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An algebraic scheme for constructing deformations of structure constants for associative algebras
generated by deformation driving algebras (DDAs) is discussed. An ideal of left divisors of zero
plays a central role in this construction. Deformations of associative three-dimensional algebras
with the DDA being a three-dimensional Lie algebra and their connection with integrable systems
are studied.

1. Introduction

An idea to study deformations of structure constants for associative algebras goes back to the
classical works of Gerstenhaber [1, 2]. As one of the approaches to deformation theory he
suggested “to take the point of view that the objects being deformed are not merely algebras,
but essentially algebras with a fixed basis” and to treat “the algebraic set of all structure
constants as parameter space for deformation theory” [2].

Thus, following this approach, one chooses the basis P0,P1, . . . ,PN for a given algebra
A, takes the structure constants Cn

jk defined by the multiplication table

PjPk =
N∑

n=0

Cn
jkPn, j, k = 0, 1, . . . ,N, (1.1)

and looks for their deformations Cn
jk
(x), where (x) = (x1, . . . , xM) is the set of deformation

parameters, such that the associativity condition

N∑

m=0

Cm
jk(x)C

n
ml(x) =

N∑

m=0

Cm
kl(x)C

n
jm(x) (1.2)

or similar equation is satisfied.
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A remarkable example of deformations of this type with M = N + 1 has been
discovered by Witten [3] and Dijkgraaf et al. [4]. They demonstrated that the function F
which defines the correlation functions 〈ΦjΦkΦl〉 = ∂3F/∂xj∂xk∂xl and so forth in the
deformed two-dimensional topological field theory obeys the associativity equation (1.2)
with the structure constants given by

Cl
jk =

N∑

m=0

ηlm ∂3F

∂xj∂xk∂xm
, (1.3)

where the constants are ηlm = (g−1)lm and glm = ∂3F/∂x0∂xl∂xm where the variable x0 is
associated with the units element. Each solution of the WDVV equations (1.2) and (1.3)
describes a deformation of the structure constants of the N + 1- dimensional associative
algebra of primary fields Φj .

The interpretation and formalization of the WDVV equation in terms of Frobenius
manifolds proposed by Dubrovin [5, 6] provides us with a method to describe class of
deformations of the so-called Frobenius algebras. An extension of this approach to general
algebras and corresponding F-manifolds has been given by Hertling and Manin [7]. The
beautiful and rich theory of Frobenius and F-manifolds has various applications from the
singularity theory to quantum cohomology (see, e.g., [6, 8, 9]).

An alternative approach to the deformation theory of the structure constants for
commutative associative algebras has been proposed recently in [10–14]. Within this method
the deformations of the structure constants are governed by the so-called central system
(CS). Its concrete form depends on the class of deformations under consideration and CS
contains, as particular reductions, many integrable systems like WDVV equation, oriented
associativity equation, and integrable dispersionless, dispersive, and discrete equations
(Kadomtsev-Petviashvili equation, etc.). The common feature of the coisotropic, quantum,
discrete deformations considered in [10–14] is that for all of them elements pj of the basis and
deformation parameters xj form a certain algebra (Poisson, Heisenberg, etc.). A general class
of deformations considered in [13] is characterized by the condition that the ideal J = 〈fjk〉
generated by the elements fjk = −pjpk +

∑N
l=0 C

l
jk(x)pl representing the multiplication table

(1) is the Poisson ideal. It was shown that this class contains a subclass of so-called integrable
deformations for which the CS has a simple and nice geometrical meaning.

In the present paper we will discuss a purely algebraic formulation of such integrable
deformations. We will consider the case when the algebra generating deformations of the
structure constants, that is, the algebra formed by the elements pj of the basis and deformation
parameters xk(deformation driving algebra (DDA)), is a Lie algebra. The basic idea is to
require that all elements fjk = −pjpk +

∑N
l=0 C

l
jk
(x)pl are left divisors of zero and that

they generate the ideal J of left divisors of zero. This requirement gives rise to the central
system which governs deformations generated by DDA. This central system of equations for
structure constants differs, in general, from the associativity condition. So, deformed algebras
form families of commutative but not necessarily associative algebras.

Here we will study the deformations of the structure constants for the three-
dimensional algebra in the case when the DDA is given by one of the three-dimensional Lie
algebras. Such deformations are parametrized by a single deformation variable x. Depending
on the choice of DDA and identification of p1, p2, and x with the elements of DDA, the
corresponding CS takes the form of the system of ordinary differential equations or the
system of discrete equations (multidimensional mappings). In the first case the CS contains
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the third-order ODEs from the Chazy-Bureau list as the particular examples. This approach
provides us also with the Lax form of the above equations and their first integrals.

The paper is organized as follows. General formulation of the deformation theory
for the structure constants is presented in Section 2. Quantum, discrete, and coisotropic
deformations are discussed in Section 3. Three-dimensional Lie algebras as DDAs are
analyzed in Section 4. Deformations generated by general DDAs are studied in Section 5.
Deformations driven by the nilpotent and solvable DDAs are considered in Sections 6 and 7,
respectively.

2. Deformations of the Structure Constants Generated by DDA

So, we consider a finite-dimensional commutative algebra A with (or without) unit element
P0 in the fixed basis composed by the elements P0,P1, . . . ,PN . The multiplication table (1)
defines the structure constants Cl

jk
. The commutativity of the basis implies that Cl

jk
= Cl

kj
. In

the presence of the unit element one has Cl
j0 = δl

j where δl
j is the Kronecker symbol.

Following Gerstenhaber’s suggestion [1, 2] we will treat the structure constants Cl
jk

as the objects to deform and will denote the deformation parameters by x1, x2, . . . , xM.
For the undeformed structure constants the associativity conditions (1.2) are nothing else
than the compatibility conditions for the table of multiplication (1.1). In the construction of
deformations we should first specify a “deformed” version of the multiplication table and
then require that this realization is self-consistent and meaningful.

Thus, to define deformations one has the following.

(1) We associate a set of elements p0, p1, . . . , pN, x1, x2, . . . , xM with the elements of the
basis P0,P1, . . . ,PN and deformation parameters x1, x2, . . . , xM.

(2) We consider the Lie algebra B of the dimension N + M with the basis elements
e1, . . . , eN+M obeying the commutation relations:

[
eα, eβ

]
=

N+M∑

γ=1

Cαβγeγ , α, β = 1, 2, . . . ,N +M. (2.1)

(3) We identify the elements p1, . . . , pN, x1, x2, . . . , xM with the elements e1, . . . , eN+M,
thus defining the deformation driving algebra (DDA). Different identifications
define different DDAs. We assume that the element p0 commutes with all elements
of DDA and we put p0 = 1. The commutativity of the basis in the algebra A implies
the commutativity between pj , and in this paper we assume the same property for
all xk. So, we will consider the DDAs defined by the commutation relations of the
type

[
pj , pk

]
= 0,

[
xj , xk

]
= 0,

[
pj , x

k
]
=
∑

l

αk
jlx

l +
∑

l

βklj pl, (2.2)

where αk
jl and βklj are some constants.

(4) We consider the elements

fjk = −pjpk +
N∑

l=0

Cl
jk(x)pl, j, k = 1, . . . ,N (2.3)
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of the universal enveloping algebra U(B) of the algebra DDA(B). These fjk
“represent” the table (1) inU(B).

(5) We require that all fjk are left zero divisors and have a common right zero divisor.

In this case fjk generate the left ideal J of left zero divisors. We remind that non-zero
elements a and b are called left and right divisors of zero if ab = 0 (see e.g., [15]).

Definition 2.1. The structure constants Cl
jk(x) are said to define deformations of the algebra A

generated by given DDA if all fjk are left zero divisors with common right zero divisor.

To justify this definition we first observe that the simplest possible realization of the
multiplication table (1) inU(B) given by the equations fjk = 0, j, k = 1, . . . ,N is too restrictive
in general. Indeed, for instance, for the Heisenberg algrebra B [12] such equations imply that
[pl, Cm

jk
(x)] = ∂Cm

jk
/∂xl = 0 and, hence, all Cm

jk
are constants. So, one should look for a weaker

realization of the multiplication table. A condition that all fjk are left zero divisors is a natural
candidate. The condition of compatibility of the corresponding equations fjk ·Ψjk = 0, j, k =
1, . . . ,N whereΨjk are right zero divisors requires that the l.h.s. of these equations and, hence,
Ψjk should have a common divisor (see, e.g., [15]). We restrict ourselves to the case when
Ψjk = Ψ · Φjk, j, k = 1, . . . ,N where Φjk are invertible elements of U(B). In this case one has
the set of equations

fjk ·Ψ = 0, j, k = 0, 1, . . . ,N; (2.4)

that is, all left zero divisors fjk have common right zero divisor Ψ.
These conditions impose constraints on Cm

jk(x). To clarify these constraints we will use
the associativity of U(B). First we observe that due to the relations (2.2) one has the identity
(p0 = 1)

[
pl, C

m
jk(x)

]
=

N∑

t=0

Δmt
jk,l(x)pt, (2.5)

where Δmt
jk,l(x) are certain functions of x1, . . . , xM only. Then, taking into account (2.2) and

associativity of U(B), one obtains

(
pjpk

)
pl − pj

(
pkpl
)
=

N∑

s,t=0

Kst
klj · fst +

N∑

t=0

Ωt
klj(x) · pt, j, k, l = 0, 1, . . . ,N, (2.6)

where

Kst
klj =

1
2
(
δs
kδ

t
l + δt

kδ
s
l

)
pj − 1

2

(
δs
kδ

t
j + δt

kδ
s
j

)
pl +

1
2

(
δs
j C

t
kl + δt

jC
s
kl

)

− 1
2

(
δs
l C

t
kj + δt

lC
s
kj

)
+ Δst

kl,j −Δst
kj,l,

Ωt
klj(x) =

∑

s

Cs
jkC

t
ls −
∑

s

Cs
lkC

t
js +
∑

s,n

(
Δsn

kj,l −Δsn
kl,j

)
Ct

sn.

(2.7)
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Thus, the identity (2.6) gives

N∑

s,t=0

Kst
klj · fst +

N∑

t=0

Ωt
klj(x) · pt = 0, j, k, l = 0, 1, . . . ,N. (2.8)

Due to the relations (2.4), (2.8) implies that

(
N∑

t=0

Ωt
klj(x) · pt

)
Ψ = 0. (2.9)

These equations are satisfied if

Ωt
klj(x) =

∑

s

Cs
jkC

t
ls −
∑

s

Cs
lkC

t
js +
∑

s,n

(
Δsn

kj,l −Δsn
kl,j

)
Ct

sn = 0, j, k, l, t = 0, 1, . . . ,N. (2.10)

This system of equations plays a central role in our approach. If Ψ has no left zero
divisors linear in pj , the relation (2.10) is the necessary condition for existence of a common
right zero divisor for fjk since U(B) has no zero elements linear in pj (see e.g., [16]).

At N ≥ 3 it is also a sufficient condition. Indeed, if Cm
jk
(x) are such that (2.10) is

satisfied, then

N∑

s,t=0

Kst
klj · fst = 0, j, k, l = 0, 1, . . . ,N. (2.11)

Generically, it is the system of (1/2)N2(N − 1) linear equations for N(N + 1)/2
unknowns fst with noncommuting coefficientsKst

klj . AtN ≥ 3 for generic (nonzeros, nonzero
divisors) Kst

klj
(x, p) the system (2.11) implies that

αjkfjk = βlmflm, j, k, l,m = 1, . . . ,N, (2.12)

γjkfjk = 0, j, k = 1, . . . ,N, (2.13)

where αjk, βlm, and γjk are certain elements of U(B) (see e.g., [17, 18]). Thus, all fjk are right
zero divisors. They are also left zero divisors. Indeed, due to Ado’s theorem (see e.g., [16])
finite-dimensional Lie algebra B and, hence, U(B) are isomorphic to matrix algebras. For the
matrix algebras zero divisors (matrices with vanishing determinants) are both right and left
zero divisors [15]. Then, under the assumption that all αjk and βlm are not zero divisors, the
relations (2.12) imply that the right divisor of one of fjk is also the right zero divisor for the
others.

At N = 2 one has only two relations of the type (2.12) and a right zero divisor of
one of f11, f12, f22 is the right zero divisor of the others. We note that it is not easy to control
assumptions mentioned above. Nevertheless, (2.4) and (2.10) certainly are fundamental one
for the whole approach.
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We will refer to the system (2.10) as the Central System (CS) governing deformations
of the structure constants of the algebra A generated by a given DDA. Its concrete form
depends strongly on the form of the brackets [pt, Cl

jk
(x)] which are defined by the relations

(2.2) for the elements of the basis of DDA. For stationary solutions (Δmt
jk,l = 0) the CS (2.10) is

reduced to the associativity conditions (1.2).

3. Quantum, Discrete, and Coisotropic Deformations

Coisotropic, quantum, and discrete deformations of associative algebras considered in [10–
14] represent particular realizations of the above general scheme associated with different
DDAs.

For the quantum deformations one has M = N and the deformation driving algebra
is given by the Heisenberg algebra [12]. The elements of the basis of the algebra A and
deformation parameters are identified with the elements of the Heisenberg algebra in such a
way that

[
pj , pk

]
= 0,

[
xj , xk

]
= 0,

[
pj , x

k
]
= �δk

j , j, k = 1, . . . ,N, (3.1)

where � is the real constant (Planck’s constant in physics). For the Heisenberg DDA

Δmt
jk,l = �δt

0

∂Cm
jk(x)

∂xl
, (3.2)

and consequently

Ωn
klj(x) = �

∂Cn
jk

∂xl
− �

∂Cn
kl

∂xj
+

N∑

m=0

(
Cm

jkC
n
ml − Cm

klC
n
jm

)
= 0, j, k, l, n = 0, 1, . . . ,N. (3.3)

Quantum CS (3.3) governs deformations of structure constants for associative algebra
driven by the Heisenberg DDA. It has a simple geometrical meaning of vanishing Riemann
curvature tensor for torsionless Christoffel symbols Γl

jk
identifiedwith the structure constants

(Cl
jk

= �Γl
jk
) [12].

In the representation of the Heisenberg algebra (3.1) by operators acting in a linear
spaceH left divisors of zero are realized by operators with nonempty kernel. The ideal J is the
left ideal generated by operators fjk which have nontrivial common kernel or, equivalently,
for which equations

fjk|Ψ〉 = 0, j, k = 1, 2, . . . ,N (3.4)

have nontrivial common solutions |Ψ〉 ⊂ H. The compatibility condition for (3.4) is given by
the CS (3.3). The common kernel of the operators fjk forms a subspaceHΓ in the linear space
H. So, in the approach under consideration the multiplication table (1) is realized only onHΓ,
but not on the whole H. Such type of realization of the constraints is well known in quantum
theory as Dirac’s recipe for quantization of the first-class constraints [19]. In quantum theory
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context equation (3.4) serves to select the physical subspace in the whole Hilbert space.
Within the deformation theory one may refer to the subspaceHΓ as the “structure constants”
subspace. In [12] the recipe (3.4) was the starting point for construction of the quantum
deformations.

Quantum CS (3.3) contains various classes of solutions which describe different
classes of deformations. An important subclass is given by isoassociative deformations,
that is, by deformations for which the associativity condition (1.2) is valid for all values
of deformation parameters. For such quantum deformations the structure constants should
obey the following equations:

∂Cn
jk

∂xl
− ∂Cn

kl

∂xj
= 0, j, k, l, n = 1, . . . ,N. (3.5)

These equations imply that Cn
jk = ∂2Φn/∂xj∂xk where Φn are some functions while the

associativity condition (1.2) takes the following form:

N∑

m=0

∂2Φm

∂xj∂xk

∂2Φn

∂xm∂xl
=

N∑

m=0

∂2Φm

∂xl∂xk

∂2Φn

∂xm∂xj
. (3.6)

It is the oriented associativity equation introduced in [5, 20]. Under the gradient reduction
Φn =

∑N
l=0 η

nl(∂F/∂xl) equation (3.7) becomes the WDVV equations (1.2) and (1.3).
Non-isoassociative deformations for which the condition (3.5) is not valid are of

interest too. They are described by some well-known integrable soliton equations [12]. In
particular, there are Boussinesq equation among them forN = 2 and Kadomtsev-Petviashvili
(KP) hierarchy for the infinite-dimensional algebra of polynomials in the Faa’ de Bruno basis
[12]. In the latter case the deformed structure constants are given by

Cl
jk = δl

j+k +Hk
j−l +H

j

k−l, j, k, l = 0, 1, 2, . . . (3.7)

with

H
j

k =
1
�
Pk

(
−�∂̃
)∂ log τ

∂xj
, j, k = 1, 2, 3, . . . , (3.8)

where τ is the famous tau-function for the KP hierarchy and Pk(−�∂̃) �
Pk(−�(∂/∂x1), (−1/2)�(∂/∂x2),−(1/3)�(∂/∂x3), . . .) where Pk(t1, t2, t3, . . .) are Schur
polynomials defined by the generating formula exp(

∑∞
k=1 λ

ktk) =
∑∞

k=0 λ
kPk(t).

Discrete deformations of noncommutative associative algebras are generated by the
DDA withM = N and commutation relations

[
pj , pk

]
= 0,

[
xj , xk

]
= 0,

[
pj , x

k
]
= δk

j pj , j, k = 1, . . . ,N. (3.9)

In this case

Δmt
jk,l = δt

l(Tl − 1)Cm
jk(x), j, k, l,m, t = 0, 1, 2, . . . ,N, (3.10)



8 Advances in Mathematical Physics

where for an arbitrary function ϕ(x) the action of Tj is defined by Tjϕ(x0, . . . , xj , . . . , xN) =
ϕ(x0, . . . , xj + 1, . . . , xN). The corresponding CS is of the form

ClTlCj − CjTjCl = 0, j, l = 0, 1, . . . ,N, (3.11)

where the matrices Cj are defined as (Cj)
l
k

= Cl
jk
, j, k, l = 0, 1, . . . ,N. The discrete CS

(3.11) governs discrete deformations of associative algebras. The CS (3.11) contains, as
particular cases, the discrete versions of the oriented associativity equation, WDVV equation,
Boussinesq equation, and discrete KP hierarchy and Hirota-Miwa bilinear equations for KP
τ-function [13].

For coisotropic deformations of commutative algebras [10, 11] again M = N, but the
DDA is the Poisson algebra with pj and xk identified with the Darboux coordinates, that is,

{
pj , pk

}
= 0,

{
xj , xk

}
= 0,

{
pj , x

k
}
= −δk

j , j, k = 0, 1, . . . ,N, (3.12)

where {, } is the standard Poisson bracket. The algebra U(B) is the commutative ring
of functions and divisors of zero are realized by functions with zeros. So, the functions
fjk should be functions with common set Γ of zeros. Thus, in the coisotropic case the
multiplication table (1) is realized by the following set of equations [10]:

fjk = 0, j, k = 0, 1, 2, . . . ,N. (3.13)

The compatibility condition for these equations is (see e.g., [10])

{
fjk, fnl

} |Γ = 0, j, k, l, n = 1, 2, . . . ,N. (3.14)

The set Γ is the coisotropic submanifold in R2(N+1). The condition (3.14) gives rise to the
following system of equations for the structure constants:

[C,C]mjklr �
N∑

s=0

(
Cm

sj

∂Cs
lr

∂xk
+ Cm

sk

∂Cs
lr

∂xj
− Cm

sr

∂Cs
jk

∂xl
− Cm

sl

∂Cs
jk

∂xr
+ Cs

lr

∂Cm
jk

∂xs
− Cs

jk

∂Cm
lr

∂xs

)
= 0 (3.15)

while the equations Ωn
klj(x) = 0 have the form of associativity conditions (1.2):

Ωn
klj(x) =

N∑

m=0

(
Cm

jk(x)C
n
ml(x) − Cm

kl(x)C
n
jm(x)

)
= 0. (3.16)

Equations (3.15) and (3.16) form the CS for coisotropic deformations [10]. In this
case Cl

jk
is transformed as the tensor of the type (1, 2) under the general transformations of

coordinates xj , and the whole CS of (3.15) and (3.16) is invariant under these transformations
[14]. The bracket [C,C]mjklr has appeared for the first time in [21] where the so-called
differential concomitants were studied. It was shown in [16] that this bracket is a tensor only
if the tensor Cl

jk
obeys the algebraic constraint (3.16). In [7] the CS of (3.15) and (3.16) has
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appeared implicitly as the system of equations which characterizes the structure constants
for F-manifolds. In [10] it has been derived as the CS governing the coisotropic deformations
of associative algebras.

The CS of (3.15) and (3.16) contains the oriented associativity equation, the WDVV
equation, dispersionless KP hierarchy, and equations from the genus zero universal Whitham
hierarchy as the particular cases [10, 11]. Yanomanifolds and Yano algebroids associatedwith
the CS of (3.15) and (3.16) are studied in [14].

We would like to emphasize that for all deformations considered above the stationary
solutions of the CSs obey the global associativity condition (1.2).

4. Three-Dimensional Lie Algebras as DDA

In the rest of the paper wewill study deformations of associative algebras generated by three-
dimensional real Lie algebra L. The complete list of such algebras contains 9 algebras (see e.g.
[16]). Denoting the basis elements by e1, e2, e3, one has the following nonequivalent cases:

(1) abelian algebra L1,

(2) general algebra L2: [e1, e2] = e1, [e2, e3] = 0, [e3, e1] = 0,

(3) nilpotent algebra L3 : [e1, e2] = 0, [e2, e3] = e1, [e3, e1] = 0,

(4)–(7) four nonequivalent solvable algebras: [e1, e2] = 0, [e2, e3] = αe1 + βe2, [e3, e1] =
γe1 + δe2 with αδ − βγ /= 0,

(8)-(9) simple algebras L8 = so (3) and L9 = so (2, 1).

In virtue of the one-to-one correspondence between the elements of the basis in DDA
and the elements pj , xk an algebra L should have an abelian subalgebra and only one of its
elements may play the role of the deformation parameter x. For the original algebra A and
the algebra B one has two options.

(1) A is a two-dimensional algebra without unit element and B = L.

(2) A is a three-dimensional algebra with the unit element and B = L0 ⊕ L where L0 is
the algebra generated by the unity element p0.

After the choice of B one should establish a correspondence between p1, p2, x and
e1, e2, e3 defining DDA. For each algebra Lk there are obviously, in general, six possible
identifications if one avoids linear superpositions. Some of them are equivalent. The
incomplete list of nonequivalent identifications is as follows

(1) algebra L1 : p1 = e1, p2 = e2, x = e3; DDA is the commutative algebra with

[
p1, p2

]
= 0,

[
p1, x

]
= 0,

[
p2, x

]
= 0, (4.1)

(2) algebra L2:

case (a) p1 = −e2, p2 = e3, x = e1; the corresponding DDA is the algebra L2a with the
commutation relations:

[
p1, p2

]
= 0,

[
p1, x

]
= x,

[
p2, x

]
= 0, (4.2)
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case (b) p1 = e1, p2 = e3, x = e2; the corresponding DDA L2b is defined by

[
p1, p2

]
= 0,

[
p1, x

]
= p1,

[
p2, x

]
= 0, (4.3)

(3) algebra L3: p1 = e1, p2 = e2, x = e3; DDA L3 is

[
p1, p2

]
= 0,

[
p1, x

]
= 0,

[
p2, x

]
= p1, (4.4)

(4) solvable algebra L4 with α = 0, β = 1, γ = −1, δ = 0 : p1 = e1, p2 = e2, x = e3; DDA
L4 is

[
p1, p2

]
= 0,

[
p1, x

]
= p1,

[
p2, x

]
= p2, (4.5)

(5) solvable algebra L5 at α = 1, β = 0, γ = 0, δ = 1 : p1 = e1, p2 = e2, x = e3; DDA L5

is

[
p1, p2

]
= 0,

[
p1, x

]
= p1,

[
p2, x

]
= −p2. (4.6)

For the second choice of the algebra B = L0 ⊕ L mentioned above the table of
multiplication (1.1) consists of the trivial part P0Pj = PjP0 = Pj , j = 0, 1, 2 and the nontrivial
part:

P2
1 = AP0 + BP1 + CP2,

P1P2 = DP0 + EP1 +GP2,

P2
2 = KP0 +MP1 +NP2.

(4.7)

For the first choice B = K the multiplication table is given by (4.7)withA = D = K = 0.
It is convenient also to arrange the structure constants A,B, . . . ,N into the matrices

C1, C2 defined by (Cj)
l
k = Cl

jk. One has

C1 =

⎛

⎝
0 A D
1 B E
0 C G

⎞

⎠, C2 =

⎛

⎝
0 D K
0 E M
1 G N

⎞

⎠. (4.8)

In terms of these matrices the associativity conditions (1.2) are written as

C1C2 = C2C1. (4.9)

Simple algebras L8 and L9 do not contain two commuting elements to be identified
with p1 and p2, and, hence, they cannot be DDA. Deformations generated by algebras L6 and
L7 will be considered elsewhere.
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5. Deformations Generated by General DDAs

(1) Commutative DDA (4.1) does not force any deformation of structure constants. So,
we begin with the three-dimensional commutative algebra A and DDA L2a defined by the
commutation relations (4.2). These relations imply that for an arbitrary function ϕ(x)

[
pj , ϕ(x)

]
= Δjϕ(x), j = 1, 2, (5.1)

where Δ1 = (x∂/∂x),Δ2 = 0. Consequently, one has the following CS:

Ωn
klj(x) = ΔlC

n
jk −ΔjC

n
kl +

2∑

m=0

(
Cm

jkC
n
lm − Cm

klC
n
jm

)
= 0, j, k, l, n = 0, 1, 2. (5.2)

In terms of the matrices C1 and C2 defined above this CS has a form of the Lax equation:

x
∂C2

∂x
= [C2, C1]. (5.3)

The CS (5.3) has all remarkable standard properties of the Lax equations (see e.g. [20,
21]): it has three independent first integrals:

I1 = trC2, I2 =
1
2
tr (C2)2, I3 =

1
3
tr (C2)3, (5.4)

and it is equivalent to the compatibility condition of the linear problems:

C2Φ = λΦ,

x
∂Φ
∂x

= −C1Φ,
(5.5)

where Φ is the column with three components and λ is a spectral parameter. Though the
evolution in x described by the second linear problem (5.5) is too simple, nevertheless the CS
(5.2) or (5.3) has the meaning of the isospectral deformations of the matrix C2 that is typical
to the class of integrable systems (see e.g. [22, 23]).

CS (5.3) is the system of six equations for the structure constantsD,E,G, L,M,N with
free A,B,C:

D′ = DB +KC −AE −DG,

K′ = DE +KG −AM −DN,

E′ = MC − EG −D,

M′ = E2 +MG − BM − EN −K,

G′ = GB +NC − CE −G2 +A,

N ′ = GE − CM +D,

(5.6)
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where D′ = x∂D/∂x and so forth. Here we will consider only simple particular cases of the
CS (5.6). First it corresponds to the constraint A = 0, B = 0, C = 0, that is, to the nilpotent P1.
The corresponding solution is

D =
β

lnx
, E = −β +

γ

lnx
, G =

1
lnx

, K = αβ + 2β2 + δ lnx − βγ

lnx
,

M = αγ + 3βγ + μ lnx − δ(lnx)2 − γ2

lnx
, N = α + β − γ

lnx
,

(5.7)

where α, β, γ, δ, μ are arbitrary constants. The three integrals for this solution are

I1 = α, I2 =
1
2
α2 + 3β2 + 2αβ + μ,

I3 =
1
3

((
α + β

)3 − β3
)
+
(
α + β

)(
μ + β

(
α + 2β

)) − γδ.

(5.8)

The second example is given by the constraint B = 0, C = 1, G = 0 for which the
quantum CS (3.3) is equivalent to the Boussinesq equation [12]. Under this constraint the CS
(5.6) is reduced to the single equation:

E′′ − 6E2 + 4αE + β = 0, (5.9)

and the other structure constants are given by

A = 2E − α, B = 0, C = 1, D = γ − 1
2
E′, G = 0,

K = −E2 + αE +
1
2
β, M = γ +

1
2
E′, N = α −N,

(5.10)

where α, β, γ are arbitrary constants. The corresponding first integrals are

I1 = α, I2 =
1
2

(
β + α2

)
, I3 =

1
3
α3 + γ2 +

1
2
αβ − 1

4
(
E′)2 + E3 − αE2 − 1

2
βE. (5.11)

Integral I3 reproduces the well-known first integral of (5.9). Solutions of (5.9) are given by
elliptic integrals (see e.g., [24]). Any such solution together with the formulae (5.10) describes
deformation of the three-dimensional algebra A driven by DDA L2a.

Now we will consider deformations of the two-dimensional algebra A without unit
element according to the first option mentioned in the previous section. In this case the CS
has the form (5.3)with the 2 × 2 matrices

C1 =
(
B E
C G

)
, C2 =

(
E M
G N

)
(5.12)
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or in components

E′ = MC − EG,

M′ = E2 +MG − BM − EN,

G′ = GB +NC − CE −G2,

N ′ = GE − CM.

(5.13)

In this case there are two independent integrals of motion:

I1 = E +N, I2 =
1
2

(
E2 +N2 + 2MG

)
. (5.14)

The corresponding spectral problem is given by (5.5). Eigenvalues of the matrix C2,

that is, λ1,2 = (1/2)(E+N±
√
(E −N)2 + 4GM) are invariant under deformations and detC2 =

(1/2)I21 − I2. We note also an obvious invariance of (5.6) and (5.13) under the rescaling of x.
The system of (5.13) contains two arbitrary functions B and C. In virtue of the possible

rescaling P1 → μ1P1,P2 → μ2P2 of the basis for the algebra A with two arbitrary functions
μ1, μ2, one has four nonequivalent choices (1) B = 0, C = 0, (2) B = 1, C = 0, (3) B = 0, C = 1,
and (4) B = 1, C = 1.

In the case B = 0, C = 0 (nilpotent P1) the solution of the system (5.13) is

B = 0, C = 0, E =
β

lnx
, G =

1
lnx

, M = γ lnx − β2

lnx
+ αβ, N = − β

lnx
+ α, (5.15)

where α, β, γ are arbitrary constants. For this solution the integrals are equal to I1 = α, I2 =

γ + (1/2)α2, and λ1,2 = (1/2)(α +
√
α2 + 4γ).

At B = 1, C = 0 the system (5.13) has the following solution:

B = 1, C = 0, E =
γ

x + β
, G =

x

x + β
,

M = δ +

(
αγ + βδ − γ2

β

)
1
x
+

γ2

β
(
x + β

) , N = − γ

x + β
+ α,

(5.16)

where α, β, γ, δ are arbitrary constants. The integrals are I1 = α, I2 = δ+(1/2)α2. The formulae
(5.15) and (5.16) provide us with explicit deformations of the structure constants.

In the last two cases the CS (5.13) is equivalent to the simple third-order ordinary
differential equations. At B = 0, C = 1 with additional constraint I1 = 0 one gets

G′′′ + 2G2G′ + 4
(
G′)2 + 2GG′′ = 0 (5.17)

while at B = 1, C = 1, and I1 = 0 the system (5.13) becomes

G′′′ + 2G2G′ + 4
(
G′)2 + 2GG′′ −G′ = 0. (5.18)
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The second integral for these ODEs is

I2 = −1
2
G4 +

1
2
(
G′)2 − 2G2G′ −GG′′ +

1
2
BG2. (5.19)

Equation (5.17) with G′ = ∂G/∂y is the Chazy V equation from the well-known Chazy-
Bureau list of the third-order ODEs having Painlevé property [25, 26]. The integral (5.19)
is known too (see e.g. [27]).

The appearance of the Chazy V equation among the particular cases of the system
(5.13) indicates that for other choices of B and C the CS (5.13)may be equivalent to the other
notable third-order ODEs. It is really the case. Here we will consider only the reduction C = 1
with I1 = N + E = 0. In this case the system (5.13) is reduced to the following equation:

G′′′ + 2G2G′ + 4
(
G′)2 + 2GG′′ − 2G′Φ −GΦ′ = 0, (5.20)

where Φ = B′ + (1/2)B2. The second integral is

I2 = −1
2
G4 +

1
2
(
G′)2 − 2G2G′ −GG′′ + ΦG2, (5.21)

and λ1,2 = ±
√
I2/2.

Choosing particular B or Φ, one gets equations from the Chazy-Bureau list. Indeed,
at Φ = 0 one has the Chazy V equation (5.17). Choosing Φ = G′, one gets the Chazy VII
equation:

G′′′ + 2G2G′ + 2
(
G′)2 +GG′′ = 0. (5.22)

At B = 2G (5.20) becomes the Chazy VIII equation:

G′′′ − 6G2G′ = 0. (5.23)

Choosing the function Φ such that

(
6Φe(1/3)G

)′
= 2G2G′ +

(
G′)2 + 4GG′′, (5.24)

one gets the Chazy III equation:

G′′′ − 2GG′′ + 3
(
G′)2 = 0. (5.25)

In the above particular cases the integral I2 (5.21) is reduced to those given in [27].
All Chazy equations presented above have the Lax representation (5.3)with E = −N =

−(1/2)(G′ +G2+GB),M = −(1/2)(G′′ +3GG′ +G3+G2B+(GB)′), C = 1, and the proper choice
of B.
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Solutions of all these Chazy equations provide us with the deformations of the
structure constants (5.12) for the two-dimensional algebra A generated by the DDA L2a.

(2) Now we pass to the DDA L2b. The commutation relations (4.3) imply that

[
p1, ϕ(x)

]
= (T − 1)ϕ(x) · p1,

[
p2, ϕ(x)

]
= 0, (5.26)

where ϕ(x) is an arbitrary function and Tϕ(x) = ϕ(x + 1). Using (5.26), one finds the
corresponding CS:

2∑

m=0

(
(Δl + 1)Cm

jk(x) · Cn
lm(x) =

(
Δj + 1

)
Cm

kl(x) · Cn
jm(x)

)
, j, k, l, n = 0, 1, 2, (5.27)

where Δ1 = T − 1,Δ2 = 0. In terms of the matrices C1 and C2, this CS is

C1TC2 = C2C1. (5.28)

For nondegenerated matrix C1 one has

TC2 = C−1
1 C2C1. (5.29)

The CS (5.29) is the discrete version of the Lax equation (5.3) and has similar
properties. It has three independent first integrals:

I1 = trC2, I2 =
1
2
tr (C2)2, I3 =

1
3
tr (C2)3, (5.30)

and it represents itself the compatibility condition for the linear problems:

ΦC2 = λΦ,

TΦ = ΦC1.
(5.31)

Note that detC2 is the first integral too.
The CS (5.28) is the discrete dynamical system in the space of the structure constants.

For the two-dimensional algebra A with matrices (5.12) it is

BTE + ETG = EB +MC,

BTM + ETN = E2 +MG,

CTE +GTG = BG + CN,

CTM +GTN = EG +NG,

(5.32)
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where B and C are arbitrary functions. For nondegenerated matrix C1, that is, at BG−CE/= 0,
one has the resolved form (5.29), that is,

TE =
GM − EN

BG − CE
C, TG = B +

BN − CM

BG − CE
C,

TM =
GM − EN

BG − CE
G, TN = E +

BN − CM

BG − CE
G.

(5.33)

This system defines discrete deformations of the structure constants.

6. Nilpotent DDA

For the nilpotent DDA L3, in virtue of the defining relations (4.5), one has

[
p1, ϕ(x)

]
= 0,

[
p2, ϕ(x)

]
=

∂ϕ

∂x
· p1 (6.1)

or

[
pj , ϕ(x)

]
=

∂ϕ

∂x
·

2∑

k=1

ajkpk, (6.2)

where a21 = 1, a11 = a12 = a22 = 0. Using (6.2), one gets the following CS:

2∑

q=1

alq

2∑

m=0

Cn
qm

∂Cm
jk

∂x
−

2∑

q=1

ajq

2∑

m=0

Cn
qm

∂Cm
kl

∂x
+

2∑

m=0

(
Cm

jkC
n
lm − Cm

klC
n
jm

)
= 0, j, k, l, n = 0, 1, 2. (6.3)

In the matrix form it is

C1
∂C1

∂x
= [C1, C2]. (6.4)

For invertible matrix C1

∂C1

∂x
= C−1

1 [C1, C2]. (6.5)

This system of ODEs has three independent first integrals:

I1 = trC1, I2 =
1
2
tr (C1)2, I3 =

1
3
tr (C1)3, (6.6)
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and it is equivalent to the compatibility condition for the linear system:

C1Φ = λΦ,

C1
∂Φ
∂x

+ C2Φ = 0.
(6.7)

So, as in the previous section the CS (6.4) describes isospectral deformations of the matrix C1.
This CS governs deformations generated by L3.

For the two-dimensional algebra A without unit element the CS is given by (6.4) with
the matrices (5.12). First integrals in this case are I1 = B + G, I2 = (1/2)(B2 + G2 + 2CE) and
detC1 = (1/2)I21−I2. Since detC1 is a constant on the solutions of the system, then at detC1 /= 0
one can always introduce the variable y defined by x = y detC1 such that CS (6.5) takes the
form

B′ = EBG + ENC −GMC − CE2,

E′ = GBM +GEN − ECM −MG2,

C′ = BCE + BG2 +MC2 − CEG − BNC −GB2,

G′ = CMG + CE2 − CEN − BGE,

(6.8)

where B′ = ∂B/∂y and so forth and M, N are arbitrary functions. At detC1 = BG − CE = 1
this system becomes

B′ = E + C(EN −GM),

E′ = M +G(EN −GM),

C′ = G − B + C(MC − BN),

G′ = −E − C(EN −GM).

(6.9)

Choosing M = N = 0, one gets

B′ = E, E′ = 0, C′ = G − B, G′ = −E. (6.10)

The solution of this system is

E = α, B = αy + β, G = −αy + γ, C = −y2 +
(
γ − β

)
y + δ, (6.11)

where α, β, γ, δ are arbitrary constants subject to the constraint βγ − αδ = 1. First integrals for
this solution are I1 = β + γ, I2 = (1/2)(β2 + γ2 + 2αδ).

With the choiceM = 0,N = 1 and under the constraint I1 = B +G = 0 the system (6.8)
takes the form

B′ = (1 + C)E, E′ = −BE, C′ = −(2 + C)B. (6.12)



18 Advances in Mathematical Physics

This system can be written as a single equation in the different equivalent forms. One of them
is

(
E′)2 + αE4 − 2E3 + E2 = 0, (6.13)

where α is an arbitrary constant and

B2 = −1 − αE2 + 2E, C = αE − 2, G = −B. (6.14)

The second integral is equal to −1.
Solutions of (6.13) can be expressed through the elliptic integrals. Solutions of (6.13)

and the formulae (6.14) define deformations of the structure constants driven by DDA L3.

7. Solvable DDAs

(1) For the solvable DDA L4 the relations of (4.5) imply that

[
pj , ϕ(x)

]
= (T − 1)ϕ(x)pj , j = 1, 2, (7.1)

where ϕ(x) is an arbitrary function and T is the shift operator Tϕ(x) = ϕ(x + 1). With the use
of (7.1) one arrives at the following CS:

C1TC2 = C2TC1. (7.2)

For nondegenerated matrix C1 (7.2) is equivalent to the equation T(C2C
−1
1 ) = C−1

1 C2 or

TU = C−1
1 UC1, (7.3)

where U � C2C
−1
1 . Using this form of the CS, one promptly concludes that the CS (7.2) has

three independent first integrals:

I1 = tr
(
C2C

−1
1

)
, I2 =

1
2
tr
(
C2C

−1
1

)2
, I3 =

1
3
tr
(
C2C

−1
1

)3
, (7.4)

and it is representable as the commutativity condition for the linear system:

ΦC2C
−1
1 = λΦ,

TΦ = ΦC1.
(7.5)
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For the two-dimensional algebra A one has the CS (7.2) with the matrices (5.12). It is
the system of four equations for six functions:

BTE + ETG = ETB +MTC,

BTM + ETN = ETE +MTG,

CTE +GTG = GTB +NTC,

CTM +GTN = GTE +NTG.

(7.6)

Choosing B and C as free functions and assuming that BG − CE/= 0, one can easily
resolve (7.6) with respect to TE, TG, TM, TN. For instance, with B = C = 1 one gets the
following four-dimensional mapping:

TE = M − E
M −N

E −G
, TG = 1 +

M −N

E −G
,

TM = N + (N −G)
M −N

E −G
−G

(
M −N

E −G

)2

,

TN = M + (1 − E)
M −N

E −G
+
(
M −N

E −G

)2

.

(7.7)

(2) In a similar manner one finds the CS associated with the solvable DDA L5. Since in
this case

[
p1, ϕ(x)

]
= (T − 1)ϕ(x)p1,

[
p2, ϕ(x)

]
=
(
T−1 − 1

)
ϕ(x)p2, (7.8)

the CS takes the form

C1TC2 = C2T
−1C1. (7.9)

For nondegenerated C2 it is equivalent to

TV = C2VC−1
2 , (7.10)

where V � T−1C1 · C2. Similar to the previous case the CS has three first integrals:

I1 = tr(C1TC2), I2 =
1
2
tr (C1TC2)2, I3 =

1
3
tr (C1TC2)3, (7.11)

and it is equivalent to the compatibility condition for the linear system:

(
T−1C1

)
C2Φ = λΦ,

TΦ = C2Φ.

(7.12)



20 Advances in Mathematical Physics

Note that the CS (7.9) is of the form (3.11) with T1 = T, T2 = T−1. Thus, the deformations
generated by L5 can be considered as the reductions of the discrete deformations (3.11) under
the constraint T1T2Cn

jk
= Cn

jk
.

A class of solutions of the CS (7.9) is given by

Cj = g−1Tjg, (7.13)

where g is 3 × 3 matrix and T0 = 1, T1 = T, T2 = T−1. Since Cn
jk

= Cn
kj
, one has Tjgm

l
= Tlg

m
j and

hence gm
j = TjΦm where Φ0,Φ1,Φ2 are arbitrary functions. So, this subclass of deformations

are defined by three arbitrary functions.
To describe the isoassociative deformations for which C1(x)C2(x) = C2(x)C1(x) for all

x these functions should obey the systems of equations:

2∑

l,t=0

TjTtΦn ·
(
g−1
)t
l
· TkTmΦl =

2∑

l,t=0

TkTtΦn ·
(
g−1
)t
l
· TjTmΦl, j, k, n,m = 0, 1, 2. (7.14)

It is a version of the discrete oriented associativity equation.
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