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We show that a nonlinear equation that represents third-order approximation of long wavelength,
small amplitude waves of inviscid and incompressible fluids is integrable for a particular choice of
its parameters, since in this case it is equivalent with an integrable equation which has recently
appeared in the literature. We also discuss the integrability of both second- and third-order
approximations of additional cases.

1. Introduction

The one-dimensional motion of solitary waves of inviscid and incompressible fluids has been
the subject of research for more than a century [1]. Probably, one of the most important results
in the above study was the derivation of the famous Korteweg-de Vries (KdV) equation [2]

ut + ux + αuux + βuxxx = 0. (1.1)

At first, the equation was difficult to be examined due to the nonlinearity. The first important
step was made with the numerical discovery of soliton solutions by Zabusky and Kruskal
[3]. Soon thereafter great progress was made by the discovery of the Lax Pair representation
[4] and the Inverse Scattering Transform [5]. The laters results led to a new notion of
integrability. More specifically, according to this notion, a partial differential equation is said
to be “completely integrable” if it is linearizable through a Lax Pair; thus, it is solvable via the
Inverse Scattering Transform (see, e.g., [6]).

Equation (1.1) represents a first-order approximation in the study of long wavelength,
small amplitude waves of inviscid and incompressible fluids. Allowing the appearance
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of higher-order terms in α and β, one can obtain more complicated equations. Two such
equations, including second- and third-order terms, were proposed in [7, 8] and have,
respectively, the forms

ut + ux + αuux + βuxxx + α2ρ1u
2ux + αβ

(
ρ2uuxxx + ρ3uxuxx

)
= 0, (1.2)

ut + ux + αuux + βuxxx + α2ρ1u
2ux + αβ

(
ρ2uuxxx + ρ3uxuxx

)

+ α3ρ4u
3ux + α2β

(
ρ5u

2uxxx + ρ6uuxuxx + ρ7u
3
x

)
= 0.

(1.3)

Equation (1.2) was first examined both analytically and numerically in [9]. The
violation of the Painlevé property in many cases, together with a numerical study of the
reduction u = u(x) in the complex x-plane, gave strong indications that, in general, this
equation is not integrable. Consequently, (1.2)was examined in [10, 11] and it was found that
it possesses solitary wave solutions, which, for small values of the parameters α and β, behave
like solitons. New wave solutions of both (1.2) and (1.3) were also examined numerically in
[12] and were also found to behave like solitons.

Equation (1.2) was further examined in [13–20], while (1.3) was examined in [18, 21,
22]. Although an enormous amount of new solutions was presented, no progress has been
made regarding the integrability of these equations.

In this paper we show that, for arbitrary ρ1 and

ρ2 = 4ρ1, ρ3 = 2ρ1, ρ4 = 0, ρ5 = ρ6 = 4ρ21, ρ7 = −8ρ
2
1

9
, (1.4)

equation (1.3) is equivalent to an integrable equation recently proposed by Qiao and Liu [23].
We, thus, reveal an integrable case of (1.3) itself. We also discuss the existence of additional
integrable cases for both (1.2) and (1.3).

2. An Integrable Case of (1.3)

Recently, Qiao and Liu [23] proposed a new integrable equation, namely,

mt =
1
2

(
1
m2

)

xxx

− 1
2

(
1
m2

)

x

. (2.1)

The integrability follows directly from the fact that the equation admits a Lax Pair; thus, as
mentioned above, is solvable by the Inverse Scattering Transform.

It is quite easy to prove that (2.1) is actually a subcase of (1.3). More specifically, we
first set

m = v−2/3, (2.2)
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thus, (2.1) becomes

vt − v2vx + v2vxxx + vvxvxx − 2
9
v3
x = 0. (2.3)

We then set

u = a1v(X, t) + a2, X = a3x + a4t, (2.4)

where ai are constants; substitute in (1.3), divide by a1, and write x instead of X. We thus
obtain

vt +
[
a3

(
1 + αa2 + α2a2

2ρ1 + α3a3
2ρ4

)
+ a4

]
vx + αa1a3

(
1 + 2αa2ρ1 + 3α2a2

2ρ4
)
vvx

+ βa3
3

(
1 + αa2ρ2 + α2a2

2ρ5
)
vxxx + α2a2

1a3
(
ρ1 + 3αa2ρ4

)
v2vx

+ αβa1a
3
3

[(
ρ2 + 2αa2ρ5

)
vvxxx +

(
ρ3 + αa2ρ6

)
vxvxx

]
+ α3a3

1a3ρ4v
3vx

+ α2βa2
1a

3
3

(
ρ5v

2vxxx + ρ6vvxvxx + ρ7v
3
x

)
= 0.

(2.5)

Clearly, (2.3) and (2.5) are equivalent if the following terms vanish:

A1 = a3

(
1 + αa2 + α2a2

2ρ1 + α3a3
2ρ4

)
+ a4,

A2 = αa1a3

(
1 + 2αa2ρ1 + 3α2a2

2ρ4
)
,

A3 = βa3
3

(
1 + αa2ρ2 + α2a2

2ρ5
)
,

A4 = α2a2
1a3

(
ρ1 + 3αa2ρ4

)
+ 1,

A5 = αβa1a
3
3

(
ρ2 + 2αa2ρ5

)
,

A6 = αβa1a
3
3

(
ρ3 + αa2ρ6

)
,

A7 = α3a3
1a3ρ4,

A8 = α2βa2
1a

3
3ρ5 − 1,

A9 = α2βa2
1a

3
3ρ6 − 1,

A10 = α2βa2
1a

3
3ρ7 +

2
9
.

(2.6)

Since αβa1a3 /= 0, relations A7 = 0, A2 = 0, and A6 = 0 imply, respectively, that

ρ4 = 0, a2 = − 1
2αρ1

, ρ6 = 2ρ1ρ3, (2.7)



4 Advances in Mathematical Physics

while relations A3 = 0 and A5 = 0 imply that

ρ2 = 4ρ1, ρ5 = 4ρ21. (2.8)

Then, relations A4 = 0, A1 = 0, A9 = 0, and A10 = 0 yield, respectively,

a3 = − 1
α2a2

1ρ1
, a4 =

4ρ1 − 1

4α2a2
1ρ

2
1

, ρ3 = −α
4a4

1ρ
2
1

2β
, ρ7 =

2α4a4
1ρ

3
1

9β
. (2.9)

Finally,

A8 = 0 =⇒ a4
1 = − 4β

α4ρ1
. (2.10)

We, thus, conclude with relations (1.4), while ρ1 remains arbitrary.

3. Discussion

In [9] it was shown that (1.2) does not pass the classical Painlevé test [24, 25] for any
combination of the ρi parameters, except of course for the cases ρ1 = ρ2 = ρ3 = 0 and ρ2 =
ρ3 = 0 in which it reduces to KdV and modified KdV, respectively. However, as also stated in
[9], there are infinitely many cases for which the equation has only algebraic singularities,
that is, it admits the so-called weak-Painlevé property [26]. Although this property does
not constitute a strong indication for integrability, there are still many integrable equations
admitting only algebraic singularities (see, e.g., [27]).

On the other hand, at least to our knowledge, no results regarding integrable cases of
(1.3) have appeared in the bibliography before. Equation (1.3) is highly nonlinear and most
probably it is not integrable in general. However, as shown in the previous section, there is at
least one nontrivial combination of the ρi parameters, for which it is completely integrable.

Based on the above statements, we believe that it would be interesting to study
whether there are any integrable cases for (1.2) or any additional integrable cases for (1.3).
We hope to present results in this direction in a future publication.
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