,. E() means
expectation. H (x, t) is any arbitrary function. The expectation of d*g(t, h, X¢) in (2.2b) is zero.
We assume no correlation. Equation (2.2c) is assumed in order to develop (2.5). Equation
(2.2¢) is valid when using Ito calculus (no bounded variation) but is not valid when using
Stratonovich calculus. When d*g(t, h, X;) = 0, we define, as determined by (2.2a)—(2.2c), what
we call a Liouville recurrence relation, which defines the Liouville process, where only the
initial values are stochastic.

Conceptually, we can easily generate realizations by applying (2.2a)-(2.2c) on a
computer. Assume that we perform M (which approaches infinity) different runs up to
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time t, with a constant time spacing h (which approaches zero). Let H(x, t) be the arbitrary
function that we apply to each number. Thus we achieve the set of numbers, to read

H(XE o), H (X}, 1), H(X}, 1), H(X] t) : Run 1

H(X2 1), H(X2 1), H(X2 12),... H(XZ, ) : Run 2
(2.3)

H(XM o), H(XM, ), H(XM, 6),... H(X), ) : Run M
Applying Taylor expansion, the expectation E() is achieved when M goes to infinity, that is,
E(H[Xin, t+h]) = E(H[X; + f(Xs)h +d*g, t + h])

= E{H[Xt, 1] + H[X;, 1]h + (DH[X, t]) (f (Xi)h + d*) (2.4)

<21'><D2H[Xt, )[hzf(Xt)z+2f(Xt)hd*g+d*g2] . }1

where the “dot” above a variable means the time derivative 0/0t, that is, H = 0H/dt,
and “D” means the space derivative D = 0/0X;, that is, DH[X,,t] = 0H[X,,t]/0X;. We
can conceptually collect all tracks that pass through a given X;. We next assume that (a)

mod

the variance is E(d*¢?) = do, = o, X)dt = g(t, X¢)h for small time steps, where
gi(t, Xy),i=2,3,4,...,is some well-behaved function to be specified exogenously, and (b) that
higher-order moments also have the same powers of h, akin to multifractal phenomena [28].
The terms E[DH[X;,t])dg] and E[(1/2!)(D*H[X;,t])2f (X¢)hdg] equal zero due to (2.2c).

Thus for n > 1,do, = E(d*¢") mod gn(t, X)h,= 6, = gu(t, X(t)). This gives

Lim S E(HIX, 1) = E(HIX, 1]+ FODHX ) + (5 )2 X0 (DHIX, 1)
+<%)gg(t,Xt)<D3H[Xt,t]> + ) (2.5)

def O

A0 20+ f@D0 + (5 )&t 0070 + (5 ) 0D%0 + -

Ay is the forward infinitesimal operator of the process. By setting H(X,t) = X as a special
case, we easily find that 0E(Xy)/0t = E(f(X;)). We introduce the probability density p(t, x)
of X;. We choose H () time independent and can then write (2.5) by definition as

Jp(t, x)H (x)dx = fp(t, x)f(x)DH (x)dx + (%)’[p(t,x)gz(t,x)DzH(x)dx +-. (2.6)
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(Only natural boundary conditions are used in this article and the space integration limits are
suppressed.) Integrating (2.6) by parts and assuming natural boundary conditions gives

fH(x)p(t, x)dx = —fH(x)D(p(t, x)f(x))dx + %J‘H(x)D2 (p(t, x)g(t, x))dx +--- . (2.7)

Equation (2.7) is valid for all H(x), and thus

p(t3) =-D(p(t, 7)) + (57 ) Dottt ) + 57 ) Dot Mgt ) +
2.8)

=-D(pt0) £ ) + (7 ) D (ot 90202)) + (5 ) Dot 0106, 0) +

In fact, if our uncorrelated random term is Gaussian, all odd moments are zero, and even
moments of higher order than two are of higher order than h (see Appendix A). This gives
o3(t,x) = ga(t,x) = ou(t,x) = qu(t,x) = o5(t,x) = gs5(t,x) = --- = 0, implying the partial
differential equation called the forward Fokker-Planck equation or forward Kolmogorov
equation [29]. We can from (2.8) easily calculate the derivative of the variance of X; which

for a time-dependent (and uncorrelated) random term with &, mod 2 (t) becomes

0 0
a Var(Xt) = a

_ %( f ot x)x2>dx “2E(X)E(f (X))

- [ (=Dt 070 + (5 ) D2 e, 000 + (5 ) D (o0, 0000) +-+- Yl

- 2E(X)E(f (X))

E(X?) - 2E<X»§E(xt>

= fz(p(t,x)f(x)x)dx —2E(X)E(f(Xy)) + 6a(t) = 62 (t) + 2Cov (£ (Xy), X; ).
(2.9)

The general Liouville solution of (2.8) is easily found, to read

ol (x) e _ax, pht, x) = e A(xe™™), J‘A(u)du =1. (2.10)
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A() is an arbitrary function such that the integral is equal to 1. Say that the force is a linear
friction force f(x) Mo _gx and that (o)) mod 53(1 —Exp(~t/7)), where ¢y and 7 are parameters.

The time derivative of the variance becomes according to (2.9)

Var(X;) = —2aVar(X;) + & (1 - Exp(~t/7)), to=0

Exp(2at) -1  Exp(-t(1/7-2a)) -1
= Var(X;) = Exp(-2at) Var(X;,) + &Exp(-2at) XP(ZZ ) +T Xl (1 f;a’r 2)) .

(2.11)

Say that we will formulate a continuous equation in time that corresponds to (2.2a)—(2.2¢c), to
read X () = f(X(t))+&(t) = fF(X(1)+¢(t), ¢(t) = dg/dt def &(t), where ¢(t) is an arbitrary noise
function. We let ¢(t) be deterministic (the randomness is then only in the initial values of &(t);
see Appendix E as an example). The deterministic approach generally gives that £(t) can be
integrated in the traditional Riemann sense. The Stratonovich integral occurs as the limit of
colored noise if the correlation time of the noise term approaches zero. A quite common and
different integral is the Ito integral for the uncorrelated situation and Gaussian noise. This
integral of ¢(f) cannot be integrated in the Riemann sense due to lack of bounded variation.
However, for additive noise the Stratonovich and Ito models give the same answer. To match
the noise in (2.2a)—(2.2c) we set that expectation is zero and that the noise is uncorrelated, to
read in the Stratonovich sense (indeed, also in the Ito sense since we will achieve the same
result for additive noise):

t
X(t) = f(X(1) +4(t) = X(t) = Xo + IO (F(X(#)) +&())dt,  (a),

t
E(X(t)) = E(X(0)) + fo E(f(X(¥))dt,E(X;) = E(f(X(t)), (b), (2.12)

mod , mod . ’
E@®) = 0,(c), EEML(t)) = o(t)s(t-t),(e),
where 6() is the Dirac delta function that accounts for the lack of correlation. This gives that

0

5 Var(X(1)) = %E(X(tf) - 2E(X(t))%E(X(t))

= 2E[X(t) (f(X(t)) +&(1))] - 2E(X(H)E(f(X(1)))

t t
=2E U S(u)é(t)du + I f(X(u))g(t)du] +2Cov(X(t), f(X(1)))
0 0 (2.13)

=2 f 5(t)6(u — t)du + 2E Ut f(X(u))dug(t)] +2Cov (X (1), f(X(t)))
0 0

t
=, +2Cov(X(t), f(X(t))) +2E [’[Of(X(u))dug(t)].
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Equation (2.13) is equal to (2.9) if ?.E[fé f(X(u))dug(t)] = 0, which we will find is correct if
f is a linear force. As another example, set that the continuous process in space of X; is in
fact an approximation to a discrete process in space. Assume as an example that X; = N; is
the number of cells that die randomly. We find that the drift term (first order term) of the
Fokker-Planck equation (2.8) is related to the diffusion term (second-order term) by g, = f2

mod

(see Appendix B). Apply the example of linear friction, thatis, f(x) = -ax. We then have
for the time continuous case that

X(b) = —aX(b) + (). (2.14)
Equation (2.14) can be solved as
X(t) = —aX(t) + ¢(t) = X(t)Exp(at) + aX (t)Exp(at) = Exp(at)é(t)

= d(X(t)Exp(at)) = dt(Exp(at)é(t)) = X(t)Exp(at) = X(0) + ft Exp(au)é(u)du
0

= X(t) = X(0)Exp(—at) + Exp(—at) JZ Exp(au)é(u)du, to=0.
(2.15)

This gives the covariance as

Cov[X(t), X (t)]
= E[(X(H) - E(X(t))) (X () = E(X(¥)))]

= E[<X(0)Exp(—at) — E[X(0)]Exp(-at) + Exp(-at) Jt Exp(au)@(u)du)
0
x <X(0)Exp(—at’) — E[X(0)]Exp(—at') + Exp(-at") ft Exp(av)g(v)dv>:|
0
= Exp(-at — at')Cov[X(0), X(0)]

+Exp(-at - at')E [X(O) It Exp(av)é(v)dv + X(0) It Exp(au)g(u)du]
0 0
t o
+Exp(-at - at')E I:f f Exp(au + av)é(u)é(v)du dv]
0Jo

= Exp(-at — at") Var[X(0)] + Exp(-at — at) ft It Exp(au + av)E(¢(u)é(v))du do.
0Jo
(2.16)

We have used that the covariance of the initial value X(0) and the noise is zero, to read
E(X(0)¢é(u)) = E(X(0))E(é(u)) = 0. The integral in (2.16), which is quite general, can be
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calculated explicitly for a time-dependent uncorrelated noise where E(&(t)¢(t)) = o (#)6(t -
t'), ¢ (t) = EA(t), to read
Cov [X(t), X(t')] — Exp(—at — at") Var[X(0)]

= & Exp(-at - at') fo JZ Exp(au + av)A(u)6(u — v)du dv

et (2.17)
= & Exp(-at - at') J‘o f_ Exp(2av)A(z + v)Exp(az)6(z)dz dv

tl
= & Exp(-at - at') f Exp(2av)A(v)dv, t>t.
0

We use our example A(f) ™ - Exp(~t/7) (we will compare this process with a correlated
process in the next sectlon) This gives from (2.17) when t > ¢

Cov [X(t), X(t')] = Exp(-at — at") Var[X(0)]
+& Exp(-at - at') ’[t Exp(2av) (1 - Exp(-v/7))dv
0

= Exp(—at — at") Var[X(0)]

Ex (Zat’)— _Ex (Qa-1/1)t) -1
+& Exp(-at - at)[ P £ 2a-1/1 7 (2.18)

hm Cov[X(t), X(¥)] = Var[X(0)] + & [t + T(Exp(-t'/7) - 1)],

lim Cov[X(0), X(¢)] = Exp(~at - ) Var[X(0)] + §Exp(-at - at) 571,

lim Cov [X(t), X(t)] = Var[X(0)] + &t, t>1.

T—0

The variance follows for t = #' (actually ¢ = # demands a more careful analysis, but it turns
out that setting f = #' in (2.18) is correct), to read

Var[X(t)] = Exp(—2at) Var[X(0)]

Exp(2at) -1 Exp(-t(1/7-2a)) -1
+ EExp(-2at) P oa T T—oam ,

liir})Var[X(t)] = Var[X(0)] + & (t +7(Exp(-t/7)) -1)),
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2
liir}) Var[X(t)] = Exp(-2at) Var[X(0)] + 5—?1 [1-Exp(-2at)],

lim Var[X(£)] = Var[X (0)] + &t

T—0

2
2lirglVar[X(t)] = Exp(—2at) Var[X(0)] + j—‘; [1 - Exp(-2at)].

(2.19)
The time derivative of the variance becomes
0
3% Var[X(t)] = —2aExp(-2at) Var[X(0)]
—Exp(-t/7)/T + 2aExp(-2at)
2 —
+¢& |Exp(—2at) + T T 2ar
—-Exp(-t 2atExp(-2at
= 2aVar[X(t)] + & [Exp(—Zat) D /) + 2a7Exp(-2a )] (2.20)
1-2ar
Exp(-t/7) — Exp(-2at)
2 f— —
+¢5|1 - Exp(-2at) + 2ar T —oar ]

= —2aVar[X(t)] + & [1 - Exp<—£>] = —2aVar[X(t)] + 6.

Thus (2.19) gives the same solution as in (2.20) since 2Cov(f(X¢), X;) = —2a Var(X;) for our
linear friction force. The expectation is given by E(X;) = E(Xo)e . For Gaussian processes
(correlated or uncorrelated) the variance is important since higher-order moments follow
from second-order moments (variance). By comparing with (2.13) and (2.20) we see that
2E [fé f(X(u))dug(t)] =0 for a linear deterministic force f. However, this can be found more
easily for a linear force by using (2.14) since

2F U f(X(u))dué(t)] = 2aE [j X(u)dué(t)]
0 0
=2E [It [X(O)Exp(—au)g(t) + Exp(-at) Jm Exp(av)g(v)g(t)dv] du]
0 0

=2 r Exp(—au) Jm Exp(av)E[¢(v)¢(t)]dv du
0

0

=2 J‘t Exp(—au) J‘u Exp(av)6,(v)6(v — t)dvdu
0 0

t u—t
= 2j Exp(—au) f Exp(av)os (t + z)6(z)dzdu = 0.
0 —t

(2.21)
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We further find from (2.18) for the special case that A = 1 that
! é(z) ! !
Cov[X(t),X(t)] = ZEXp(—a(t—t)), t>1/a, t' > 1/a. (2.22)

Thus in this special case X (t) is for large times exponentially correlated.
We can write (2.8) as

p(trx) = _D(P(t/x)v(t/x))/

1 D(g(t,x)pt,x)) 1 D?*(gs(tx)p(t,x)) (2.23)
T2 phx 3 ptw)

def

o(t,x) = f(x

where v(t, x) is a current velocity, which can be arbitrary in a general theory. Generally, we
can let the increment depend on the probability density at time ¢, to read

Xt+h = Xt + f(Xt)h + d*g(t/ h/ Xt/ p(t/ Xt))/ (2 24)
d*s(t,h, Xy, p(t,X;)) = Randomy [Distribution [0, do» (t, h, Xy, p(t, X1))]]- '

Realizations are easily generated by a computer. All realizations have to be calculated in
parallel such that the density can be “counted up” at each time t before a new time step is
calculated. This process is not Markovian.

3. First-Order Stochastic Processes with Exponential Correlation

In Section 2 we analyzed first order uncorrelated processes with additive noise. The Fokker-
Plank equation was applicable for the uncorrelated processes. It turns out that in some
cases uncorrelated processes with additive noise can in fact mimic correlated processes.
Assume as an example that the random term is exponentially correlated, with correlation

E((£)é)) mod (&3/(27))Exp(-|t — ¥'|/7), where T is a correlation time parameter. In the
limit when 7 approaches zero we achieve uncorrelated noise, to read Lim,_,o¢3 Exp(—|t -
t/7)/(2t) = gé(t — t'). Notice that an equation for ¢(f) that in fact will generate this
exponentially correlated noise for large times (see (2.16)) follows simply by a scaling of the
parameters in (2.14), to read

s()

i) ===+ g (), 31

where ¢ (t) is white noise with E(g (t)g (') = 72836 (t — ).
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The last line in (2.16) is general. For exponentially correlated noise with linear friction
we achieve

Cov[X(t), X(t)] - Exp(-a(t+1")) Var(Xo)

¢t
=Exp(-a(t+1)) f J Exp(a(u +v))E(¢(u)é(v))dudo

=Exp(-a(t+1)) gof JExp(a(u+v))E< - Ul)dudv

=Exp(-a(t+t)) % J‘o J:Ht Exp(2av)Exp (—% + az) dzdv
=Exp(—a(t+ t’))% [J‘: Exp(2av) <J1 Exp <z<% + a>> dz
+ J:Ht Exp <—z (% - a> ) dz> dv]

1-Exp(-v(1/7 + a))
1/Tt+a

Exp((v-t)(1/7-a))-1
B 1/t-a >dv]

21 o
=Exp(-a(t+1")) j—g_ [fo Exp(2av) <

Exp(2at’) Exp(2at') -1  Exp(-t'(1/7 - a))
=Exp(- a(t+t)) <2a(1/7‘+a) " 2a(1/t - a) " 1/t+a)(1/T-a)

—1 Exp(t(1/7+a)-t(1/7 - a)) + Exp(-t(1/T — a)) fap
1/T+a)(l/T-a) > g

B , Exp(2at’) -1 Exp(-¥(1/t-a)) -1

_Exp(_a(tth))éO(Za(l+a7‘)(1—aT) * 2(1/7 +a)(1 - Ta)

—Exp(t’(l/7‘+a) -t(1/7—-a)) + Exp(-t(1/7 - a))) s
2(1/t+a)(1-Ta) '
(3.2)

Equation (3.2) then implies

;iix})Cov[X(t),X(t)] Var[X(O)]+§0<t+ (Exp( ) 1- Exp( >+Exp<—£>>),
2
_0

lim Cov[X(t), X ()] = Exp(-a(t+1t')) Var[X(0)] + : (Exp( a(t-t)) —Exp(-a(t+t))),

;iir}) Cov[X(t), X (t)] = Var[X(0)] + &t
T—0

(3.3)
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The variance follows when t = #, to read

Var[X(t)] = Exp(—2at) Var (X))

+ Exp(~2at)é2 < Exp(2at) - 1 .\ 2Exp(—t(1/T—a))—1—Exp(2at)>/

2a(l+art)(1 - ar) T 2(1+ar)(1-ar)
(3.4a)
Llli?o Var[X(t)] = Var(Xo) + & <t + T(Exp (—%) - 1)) (3.4b)
2

liir}) Var[X(t)] = Exp(—2at) Var(Xo) + ;;—(; (1-Exp(-2at)), (3.4¢)

lim Var[X (#)] = Var(Xo) + &t (3.4d)
T—0

2
alTiLnl Var[X(t)] = Exp(—2at) Var(Xo) + % (1 - Exp(-2at)), (3.4e)

lim Var[X (#)] = Var(Xo) + & (t + T<1 - ; + “/2—7)2 - 1>> = Var(Xo) + gg% +---. (3.4f)

t/T<1

Equations (3.4d) and (3.4e) show that when t > 7, we achieve the uncorrelated noise
with Hurst exponent one half, while when ¢t « 7, we achieve a fractional noise with
Hurst exponent one. (For the concept of fractional Brownian motion see Peitgen et al. [30,
section 9.5, page 491]. See also M. Rypdal and K. Rypdal [31, 32] for fractional Brownian
motion models descriptive for avalanching systems.) We can compare the two different
stochastic processes, the one with linear friction and uncorrelated time-dependent noise
where E(G()¢(F)) = EAMBE( — ) = 62()6(t - t'), and the one with linear friction
and exponentially correlated noise of the type E(&(t) ¢(t')) = §§ /(2T)Exp(—|t — #'|/7). The
covariances and variances are given by the solution (2.18)-(2.19) and (3.2)-(3.4a), (3.4b)
(3.4c), (3.4d), (3.4e), and (3.4f), respectively. In the limit when a approaches zero, the
variances become equal, but the covariances remain unequal, to read

Var[X(t)] = Var[X(0)]

+ §(2) (t + T(Exp <—;> - 1>>, a = 0 : uncorrelated and correlated,

Cov[X(t), X(t')] = Var[X(0)] + & | + T<Exp<—t;l) - 1>] , a=0:uncorrelated,

Cov[X(t), X(t')] = Var[X(0)]

+& (t' + g(Exp<—t;> -1- Exp(t%t>
+Exp<—£)>>, a =0 correlated.

(3.5)
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Indeed, the variances can be calculated easily when a = 0, to read without correlation
t
X(0) =X+ [ f0du,
0

Var[X(t)] = Exp[<X(0) + L &(u)du - E[X(O)]> <X(O) + L ¢(v)do - E[X(O)]>]

t
= Var[X(0)] + E <H Ew)é(u)du dv)
0

= Var[X(0)] + §§jjt <1 - Exp (—;))6(11 —v)dudv 56)

= Var[X(0)] +j f 1 Exp Z))(‘i(z)dzdv

= Var[X(0)] + &) fo(l - Em(—%))d?f
= Var[X(0)] + & <t + T(EXp(—;) - 1>),
%Var[X(t)] =& <1 - EXP(‘;)) =62(t).

With exponential correlation we achieve that

Var[X(#)] — Var[X(0)] = <II ¢(u)é(u)du dv)

& ([ mp (Vo & [ [ pep(-2
=1 [ [ Exp(Z)az+ j;”Exp<_§)dz+]dv
- %f [2 - Exp(-2) —Exp(—¥>]dv
& 2t+T<Exp<—£> —1) —T(l —Exp<—£>>]
= §g<t+ T(Exp<—£> - 1>>

We can calculate higher-order moments for the two stochastic processes. For the special
case that the time-dependent uncorrelated process is Gaussian, a Fokker-Plank equation
follows as shown in Section 2 with ¢, = cjg(l — Exp(~t/7)). Heinrichs [16] has proved that
a Fokker-Planck equation also follows for the probability density when assuming Gaussian
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2\
= 15
S 1R e B
N
> 05 '
0
1 2 3 4 5 6 7
t
~~~~~~ E@(D§(t) = 0
--= E@®)ét)) =6t -t)
-=- EG(Dé(t)) = & (1 —Exp(~t/1))6(t - 1)
— E@E(1)é(t) =&/ Qr)Exp(-It - £'|/T)

Figure 1: The variances as a function of time assuming linear friction. Var(X(0)) = 2,a = 1, = 1.5,7 =
0.8,t) = 0.

exponentially correlated noise (called Ornstein-Uhlenbeck noise, see Appendix A). Thus for
a = 0, the probability density of the time-dependent Gaussian uncorrelated noise is equal to
probability density of the exponentially correlated Gaussian noise. Gaussian processes give
that higher-order moments follow from the second-order moment. Thus we should expect
equality of two Gaussian processes, even a correlated and uncorrelated one, if the variances
are equal.

With friction we can also compare the variances, to read

Var[X(t)] = Exp(—2at) Var[X(0)]

s [1 - Exp(—2at) . 7_Exp(—t‘/T) — Exp(-2at)
| 2a 1-2ar

= Exp(-2at) Var[X(0)]

(uncorrelated),

[ 1-2ar - Exp(-2at) (1 - 2atExp(~t/7(1 - 2ar)))
2
+¢&5 L 221~ 2ar) (uncorrelated),
(3.8a)
2
tlim Var[X(#)] = é—i (uncorrelated), (3.8b)

Var[X(t)] = Exp(-2at) Var[X(0)]
2 1 - Exp(-2at)
% <2a(1 +ar)(1-ar) (3.8¢)

2Exp(-t/7(1 + at)) — 1 — Exp(-2at)
T 2(1+ar)(1 - ar)

> (correlated),

&

hm Var[X(t)] m

(correlated). (3.8d)
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We observe that the variances are different. Thus the two stochastic processes couple
differently to the linear friction term. Assume that ar <« 1. The variance then becomes

Var[X(t)] = Exp(—2at) Var[X(0)]

1 - Exp(-2at) + 2atExp(-t/T)
2a

+ ég [ ], at < 1 : uncorrelated,
(3.9)

Var[X(t)] = Exp(—2at) Var[X(0)]

) ( 1 - Exp(—2at) + 2atExp(-t/T)
+¢&5

), at < 1 : correlated.
2a

In this limit the variances are not different. Thus pure exponentially time-correlated noise
can be mimicked by uncorrelated noise. However, the noise couples differently to a linear
deterministic friction force.

Figure 1 shows the Liouville variance (E(¢(#)¢é(#)) = 0), the variance assuming
E(&()¢(t)) = &36(t - t'), the variance assuming E(&(£)¢()) = ¢3(1 — Exp(~t/7))6(t — '), and
the variance assuming correlation E(¢(£)¢(t)) = (§(2) /(27))Exp(-|t - ¥'|/T).

We have so far only analyzed first order systems with additive noise. Consider now
the continuous time approach with nonlinear noise, to read

« LdX(t) t
X(t) =—aX(t)+ X(t)¢({t) = | —== =-at+ | é(u)du + const,,
o X(t) 0 (3.10)
E@GDS(F)) = 0:6(t 1),
Using the Stratonovich integral ordinary calculus applies, the solution becomes

t

X(t) = X(0)Exp <—at + J g(u)du> : Stratonovich. (3.11)
0

Assuming Gaussian noise, the expectation becomes

t
E[X(t)] = E[X(0)]Exp(—at)E [Exp I:-[o g(u)du]:l
t t
= E[X(0)]Exp(—at)E [1 + L (u)du + %ffog(u)g(v)du dou

+%fff;§(u)§(v)§(w)du dvdw + - ]
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10
= E[X(0)]Exp(-at) [1 + EJ‘J‘OE[g(u)g(U)]du dvu

+%J f I;E[é(u)i(v)é(w)]du dodw + - ]

= E[X(0)]Exp(-at + %)

! ! n n m / n nm m aussian 2 ! n
on:E<”H0g(t)g(t YE(E)E(E") - e de’dr" dr" - - - > O T (2n1:1); (02)".

n times

(3.12)

Here we have used the algebra in (A.5)-(A.7). However, it has in the literature been
considered nice to have a process that fulfills the relation (0/0t)E(X;) = E(f(X,t)), even
for multiplicative noise. It turns out that this can be archived if the time derivative path is
abandoned (see Appendix C for the Ito calculus).

We can mimic Gaussian-correlated noise by Gaussian-uncorrelated noise when using
the Stratonovich integral for multiplicative noise also. To achieve this we must according to
(3.11) have that

ff;E[g(u)g(v)]du dv = If;dz(u)S(u —-v)dudv = %J‘J‘;Exp<—@>du dvu (3.13)

However, we have proven this already in (3.6) and (3.7). More generally assume that
the correlated noise is chosen to be E[¢(u)é¢(v)] = Cuc(u,v,7). A solution is &,(¢,T) =
2 fé Cuc(u, t,7)du, which is fulfilled for the two processes we examine in this article. When
using the Ito integral in (3.10), the solution is different. Appendix C shows that the solution
is E[X(t)] = E[X(0)]Exp(—at). This solution for the uncorrelated case cannot mimic the
correlated case.

4. Second-Order Stochastic Processes

Unfortunately bidimensional first order processes or second-order stochastic processes are
more difficult to address than one dimensional first order processes. This is so because the
position at a given time depends strongly on the velocity. Removing this dependence is tricky.
We construct a stochastic interpretation of the bidimensional equation set with additive noise,
to read as the Ito stochastic equation

Xeen = Xp + fX(Xt/ Yi)h + d*gx, Yiun= Yi+ fY(Xt/ Yi)h+d*gy,

d*¢x = Randomy[Distribution[0, dozx]], d*¢y = Randomy [Distribution[0, doay]],
(4.1)
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where the expectations are zero and do,x and doyy are the variances. We achieve by Taylor
expansion of an arbitrary function H(x, y) that

E(H([Xpen, Yen]) = E(H[X; + fxh+d*¢x, Yi + frh +d*cy])
= E{H[X, ;] + (DyH[X,, Yi]) (fxh + d6x) + (D2H[X,, Yil) (frh + d’gy)

¥ %(D%H[Xt, Yil) [H2 £ + 2hfxd'ox + d6x’]

1

+ 5 (DPHIX V) [ £ + 2hfrd'gy + d'6y?]

+(D1D2H[Xt/ Yt]) [h2fxfy + hfxd*gy + hfyd*gx + d*gxd*gy] + .. }
(4.2)

For time-uncorrelated Gaussian random terms with no cross correlation only the terms with
d*gy?, d*g,? contribute to order h. Thus after some simple algebra analogous to the algebra in
Section 2 we achieve the well-known Fokker-Planck equation:

p(t,x,y) =-Di(p(t,x,v) fx(x,v)) = Da(p(t, x,y) fr(x,¥))
+ (%)Dlz(P(tr x,y)x(t,x,y)) + <%>D22(p(t,x,y)gzy(t,x,y)), (4.3)

ox = ox(t,x,y), Gy = Qv (L, x,y).

In physics or engineering applications second-order differential equations are often used as
models. For physical systems where we use f = ma, we set the mass of the object equal to
m = 1. The second-order differential equation can be written as bidimensional first order
equations, to read

X; = f(Xt/Xt) =X =Y, Y, = f(Xe, Y1), (4.4)
Xun = Xt +Yih, Y = Yi + f(Xe, Yi)h + d*gy.

The Langevin model for the Ornstein-Uhlenbeck (1930) process with uncorrelated Gaussian
random force is a special case of (4.1)—(4.3) when assuming a random term in the velocity
(Yy) equation only (due to a stochastic force), that is, {x = 0,gx = 0. As a well-known
example, assume that f(X;,Y;) = -V'(X;, ) —€Y4, @y (X1, Vi) = 2¢kT in the Ornstein-Uhlenbeck
(1930) process. Thus we have a random force, a conservative nonrandom force, and a
linear nonrandom friction force. k is the Boltzmann constant and T is the temperature. The
Fokker-Planck equation, corresponding to an uncorrelated Gaussian random force, becomes
according to (4.4)

p(tx,y) =-Di(p(t,x,y)y) - Dap(t,x,y) (-V'(x) — ey)) + ekTD* (p(t, x,y)).  (45)
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It is easily verified, and well known, that a steady-state solution is given by the Boltzmann
distribution, to read

2
p(t,x,y) = cgExp (—;{—T - Vk(;f)>, (4.6)

where cp is a constant and T is the temperature. Thus the Boltzmann distribution is achieved
as a steady-state solution when assuming linear friction. Notice that when ¢ = 0, every
solution of the type p(t,x,y) = p(H) is a steady-state solution. H is now the Hamiltonian, to
read H = (1/2)y? + V(x). This shows the importance of linear friction to achieve the correct
steady-state solution for the uncorrelated Gaussian process.

Consider now the second-order process in (4.1) with only a random force. We can
find the analogous continuous time solution equation for the position, to read according to
Stratonovich

t sv
X)) =& (t) = X(t) = X(0) + Y (0)t + J;) fo ¢y (u)dudvo. 4.7)

The question is now whether uncorrelated noise can mimic correlated noise for the position,
and not only for the velocity. Assume that we first calculate the variance by only applying an
uncorrelated force of our now familiar type E(éy (£)éy(t')) = ¢3(1 — Exp(~t/7))6(t — t'). This
gives that

t t Ao
XM =Y(t) =Yy + fo &r(u)du,  X(t) = X(0) + Y (0)t + fo fo &y (w)du dv,
%E[X(t)z] = 2E[X(t)X(1)]
t fv t
= 2F [<X(O) +Y(0)t + fojogy(u)du dv> x <Y(O) + fogy(u')du’>],

%E[X(t)z] —2E[(X(0) + Y(0)£)Y(0)]

=2 JZ J: JZ E(&y(u)éy(v'))du' dudo

=28 I(: J: f; <1 - Exp(—g>>6(u —u')du'dudv

=222 f; JO fu_t<1 - Exp(-§>)6(z)dz dudv

=242 I; j:(l - Exp(—%))du dv

=& JZ <ZU + 27Exp <—§) - 2T> dv

(4.8)

=&

t
£+ 272 — 2T2EXp<—;> - 2Tt] .
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However, for the correlated process with E(¢y (#)&y (t)) = §g /(2T)Exp(—|t — #'|/T), we achieve
that

%E[X(t)z] —2E[(X(0) + Y(0)£)Y(0)]

-2 [ e (S awtuto=L [ [1f (-2 dzuar
g f f“ Bxp(2)dz + f:EXP(_g)dz+]dzdudv

=& [ [ e (- £) - Bxp(-2)] o

_e f [20 - 75 (-2 )xp(2) # 7Bxp (-1 ) + rxp(-2) - 7] a0

- [ rienp (L) -]

(4.9)

Thus we find that the variances of the position are unequal since Var[X(t)] = E(X % -
2E(X(1)E(X (1) = E(X()*) = 2E(X(0) + Y(0)t)E(Y(0)). We have that

Var[X(t)] = E[X(t) ] 2E(X(£))E(X(H))

= 2E[(X(0) + Y(0)5)Y(0)] — 2E(X(0) + Y (0)) E(Y (0)) + ¢2 [tz + TtExp<—£> - Tt]

& when t > T,

= Cov((X(0) +Y(0)t),Y(0)) + 53 < 4

2P — ... when t <« T.
2T 3T >

(4.10)

Thus for t > 7 we find a Brownian motion with Hurst exponent 1.5, while for t < T we
find the Brownian motion with Hurst exponent 2. This is in agreement with the asymptotic
solution found by Heinrichs [16].
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The equation for the joint distribution is more complicated to derive. We achieve by
Taylor expansion with only a random force that

E(H[Xh, Yisn])
= E(H[X; + Y;h,Y; + d*gy])

1
= E{H[Xt, Yi] + (D1H[X:, Yi])Yih + (D2 H[ X}, Yi])d gy + E<D12H[Xt, Yt]>h2Yt2

1
5 (DzzH[Xt, Yt]>d*€Y2 + (DiDH[X:, Yi)hY,d gy + - -+ }
4.11)

We further achieve from (4.11)

E(HIX, Yi) = E{ HIX, Y] + (D:HIX, YD Yeh + 5 (D2HIX, Y] e + O(i2) |,

E(d*gy2> = &y (t)dt = §§<1 —Exp <—£>)dt.
(4.12)

(D1DyH[ X}, Y:])hYidgy is of order k2. This gives, as it should, the Fokker-Planck equation
without mixed terms, to read

pltxy) =-Dalp(tx ) + (3 )2 (B10p (% )A0 ©1-Bxp(-1).  (413)

However, Heinrichs [16] found for a deterministic noise force only, that is exponentially
correlated and Gaussian, that

SExp(-|t-#|/7)

Xt =¢&t),  ECMF)) = L

p(t,x,y) =-Diptxy)y) - 50102860t )) + (5 ) D2 (EA D%, 1) ),

At £ —Exp<-§), Bt & <t+T>Exp(_§> .,
(4.14)

and when the correlation time 7 approaches zero, we achieve the traditional Fokker-Planck
equation corresponding to the Gaussian uncorrelated random force. ¢ =0 gives the Liouville
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equation. The D1 D, term is zero for T = 0 as it should be. Say that we calculate the expectation
(0/0t)E(X Y). This gives when using (4.14) that

SEXOYO = [xpp(t,x,y)dxdy

= fxy [—D1 (p(t,x,y)y) - %DlDZ (ééﬁ(t)f’(t/ er))
+<%>Dzz< 2\ (Dp(t, x,y)>]dx dy (4.15)

- [ ot xyyeaxdy - 3800 = E[vw?] - S0
- E[Y(t)z] - %((t + T)Exp<—£> - T>.

We further have for our time-dependent uncorrelated noise that (0/0t)E[X;Y;]= E [Y(5)?]
according to (4.13), or alternatively if we use (47) with E(éy(u)éy(H) = &@1 -
Exp(-u/7))6(u—t), to read

0

SEXMY(®)] = E[Y(t)2] + E[X(B)X(D)]

- E[Y(t)z] + E[cjy(t) <X0 + Yot + ﬂ j: &y (u)du dv>]
.y [Y(t)z] + f ; f: E(&y (w)éy (t))du do (4.16)
_ E[Y(t)2] + f; f: &(1- Exp<—§>>6(u — Hdudo

- E[v®?] + ﬂ J'vtt g3<1 - Exp<—zT+t>>6(z)dz dv = E[Y (/).

This is in disagreement with (4.15). This shows that our time-dependent uncorrelated noise
cannot mimic the correlated noise for position. To check this further we have for correlated
noise that

t v
S EIX@Y o) = E[rey] + f [ Pt maudo

= Y(t)] ff ( >dudv
Y(t)] gofjvt < >dzdv
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efrer] 2| e (2)ae] a0
e+ § [e(-5) e (3) - e
ORI O ORS
- E[vey] -2

0 (T + t)Exp<—£> - T].

(4.17)

This is in agreement with (4.15). However, it is easily observed from (4.1) that (4.14) follows
if

Xien = X¢ + Yih + dgx, Yien =Y + fY(Xtr Y)h+d*gy, fY(XtrYt) =0,
d*¢x = Randomy[Distribution[0, dozx]], d*¢y = Randomy [Distribution[0, dozy]],

E(d*gx) = E(d*¢y) =0,

E(d'ex’) =0,  E(d'¢y’) =M1,  E(dexd'sy) =),

A(t) =1—Exp<—£>, p(t) = (t+T)EXp<—£> —-T.
(4.18)

We thus find that noise must be added both to the position and to the velocity in
the Ito stochastic differential equation to mimic the correlated noise force. In addition
noise in velocity and position must be cross correlated. The time continuous uncorrelated
Stratonovich version (but with cross correlation in velocity and position) that will mimic the
solution in (4.14) is accordingly

X(t) =Y(t) +¢x(b), Y(t) =&y (1),
E(¢x(t)) = E(4r(t)) =0,

E(Gy(héy(t)) =&A)6(t—1), E(éx(héx(f)) =0, E(éx(téy(t)) =-&pH6(t—1).
(4.19)
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Agreement can also be shown by studying the variance directly, to read

t t pv t
Y(t) = Yo + fo &y(wdu,  X(t) = X(0)+Y()t+ fo JO &y (u)du do + fo ix(uw)du,

('?t [X(t) ] 2E[X(HX(H)]
_ 2E[<X(O) + Y(O)t+ft fv by (w)du dv+ft ix (u)du) x <Y(0) + jt §y(u)du>],
070 0 0
2 E[X7] - E(X© + Y)Y (0))

) ; t
= é% htz +21% - 2T2EXP (-;) - 2’”_ +E <IIO§X (u)éy (u')du d”/>

= 58 2+ 272 - ZTZExp<
=&+ 277 - ZTZEXP<

- <T2 - Exp(—%)’r(t +7) - 12 (Exp(—%) - 1> - Tt>
=& [tz—Tt+TtEXp<—£>].

2Ti'- Ir &Pw)s(u—u')dudu
] 0

r 1 t pt-u
=& |7 + 277 - 27%Exp( - 27t I f &P(z+u)6(z)dz du
L E 0/ -u

g

=¢ Pt2 +27% - 27%Exp( - 2Ti'- -& It [vExp <—§> + TExp <_§> - T] dov
| 0

g

ZTt

Al

7
)-
)-
)-

(4.20)

This agrees with the solution in (4.9). More generally, according to method 2 discussed in
the introduction, we can introduce noise simply by adding terms (more or less as hoc) to the
Liouville equation. Expanding on the results of (4.18) with a random and nonrandom force,
consider the equation where the force is both a noise term plus a deterministic force, to follow
from (4.18) when fy (X, Y) #0

p(t.x,y) =-Di(p(t,x,y)y) - Da(p(t,x, ¥) fr(x,v))
. (4.21)
- 3DDa(8p0p(t 3 )) + (5 ) D2 (E10p(t ).
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Equation (4.21) gives that

0
SEXOY®] = [ xyp(t,x,y)dx dy
=[xy - Dot y)w) = Da(p(t 3, 0) r(x,)
—%DlDz (BBWp(txy)) + (%)Dzz (Brmp(t, x,y))]dx dy
= fp(t, x,y)y dxdy + fp(t/ x,y)x fr (x,y)dxdy - %ééﬂ(t)

= E[Y (7] + E[X@) (X0, YO)] - 283600
(4.22)

A question is now whether the equation set (4.19) (or (4.21)) could mimic X(t) =
fy(X(8), Y (£)) +&y(t), where E(¢(t)é(t)) = (§(2)/ (2T)Exp(-|t-t'|/7). It will not. As our example
we use the linear friction force, fy = —aY. The Stratonovich solution of (4.19) is

Y(t) = —aY(t) + &y (t) = Y(t) = Y(0)Exp(-at) + Exp(—at) ft Exp(au)é(u)du, to=0,
0
X(t) =Y(t) +&x(t)

t Ao t
= X(t) = X(0) - %Y(O) (Exp(-at) - 1) + —[0 4[0 Exp(au — av)¢y(u)dudo + fo éx (u)du.
(4.23)

The solution for the variance of Y'(t) is equivalent to (3.8a) substituting X — Y, which
assumes time-dependent uncorrelated noise. The solution is not equal to the correlated
solution in (3.8¢c). Thus (4.19) (or (4.21)) and X(t) = fy(X(t), Y (t)) + &y (t) in general model
different physical realities, even though the models are the same when fy is set to zero. Also
both models are equal in the limit where the correlation time approaches zero.

By integrating with respect to the position and velocity, respectively, we achieve the
equation for the marginal density of velocity and position, to read

pr(t9) = -Dalpr(ty)or () + (5 ) D2 (Eattpr(t.v)),

Px(f, .X') = _Dl (PX (t/ X)Ux(t, x))/
. . (4.24)
px(t,x) & fp(t, xy)dy,  pr(ty) € fp(t, x,y)dx,
act [P(t,%,y) fr(xy)
p(ty)

act [ p(t, X, y)y dy

t,
or(ty px (b, x)

, vx(t, x
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The same equations apply for the Liouville process. We can find an explicit relation for

vx(t, x) :

[p(t,x,y)ydy _ 6:()Di(px(t x))
px(t, x) 2px(t, x)

fp(t,x,y)y dy = 20D (ZPX(t'x)), oo(t) = §3t<t - T(l - EXP<—£>>>-

px(t, x) =-D; (px(t,x)vx(t, X)), Ux(t, X) = ’
(4.25)

5. Conclusion

This article studies the construction of stochastic theories from deterministic theories based
on ordinary differential equations. We incorporate randomness into deterministic theories
and compare analytically and numerically some well-known stochastic theories: the Liouville
process, the Ornstein-Uhlenbeck process, and a process that is Gaussian and exponentially
correlated (Ornstein-Uhlenbeck noise). Different methods of achieving the marginal densities
are discussed and we find an equation for the marginal density of velocity and position for
a second-order process driven by an exponentially correlated Gaussian random force. We
show that in some situations a noise process with exponential correlation can be mimicked
by time-dependent uncorrelated noise. We show that a second-order system driven by an
exponential time-correlated noise force can be mimicked by adding time-uncorrelated noise
both to the position and to the velocity. For such a situation the traditional concept of force
loses its meaning.

Appendices

A. Gaussian Exponentially Correlated Noise and
the Fokker Planck Equation

Following Heinrichs [16], we write without drift

X0 " 0 Eeo) ¥ [ g wem)dn ™o

Noise term Marginal
distribution

f§<t>§<t') Prnae (62, E(1))dEBAL(E), (A1)
——

Correlation : E(&(£)¢(t)) def

Joint
distribution

2 oy
EGo 8) " e (-12H),

where E() is the expectation. The correlation time is 7. We observe that Lim,_,o Exp(-|t -
t'|/T) = 6(t — t'). In the limit of zero correlation time we achieve the uncorrelated noise since
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the Fourier transform (called spectrum) of the delta function is a constant function (called
flat). Integrating (A.1) gives

t
X(t) = fo é(t)adt'. (A2)

The expectation and variance become

E[X(8)] = <J’ g(t)dt> fE(g(t'))dt':o,

Var[X ()] = E[X(9’] = E<jf;§(t')§(t”)dt'dt”> = H;E(g(t')g(t"))dt'dt" (A3)

(a5 1-o(1-9()

This gives that

Var[X ()] = <H MG dt”> =5 (éé <f - T<1 - EXP("%))))

(A4)
-4(1-ea(-2))
Or alternatively
Var[X()] = SE(X() = 2E(X (X (1)) = 2E(X(DE(1)
t t
— ! d ! — ! d !
2E<f0§(t) té(t)> ZLE(é(t )é(t))dt (A5)

(o) -5 e0(1))

Now, by assuming a Gaussian distribution all odd moments become zero. The even moments
are given by

O def E(X(t)2"> Gaussian (2211) (X( ) >n (22nn)' o

in'[§0<t T<1 Exp<_£>>>]", n=1,23..., (A6)

Gaussian (27’1) !

it (402)" ”f Jé(f)é(f”)é(t”’)é(t””) -dtar’ar" " - .

n times

dO'z-,l
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The characteristic function for the density px (¢, x) of X(t) becomes

3
o(t, k) fExp(ikx)pX(t,x)dx - f<1 T (kx) + (kx) + % . >px(t,x)dx
:1+5k02+ak04+ak06+"' (A7)
2 4 6 kZO.
_ 2 2 2 2
=1+ k oy + ﬁ(k 0'2) + == 231 (k 0'2) +.0= Exp<—T>

which implies

px(t,x) = —fExp( ikx)0(t, k)dk = _IEXP( lkx)Exp< k202>dk,

kO'z

pX(t x) = ——f Exp(- 1kx)Exp<——>dk (A.8)

272
px(t,x) = —jExp( 1kx)Exp< k202> <%o“z> = %o"zD2pX(t,x).
Thus we find that

2 .
px(t,x) = g_0<1 Exp(—£>)D2pX(t,x):%szx(t,x). (A.9)

Hence with correlation time 7 we achieve a Fokker-Planck or forward Kolmogorov equation
[29] with an explicit time variation in the diffusion coefficient. A solution is

2 1/2 2
px(t,x) = —IExp( 1kx)Exp< K 02>dk = (ﬁz(t)) Exp<—%(t)>. (A.10)

B. A Discrete Markov Process

We apply a specific Markov process in continuous time and discrete space. Fixing attention
to a cell, we define S;;.p, (stochastically varying) as a number k indicating whether this cell
does not die (j = 0) or dies (j = 1) during the time interval from ¢ to f + h. It is reasonable to
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assume that the conditional point probabilities that this cell does not die, or dies, between ¢
and t + h are

p(Steen = 0/Ny = n) mod g (M)h + O<h2>,
(B.1)
p(Siien = 1/Ny = n) mod (M)h + O<h2) when n >0,

where N; = n is given at time t, f(n) is an arbitrary function, and || f (n)|| means the absolute
value. Equation (B.2) applies to each cell (i.e., all cells are “alike”). This gives a recurrence
relation:

mod R . . h” f(Nt))”
Niyn = N;—-Random |Bernoulli Distribution —~ || (B.2)
t

The conditional point probability is

p(Niwn = n—i/Ny = n) "2 (n’i i);o(StM = 0/N: = )" % p(Spen = 1/N; = ) + O(1?)

() (- (M) (1))

+O<h2>, n>0, n—i>0

(B.3)
and is binomial. i < 0 implies p(N¢,, = n —i/N; = n) = 0. Equation (B.3) implies
(O, when i <0,
1-||f(m)||h+O(h*), when i=0,
P(Nun=n—-i/Ny=n) = 1 (B.4)
|f()||h+O(K?), wheni=1,
\O(hz), when i>1,
where applying the law of total probability gives
p(Niwn =) = 3 [p(Ni = i) x p(Niap = n/Ny = )] + o(h2)
i=0
(B.5)

=p(Ne=m)(1-|f[[R)

+p(Ny=n+1)||f(n+1)||h+ O<h2>.
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Rearranging and taking the limit as & tends to zero yields

p(N; =n) = [-p(N; = n)|| f(n)|| + p(Nt =n+1)|| f(n+1)
p(Ny=n)=0, n<Q0.

], n>0,
(B.6)

Proceeding with this Markov process, the right-hand side in (B.6) can be approximated as a
continuous partial differential equation. Taylor expansion up to order 2 gives

p(n+ An) = p(n) + AnDp(n) + (%>An2D2p(n) +eee (B.7)

For large n, An = 1is a good approximation to the space step length, where A is an arbitrarily
small real increment without denomination. Inserting into (B.6) gives

pttm) ==D( )l m) + (5 ) D*(LF ) ot ). (B3)

Assuming p(N; = n)=0 for n > nma, Where nm.x is any arbitrary positive integer, and
inserting (B.6) into the definition of EM(N) gives

EM(N,) = inp(Nt =n) = ian[—np(Nt =n)+(n+1)p(Ny=n+1)] =-aEM(N;). (B.9)
n=0 n=0

Applying as an example the special initial condition

1, ifn=ny>0,
p(Ni, =n) = (B.10)
0, otherwise,

the solution is

n0>e‘“”t(1 - e‘“t)("o_"), when 0 < n < ny,

EM(Ny) = Y np(Ny=n), p(Ni=n) = <"
n=0
0, when n > ng.

(B.11)
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C. Ito Calculus for Multiplicative Noise

%7

We do not in this section use the “*” to separate the Stratonovich from the Ito interpretation.
Say that we have two solutions of the differential equation as

X(5) " F(X(0) + x(6 X)), (C.la)

t t

f(u, X(u))du +f x(u, X(u))¢(u)du (Str.) (Stratonovich), (C.1b)
0

X(t) = X(0) +I

0

t t
X(t) = X(0) + Jo f(u, X(u))du + IO x(u, X(u))¢(u)du (Ito) (Ito). (C.10)

One must decide whether the Langevin equation (C.1a) should be solved by Ito or by
Stratonovich integrals. Different numerical schemes for numerical solutions of stochastic
differential equations (i.e., Langevin models) driven by Gaussian white noise do not in
general give the same solution. It can be shown that the Euler scheme is generally consistent
with the Ito formulation since during trapezoid integration the leftmost points are used for
the intervals that are summed during integration (thus not looking into the future!).

We have the following numerical scheme in the Ito formulation (C.1c):

dX; € X - X0 " F(,X0)h+ y (8, X)dg(t, 1, Xe),  dg = édt,

dg(t, h, X;) - Randomy [Distribution[0, do, (t, h, X;)]], (C2)

mod mod

E(dg) =" 0,  E(H(X,t)dg(t,h,X)h) =" 0,

where Distribution is a distribution of expectation zero and variance dos(t, h, X;). E()
means expectation. H(x,t) is any arbitrary function. The Fokker-Planck equation and the
expectation according to (C.2) become (when assuming Gaussian noise or even multifractals)

p(t,x) = -D(p(t,x)(f(t,x) ) + %D2<p(t,x)x(t ,x)ZO'Q(t,x)> +oee,
E(Xy) = Ip(t, x)x dx (C.3)

= ”—D(p(t,x)f(t,x)) + %D2<p(t, x) x(t, x)%0s(, x)> + ~~]xdx = E(f(t, Xy)).

When f = —a x, y = x,62 = 62(t), we find that E(X;) = —aE(X;).



32 Advances in Mathematical Physics

Say instead that (C.1a) is interpreted according to Stratonovich (C.1b). It can be shown

that an Ito formulation exists which gives the same answer as the Stratonovich formulation,
to read

X(0) " f(,X(0) + (4, X)),
t t
X(t) = X(0) + fo fu, X(u))du + Jo x(u, X(u))é(u)du (Str.)
t t 1 . )
= X(0) + fo F(u, X () du + Lx(u,X(u))g(u)du (Ito) + joz(u)D<x(X(u)) )du
(C.4)

Thus the stochastic Ito differential equation that would give the Stratonovich solution is

dx, € X, - X,

o 1/,
:d f(t/Xt)h +X(t/Xt)dQ(t/ h/Xt) + Z(O‘z(t, h’Xt)D[X(t’Xt)2:|>h/ dg = édt’
dg(t, h, Xy) mod Randomy [Distribution[0, do, (¢, h, X;)]],

E(dg) "' 0,  E(H(X,Ddg(t,h, X))h) "' 0
(C.5)

This gives the modified Fokker-Planck equation and the expectation as

p(t,x) = —D(p(t, x) (f(t, x) + %(d‘z(t,x)D[x(t, x)2]>>> ;L D2<p(t x)x(t, x)265(t, x))

E(X;) = fp(t, x)xdx

= ﬂ—D (p(t, x) <f(t, x)+}l<c'rz(t, x)D|x(t,x)] ))) + lD2 (p(t, ) x(t, x)at, x)>xdx]

-F [f(t,Xt) + %(c‘rz(t,Xt)D[x(t,Xt)ZD].
(C.6)

Setting f = —ax, y = x,02 = 62(t) we find that E(X;) = —aE(X;) + (1/2)62(t)E(X;). This is in
agreement with the solution in (3.12). The Ito (v = 0) and Stratonovich (v = 1) “calculus” can
be written for an arbitrary H (). According to the development in (2.4) and (2.5) we have

oH oH 10°H

E(d(H(t, X(t)))—>E[a—dt S dX+ (1~ )zmdﬁ] dX = f(t, X)dt + y(t, X)dg.

(C7)
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Thus

{HX(#),t) =Ln(X(t)), f(X) = —aX, x(X) = X},

— d(Ln(X(t))) — ‘;X—(i? +(1- v)% <—%>E[(—aX dt + xdg)z]

_dx(#)

=30 - 1 —v)%E[dgﬂ] = (—a+&t)dt - (1 _,,)%62 Jt

1,
— Id(Ln(X(t))) - J(—a et - (1- V)E(rz) dt cs)
o t
— X(t) = X(0)Exp <—at —(1-v)2+ f §(u)du>,
2 0
t
E[X(})] = E[X(O)]Exp(—at)Exp(—%(l - v))E[Exp [fog(u)du]]

= E[X(0)]Exp (—at + v%).

In general the relation between the Ito integrals and the Stratonovich integral is

t t t
[ rtctmds @) = [ slcmds o)+ 5 [ enf sty
0 0 0 (C9)

t t t
[ rtctmds ©w) = [ sctmds o)+ 5 [ enf (st
0 0 0

D. A Simple Deterministic Noise as an Example

Say that the noise is given by
§(t) = =¢(t) = &(t) = aSin(t + §), (D.1)

where ¢ is a time parameter. Let the density be given by

1
— hen 0 < ¢ <2,

p¢(¢){2ﬂ e (D2)
0,

otherwise.



34 Advances in Mathematical Physics

This gives when we for simplicity set that a = 1

P(Sin(t+¢) <&) =P ArcSin(g) + "Z—T < ¢+t < ArcSin(g)

0o €(0,2r)
ArcSin(¢)—t+n2mr
= 2f Py (9')dd,
0
_O(P(Sin(t+¢) <¢))  2pg(ArcSin(ArcSin(¢) -t + n2ur))
Pé(é) = ag - (1 _ §2)1/2
1 * N ger 1
= W, gl <1, f_wpé(g )dg' =1, E(¢)=0, E<§2> =5
(D.3)
Further we have for t' = t + v, where v is a time parameter,
¢(t') =¢(t+v) =Sin(t+v + ¢) = Sin(v) Cos(t + ¢) + Cos(v) Sin(t + $)
= Sin(v) (1 - g(t)Z)”2 + Cos(0)¢(t),
Pry(6(1),&(0) = pr@M)pe s (5(E),&(1) (B
1 1/2
= 6(¢(f) =Sin(v)(1-¢(t)?) " - Cos(v)&(t) ).
x(1 —§(t)2)1/2 < ( ) >

This gives that

Cov(§(t),4(H) = E(4(¥)4(1)) = ng’,g(é(t'),é(t))é(f')é(t)dé(t')dé(t)

6(4() ~Sin(o) (1-47) " + Cos(o)e(t) 51400

- J yr<1 B g(t)2>1/2

dg(t)dg(t)

<Sin(v) (1- §(t)2>1/2 + cOs(v)g(t)>g(t)

=f x(l—é(t)2>l/2

dag(t)

2 ;)

- [sim@gwdi + | %dé(t) = Cos(@)E(20t?) = <2E=0.
2(1-

(D.5)
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Thus the covariance or correlation is cyclic in the time difference.

E. Methods 3, 4, 5 for Introducing Randomness

A third method to introduce randomness is by ordinary differential equations for the
statistical moments of the probability distribution. These moments can be constructed ad hoc
or found by mathematical manipulation of the partial differential equation for the probability
density, or simply from a recurrence relation in time.

A fourth method of introducing randomness is the hydrodynamic method. Consider
the variables as position and velocity for illustration, but the method applies generally. By
integrating the equation for the joint distribution for two stochastic variables with respect to
the second variable (velocity), the well-known equation for the conservation of probability
in space is found. This equation, which is only the conservation of probability, can be
used without referring to any stochastic theory. The equation includes the so-called current
velocity. It is well known that in Boltzmann kinetic theory or in most Langevin models, the
total derivative of the current velocity is equal to the classical force minus a term that is
proportional to 1/px(x, t) times the space derivative of Var(Y;/X;)px(x,t), where Var(Y;/X})
is the variance of Y; at time ¢ given by the position of X; and px(x,t) is the density of
X; [20]. Now, the equation for the conservation of probability in space is a first partial
differential equation. As a second equation, set the total derivative of the current velocity
equal to the classical force minus a term that is proportional to 1/px(x,t) times the space
derivative of —px(x,t) Var(Y;/X;) as in Boltzmann'’s kinetic theory or in Langevin models.
Thus randomness can be accounted for by constitutive relations for Var(Y;/X;) without
postulating a relation for a joint or quasijoint distribution [4]. For the Liouville process
realizations in the position- velocity space (phase space) cannot cross. In addition, for a
conservative classical force, all realizations that start at the same position will have a unique
velocity at a given position when applying the Liouville process, which implies Var(Y;/X;)=0.
The equation for the total derivative of the current velocity, which now equals the classical
force, can be integrated in space to give the familiar Hamilton-Jacobi equation in classical
mechanics as a special case. More generally, the total derivative of the current velocity of
the Liouville and the Ornstein-Uhlenbeck (1930) processes (assuming uncorrelated Gaussian
noise) has also been analyzed when assuming initial conditions in position and velocity that
are independent and Gaussian distributed. It has been shown that Var(Y;/X;) is independent
of x, but time-dependent for the free particle or for the harmonic oscillator [33-35]. We believe
that this hydrodynamic method can be useful when experimental data pertain to the variables
in the equation set, and there is no direct experimental access to microscopic dynamics.

The fifth method of introducing randomness is quantization rules or Nelson’s [5]
approach. Quantization rules “transform” second-order ordinary differential equations into
stochastic equations, assuming that the system of ordinary differential equations follows
from Lagrange’s formalism. Hojman [36] and Gomeroff and Hojman [37] provide several
examples of the construction of Hamilton structures without using any Lagrangian. In the
double slit experiment interference appears and the received theory states that the density
solution is impossible to construct from Markovian recurrence relations [38]. It turns out that
the density solution is equal to the Liouville density solution, and realizations that follow
deterministic trajectories can then be used to “count up” the density. Realizations can always
be constructed by using the density solution to construct different realizations by drawing
positions from that solution at each time step. Such realizations can also be constructed from
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a Liouville density, but they are certainly different from the classical tracks in that case. A
mixture of classical stochastic theory and quantum mechanics has been developed by the
use of a quasiclassical Langevin equation. The variables are nonoperator quantities while
the spectrum of the random force relates to the zero point fluctuation (that is proportional
to frequency) and the Planck spectrum [39, 40]. Nelson's [5, 41, 42] stochastic version of
quantum mechanics is believed to be equivalent to the quantum mechanics for predictions of
the outcomes of experimental experiments. Blanchard et al. [43] show that Nelson’s approach
is able to describe in a unified language the deterministic and random aspects of quantum
evolution. The approach has features analogous to the Ornstein-Uhlenbeck (1930) theory.
But the increment in position is not written as the classical velocity times the time step, as
in the Ornstein-Uhlenbeck (1930) theory, but a general drift field (that depends on time and
position) times the time step plus a random uncorrelated Gaussian term. In addition the
drift is found by setting the average sum of the so-called backward and forward infinitesimal
operator applied on the drift, equal to the classical force. By manipulating the equation set
the Schrodinger equation follows easily. The work by Nelson has stimulated more recent and
refined studies on the stochastic approach. See Albeverio and Heegh-Krohn [44], Ezawa et
al. [45], Albeverio et al. [46], Guerra [47], Carlen [48], Zheng [49], Zambrini [50], Blaquiere
[51], Garbaczewski [4], Blanchard and Garbaczewski [52], Garbaczewski and Olkiewicz [53],
Garbaczewski and Klauder [33], Czopnik and Garbaczewski [34], and Garbaczewski [35].
See also Bratteli and Robinson [54] for the statistical mechanics of continuous quantum
systems. For a study of statistical interpretations of quantum mechanics see Ballentine [55].

F. The Duffing Equation

The Duffing equation is a nonlinear second-order differential equation exemplifying a
dynamical system exhibiting chaotic behavior, that is, in the simplest form without forcing

X(t) = —eX(t) - V(X(1)),
fr(X(t), Y (1) = —Y () - aX (t) - BX(1)°, (1)

DV (X(t)) = aX(t) + pX(t)° = V(X(t)) = gX(t)z + gxa)%

Equations (F.1) describe the motion of a damped oscillator with a more complicated potential
than in simple harmonic motion. In physical terms, it models, for example, a spring
pendulum whose spring’s stiffness does not exactly obey Hooke’s law. The Duffing equation
cannot be solved exactly in terms of symbols, though for the special case of the undamped
(¢ = 0) Duffing equation, an exact solution can be obtained using Jacobi’s elliptic functions.
Numerically, Euler’s method, Runge-Kutta’s method, and various numeric methods can be
used.

To demonstrate applying Duffing’s method that the methods in this paper work, we
propose three methods. First, replacing X (t) with x(¢) and substituting V (x) into (4.6) gives

2 2 4
p(t x,y) = cExp <—5<—T e ;:T(ﬁ/4)x > (F2)
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which is an analytical expression for the probability density as a function of t,x, and y.
As expected, Limy ()~ o V(x(t)) = oo, Limyp)— o p(t, x,y) = 0,Limy) o p(t, x,y) = 0, and
Limy () - oo, yty—0 p(t, X, ) = CB,

Second, replacing X(t) with x(t) and replacing Y () with y(t) and substituting
fr(X(),Y(t) =—eY(t) —aX(t) - ﬂX(t)3 into (4.21) give

p(t,x,y) =-Di(p(t,x,y)y) - Dap(t, x,y) fr (x,v))

(F3)
- 3DDa(8p0p( %)) + (3 )P (BL0p ().

Third, substituting fy(X(t),Y(t)) = =Y (t) —aX(t) - ﬂX(t)3 into (4.22) gives

%E[X(t)Y(t)] = E[Y(t)z] + E[X(t) <—5Y(t) —aX(t) - ﬁX(t)3>] - %ggﬂ(t). (F4)

Notation

t: Time

T: Correlation time parameter

to: Initial time

T: Temperature

X(1): Stochastic space variable when Stratonovich is applied
Y(t): Stochastic space variable when Stratonovich is applied
Xy Stochastic space variable when Ito is applied

Y;: Stochastic space variable when Ito is applied

f(X()): Function of a space variable

x: Deterministic space variable

v Deterministic space variable

h=dt Time increment

0;(t,h,X;): Stochastic variable, i =2,3,4, ...

H(X;, t): Arbitrary function

gi(t, Xy): Well-behaved function specified exogenously, i = 2,3,4, ...

p(t, x): Probability density of X;

Af: Forward infinitesimal operator of the process
A(): Arbitrary function such that [ A(u)du =1

ol (x): —ax

pE(t, x): e A(x e™™)

a: Positive parameter

o(t): Dirac delta function

&(t): Arbitrary noise function

ot Parameter, initial value of ¢(t)
g(t): g(t) = [&(t)dt

d*¢(t, h, X;): Stochastic variable
A(t): 1-Exp(-t/1)
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w(t): White noise

v: v = 0 means Ito, v = 1 means Stratonovich

z: Integration variable

Ny Stochastic variable

n: Deterministic variable

p(Nep =n —i/N; = n): Conditional point probability

f(n): Arbitrary function

Il f (m)]]: Absolute value of f(n)

A: Small increment without denomination

x (& X(1)): Stochastic variable

¢: Time parameter

pp(P): Probability density.
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Endnotes

1. The space is not necessarily the familiar Euclidean space for everyday life. We distinguish
between cases which are discrete and continuous in time or space. See Taylor and Karlin
[56] for a mathematical definition of stochastic processes, which is not replicated here.
Briefly, the usual situation is to have a set of random variables {X;} defined for all values
of the real number ¢ (assume time), which could be discrete or continuous. The outcome
of a random variable is a state value (often a real number). The set of random variables
are called a stochastic process, which is completely determined if the joint distribution of
the set of random variables {X;} is known. A realization of the stochastic process is an
assignment to each t in the set {X;}, a value of X;.

2. In the narrowest sense, a stochastic process has the Markov property if the probability of
having state Xy, at time f + h, conditioned on having the particular state x; at time ¢, is
equal to the conditional probability of having that same state X;.4; but conditioned on
its value for all previous times before t. See Feller [57] for a broader definition. However,
a Markov process may be deterministic; that is, all values of the process at time t' >  are
determined when the value is given at time t. Or a process may be nondeterministic; that
is, a knowledge of the process at time ¢ is only probabilistically useful in specifying the
process at time ' > t.

3. By “counting up” the different realizations (tracks) in the state space the joint distribution
can be constructed. Although counting up all different realizations in general constructs
the joint probability, the inverse does not hold. Hence the joint probability of the set of
random variables {X;} does not lead to a unique recurrence relation.

4. The Liouville equation is present in most standard text books of statistical physics. See,

for instance, Lifshitz and Pitaevski [58]. By inserting an initial Dirac delta distribution
into the Liouville equation, the distribution remains a Dirac delta distribution for all
times. Marquis de Laplace [59] wrote on Determinism: “We ought to regard the present
state of the universe as the effect of its anterior state and as the cause of the one which is
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to follow. Given for one instant an intelligence which could comprehend all the forces by
which nature is animated and the respective situation of the beings who compose it—an
intelligence vast to submit this data to analysis—it would embrace in the same formulae
the movements of the greatest bodies of the universe and those of the lightest atom; for it,
nothing would be uncertain and the future, as the past, would be present to its eyes. The
human mind offers, in the perfection which it has been able to give astronomy, a feeble
idea of this intelligence. Its discoveries in mechanics and in geometry, added to that of
universal gravity, have enabled it to comprehend in the analytical expressions the past
and the future state of the system of the world”. This shows that the Liouville equation
supports Laplace’s world view, that the future can be foreseen, and the past can be
recovered to any desired accuracy by finding sufficiently precise initial data and finding
sufficiently powerful laws of nature. In the early 1900s Poincaré supplemented this view
by pointing out the possibility that very small differences in the initial conditions may
produce large differences in the final phenomena. Poincaré further argued that the initial
conditions always are uncertain. Poincaré [60] wrote on chaos: “A very small cause
which escapes our notice determines a considerable effect that we cannot fail to see,
and then we assume that the effect is due to chance. If we knew exactly the laws of
nature and the situation of the universe at the initial moment, we could predict exactly
the situation of that same universe at the following moment. But, even if it were the case
that the natural laws had no longer any secrets for us, we could still only know the initial
conditions approximately. If that enabled us to predict the succeeding situation with the
same approximation, that is all we require, and we should say that the phenomenon has
been predicted, that is, governed by laws. But it is not always so; it may happen that small
differences in the initial conditions produce very great ones in the final phenomena. A
small error in the former will produce very great ones in the final phenomena. Predictions
becomes impossible, and we have the fortuitous phenomenon”. The marginal probability
density can be found by integrating out other variables of the joint probability [61, 62].

5. It quantum physics, the approach by Nelson’s [5] approach is able to describe in a
unified language the deterministic and random aspect of quantum evolution [43]. Some
students believe that Newton’s second law (f = ma) is a law of nature (a law that can be
falsified by experiments), but actually it is only a definition of force. But the mathematical
structure, f = ma, suggests that the “force” is easy to find a new relation for. Thus the
equation set becomes closed. It is not obvious that a mathematical theory accounting
for randomness or noise is most easily formulated by seeking to model a random force.
In this way Nelson’s approach suggests that at least in quantum mechanics, the force
is not so easy to find, and that the mathematical structure most easily can be built
from mathematical principles different from Newton’s second law. But in principle, the
mathematical principle chosen to model randomness or noise is not given a priory.
This applies both for the phenomena which we call quantum phenomena, and for
the phenomena that we call classical stochastic phenomena (where we usually seek a
random or noise force).
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