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Quantum entanglement plays crucial roles in quantum information processing. Quantum
entangled states have become the key ingredient in the rapidly expanding field of quantum
information science. Although the nonclassical nature of entanglement has been recognized for
many years, considerable efforts have been taken to understand and characterize its properties
recently. In this review, we introduce some recent results in the theory of quantum entanglement.
In particular separability criteria based on the Bloch representation, covariance matrix, normal
form and entanglement witness, lower bounds, subadditivity property of concurrence and tangle,
fully entangled fraction related to the optimal fidelity of quantum teleportation, and entanglement
distillation will be discussed in detail.

1. Introduction

Entanglement is the characteristic trait of quantum mechanics, and it reflects the property
that a quantum system can simultaneously appear in two or more different states [1]. This
feature implies the existence of global states of composite system which cannot be written
as a product of the states of individual subsystems. This phenomenon [2], now known
as “quantum entanglement,” plays crucial roles in quantum information processing [3].
Quantum entangled states have become the key ingredient in the rapidly expanding field
of quantum information science, with remarkable prospective applications such as quantum
computation [3, 4], quantum teleportation [5–9], dense coding [10], quantum cryptographic
schemes [11–13], entanglement swapping [14–18], and remote states preparation (RSP) [19–
24]. All such effects are based on entanglement and have been demonstrated in pioneering
experiments.
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It has become clear that entanglement is not only the subject of philosophical debates,
but also a new quantum resource for tasks which cannot be performed by means of classical
resources. Although considerable efforts have been taken to understand and characterize
the properties of quantum entanglement recently, the physical character and mathematical
structure of entangled states have not been satisfactorily understood yet [25, 26]. In this
review we mainly introduce some recent results related to our researches on several basic
questions in this subject.

(1) Separability of Quantum States

We first discuss the separability of a quantum states; namely, for a given quantum state, how
we can know whether or not it is entangled.

For pure quantum states, there are many ways to verify the separability. For instance,
for a bipartite pure quantum state the separability is easily determined in terms of its Schmidt
numbers. For multipartite pure states, the generalized concurrence given in [27] can be used
to judge if the state is separable or not. In addition separable states must satisfy all possible
Bell inequalities [28].

For mixed states we still have no general criterion. The well-known PPT (partial
positive transposition) criterion was proposed by Peres in 1996 [29]. It says that for
any bipartite separable quantum state the density matrix must be positive under partial
transposition. By using the method of positive maps Horodecki et al. [30] showed that
the Peres’ criterion is also sufficient for 2 × 2 and 2 × 3 bipartite systems. And for higher
dimensional states, the PPT criterion is only necessary. Horodecki [31] has constructed some
classes entangled states with positive partial transposes for 3 × 3 and 2 × 4 systems. States
of this kind are said to be bound entangled (BE). Another powerful operational criterion is
the realignment criterion [32, 33]. It demonstrates a remarkable ability to detect many bound
entangled states and even genuinely tripartite entanglement [34]. Considerable efforts have
been made in finding stronger variants and multipartite generalizations for this criterion
[35–39]. It was shown that PPT criterion and realignment criterion are equivalent to the
permutations of the density matrix’s indices [34]. Another important criterion for separability
is the reduction criterion [40, 41]. This criterion is equivalent to the PPT criterion for 2 ×N
composite systems. Although it is generally weaker than the PPT, the reduction criteria have
tight relation to the distillation of quantum states.

There are also some other necessary criteria for separability. Nielsen and Kempe [42]
presented a necessary criterion called majorization: the decreasing ordered vector of the
eigenvalues for ρ is majorized by that of ρA1 or ρA2 alone for a separable state. That is, if a state
ρ is separable, then λ↓ρ ≺ λ↓ρA1

, λ↓ρ ≺ λ↓ρA2
. Here λ↓ρ denotes the decreasing ordered vector of the

eigenvalues of ρ. A d-dimensional vector x↓ is majorized by y↓, x↓ ≺ y↓, if
∑k

j=1 x
↓
j ≤
∑k

j=1 y
↓
j

for k = 1, . . . , d − 1 and the equality holds for k = d. Zeros are appended to the vectors λ↓
ρA1 ,A2

such that their dimensions are equal to the one of λ↓ρ.
In [31], another necessary criterion called range criterion was given. If a bipartite state

ρ acting on the spaceHA⊗HB is separable, then there exists a family of product vectors ψi ⊗ φi
such that (i) they span the range of ρ; (ii) the vector {ψi ⊗φ∗i }

k
i=1 spans the range of ρTB , where

∗ denotes complex conjugation in the basis in which partial transposition was performed and
ρTB is the partially transposed matrix of ρ with respect to the subspace B. In particular, any of
the vectors ψi ⊗ φ∗i belongs to the range of ρ.
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Recently, some elegant results for the separability problem have been derived. In [43–
45], a separability criteria based on the local uncertainty relations (LURs) was obtained. The
authors show that, for any separable state ρ ∈ HA ⊗HB,

1 −
∑

k

〈
GA
k ⊗G

B
k

〉
− 1

2

〈
GA
k ⊗ I − I ⊗G

B
k

〉2
≥ 0, (1.1)

whereGA
k orGB

k are arbitrary local orthogonal and normalized operators (LOOs) inHA⊗HB.
This criterion is strictly stronger than the realignment criterion. Thus more bound entangled
quantum states can be recognized by the LUR criterion. The criterion is optimized in [46] by
choosing the optimal LOOs. In [47] a criterion based on the correlation matrix of a state
has been presented. The correlation matrix criterion is shown to be independent of PPT
and realignment criterion [48], that is, there exist quantum states that can be recognized by
correlation criterion while the PPT and realignment criterion fail. The covariance matrix of
a quantum state is also used to study separability in [49]. It has been shown that the LUR
criterion, including the optimized one, can be derived from the covariance matrix criterion
[50].

(2) Measure of Quantum Entanglement

One of the most difficult and fundamental problems in entanglement theory is to quantify
entanglement. The initial idea to quantify entanglement was connected with its usefulness in
terms of communication [51]. A good entanglement measure has to fulfill some conditions
[52]. For bipartite quantum systems, we have several good entanglement measures such as
Entanglement of Formation (EOF), Concurrence, and Tangle ctc. For two-qubit systems it
has been proved that EOF is a monotonically increasing function of the concurrence and
an elegant formula for the concurrence was derived analytically by Wootters [53]. However
with the increasing dimensions of the subsystems the computation of EOF and concurrence
become formidably difficult. A few explicit analytic formulae for EOF and concurrence have
been found only for some special symmetric states [54–58].

The first analytic lower bound of concurrence for arbitrary dimensional bipartite
quantum states was derived by Mintert et al. in [59]. By using the positive partial
transposition (PPT) and realignment separability criterion, analytic lower bounds on EOF
and concurrence for any dimensional mixed bipartite quantum states have been derived
in [60, 61]. These bounds are exact for some special classes of states and can be used to
detect many bound entangled states. In [62] another lower bound on EOF for bipartite states
has been presented from a new separability criterion [63]. A lower bound of concurrence
based on local uncertainty relations (LURs) criterion is derived in [64]. This bound is further
optimized in [46]. The lower bound of concurrence for tripartite systems has been studied in
[65]. In [66, 67] the authors presented lower bounds of concurrence for bipartite systems
by considering the “two-qubit” entanglement of bipartite quantum states with arbitrary
dimensions. It has been shown that this lower bound has a tight relationship with the
distillability of bipartite quantum states. Tangle is also a good entanglement measure that
has a close relation with concurrence, as it is defined by the square of the concurrence for a
pure state. It is also meaningful to derive tight lower and upper bounds for tangle [68].

In [69] Mintert et al. proposed an experimental method to measure the concurrence
directly by using joint measurements on two copies of a pure state. Then Walborn et al.
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presented an experimental determination of concurrence for two-qubit states [70, 71], where
only one-setting measurement is needed, but two copies of the state have to be prepared
in every measurement. In [72] another way of experimental determination of concurrence
for two-qubit and multiqubit states has been presented, in which only one copy of the state
is needed in every measurement. To determine the concurrence of the two-qubit state used
in [70, 71], also one-setting measurement is needed, which avoids the preparation of the
twin states or the imperfect copy of the unknown state, and the experimental difficulty is
dramatically reduced.

(3) Fidelity of Quantum Teleportation and Distillation

Quantum teleportation, or entanglement-assisted teleportation, is a technique used to
transfer information on a quantum level, usually from one particle (or series of particles)
to another particle (or series of particles) in another location via quantum entanglement. It
does not transport energy or matter, nor does it allow communication of information at super
luminal (faster than light) speed.

In [5–7], Bennett et al. first presented a protocol to teleport an unknown qubit state by
using a pair of maximally entangled pure qubit state. The protocol is generalized to transmit
high-dimensional quantum states [8, 9]. The optimal fidelity of teleportation is shown to be
determined by the fully entangled fraction of the entangled resource which is generally a
mixed state. Nevertheless similar to the estimation of concurrence, the computation of the
fully entangled fraction for a given mixed state is also very difficult.

The distillation protocol has been presented to get maximally entangled pure states
from many entangled mixed states by means of local quantum operations and classical
communication (LQCC) between the parties sharing the pairs of particles in this mixed state
[73–76]. Bennett et al. first derived a protocol to distill one maximally entangled pure Bell
state from many copies of not maximally entangled quantum mixed states in [73] in 1996.
The protocol is then generalized to distill any bipartite quantum state with higher dimension
by M. Horodecki and P. Horodecki in 1999 [77]. It is proven that a quantum state can be
always distilled if it violates the reduced matrix separability criterion [77].

This review mainly contains three parts. In Section 2 we investigate the separability
of quantum states. We first introduce several important separability criteria. Then we discuss
the criteria by using the Bloch representation of the density matrix of a quantum state. We also
study the covariance matrix of a quantum density matrix and derive separability criterion for
multipartite systems. We investigate the normal forms for multipartite quantum states at the
end of this section and show that the normal form can be used to improve the power of
these criteria. In Section 3 we mainly consider the entanglement measure concurrence. We
investigate the lower and upper bounds of concurrence for both bipartite and multipartite
systems. We also show that the concurrence and tangle of two entangled quantum states
will be always larger than that of one, even if both of the two states are bound entangled
(not distillable). In Section 4 we study the fully entangled fraction of an arbitrary bipartite
quantum state. We derive precise formula of fully entangled fraction for two-qubit system.
For bipartite system with higher dimension we obtain tight upper bounds which can not only
be used to estimate the optimal teleportation fidelity but also help to improve the distillation
protocol. We further investigate the evolution of the fully entangled fraction when one of the
bipartite system undergoes a noisy channel. We give a summary and conclusion in the last
section.
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2. Separability Criteria and Normal Form

A multipartite pure quantum state ρ12···N ∈ H1 ⊗H2 ⊗ · · · ⊗HN is said to be fully separable if
it can be written as

ρ12···N = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN, (2.1)

where ρ1 and ρ2, . . . , ρN are reduced density matrices defined as ρ1 = Tr23···N[ρ12···N], ρ2 =
Tr13···N[ρ12···N], . . . , ρN = Tr12···N−1[ρ12···N]. This is equivalent to the condition

ρ12···N =
∣
∣ψ1
〉〈
ψ1
∣
∣ ⊗
∣
∣φ2
〉〈
φ2
∣
∣ ⊗ · · · ⊗

∣
∣μN
〉〈
μN
∣
∣, (2.2)

where |ψ1〉 ∈ H1, |φ2〉 ∈ H2, . . . , |μN〉 ∈ HN .
A multipartite quantum mixed state ρ12···N ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN is said to be fully

separable if it can be written as

ρ12···N =
∑

i

qiρi
1 ⊗ ρi2 ⊗ · · · ⊗ ρiN, (2.3)

where ρi1, ρi2, . . . , ρiN are the reduced density matrices with respect to the systems 1, 2, . . . ,N,
respectively, qi > 0, and

∑
i qi = 1. This is equivalent to the condition

ρ12···N =
∑

i

pi
∣
∣
∣ψ1

i

〉〈
ψ1
i

∣
∣
∣ ⊗
∣
∣
∣φ2

i

〉〈
φ2
i

∣
∣
∣ ⊗ · · · ⊗

∣
∣
∣μNi

〉〈
μNi

∣
∣
∣, (2.4)

where |ψ1
i 〉, |φ

2
i 〉, . . . , |μ

N
i 〉 are normalized pure states of systems 1, 2, . . . ,N, respectively, pi >

0, and
∑

i pi = 1.
For pure states, the definition (2.1) itself is an operational separability criterion. In

particular, for bipartite case, there are Schmidt decompositions.

Theorem 2.1 (see Schmidt decomposition in [78]). Suppose that |ψ〉 ∈ HA ⊗HB is a pure state
of a composite system, AB, then there exist orthonormal states |iA〉 for system A and orthonormal
states |iB〉 for system B such that

∣
∣ψ
〉
=
∑

i

λi|iA〉|iB〉, (2.5)

where λi are nonnegative real numbers satisfying
∑

i λi
2 = 1, known as Schmidt coefficients.

|iA〉 and |iB〉 are called Schmidt bases with respect to HA and HB. The number of
nonzero values λi is called Schmidt number, also known as Schmidt rank, which is invariant
under unitary transformations on system A or system B. For a bipartite pure state |ψ〉, |ψ〉 is
separable if and only if the Schmidt number of |ψ〉 is one.

For multipartite pure states, one has no such Schmidt decomposition. In [79] it has
been verified that any pure three-qubit state |Ψ〉 can be uniquely written as

|Ψ〉 = λ0|000〉 + λ1e
iψ |100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (2.6)
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with normalization condition λi ≥ 0, 0 ≤ ψ ≤ π , where
∑

i μi = 1, μi ≡ λ2
i . Equation (2.6) is

called generalized Schmidt decomposition.
For mixed states it is generally very hard to verify whether a decomposition like

(2.3) exists. For a given generic separable density matrix, it is also not easy to find the
decomposition (2.3) in detail.

2.1. Separability Criteria for Mixed States

In this section we introduce several separability criteria and the relations among themselves.
These criteria have also tight relations with lower bounds of entanglement measures and
distillation that will be discussed in the next section.

2.1.1. Partial Positive Transpose Criterion

The positive partial transpose (PPT) criterion provided by Peres [29] says that if a bipartite
state ρAB ∈ HA ⊗HB is separable, then the new matrix ρTBAB with matrix elements defined in
some fixed product basis as

〈m|
〈
μ
∣
∣ρTBAB|n〉|ν〉 ≡ 〈m|〈ν|ρAB|n〉

∣
∣μ
〉

(2.7)

is also a density matrix (i.e., it has nonnegative spectrum). The operation TB, called partial
transpose, just corresponds to the transposition of the indices with respect to the second
subsystem B. It has an interpretation as a partial time reversal [80].

Afterwards Horodecki et al. showed that Peres’ criterion is also sufficient for 2 × 2
and 2 × 3 bipartite systems [30]. This criterion is now called PPT or Peres-Horodecki (P-
H) criterion. For high-dimensional states, the P-H criterion is only necessary. Horodecki has
constructed some classes of families of entangled states with positive partial transposes for
3 × 3 and 2 × 4 systems [31]. States of this kind are said to be bound entangled (BE).

2.1.2. Reduced Density Matrix Criterion

Cerf et al. [81] and M. Horodecki and P. Horodecki [82], independently, introduced a map
Γ : ρ → TrB[ρAB] ⊗ I − ρAB (I ⊗ TrA[ρAB] − ρAB), which gives rise to a simple necessary
condition for separability in arbitrary dimensions, called the reduction criterion. If ρAB is
separable, then

ρA ⊗ I − ρAB ≥ 0, I ⊗ ρB − ρAB ≥ 0, (2.8)

where ρA = TrB[ρAB], ρB = TrA[ρAB]. This criterion is simply equivalent to the P-H criterion
for 2×n composite systems. It is also sufficient for 2×2 and 2×3 systems. In higher dimensions
the reduction criterion is weaker than the P-H criterion.
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2.1.3. Realignment Criterion

There is yet another class of criteria based on linear contractions on product states. They stem
from the new criterion discovered in [33, 83] called computable cross-norm (CCN) criterion
or matrix realignment criterion which is operational and independent on PPT test [29]. If a
state ρAB is separable, then the realigned matrix R(ρ) with elements R(ρ)ij,kl = ρik,jl has trace
norm not greater than one:

∥
∥R
(
ρ
)∥
∥
KF ≤ 1. (2.9)

Quite remarkably, the realignment criterion can detect some PPT entangled (bound
entangled) states [33, 83] and can be used for construction of some nondecomposable maps.
It also provides nice lower bound for concurrence [61].

2.1.4. Criteria Based on Bloch Representations

Any Hermitian operator on an N-dimensional Hilbert space H can be expressed according
to the generators of the special unitary group SU(N) [84]. The generators of SU(N) can
be introduced according to the transition-projection operators Pjk = |j〉〈k|, where |i〉, i =
1, . . . ,N, are the orthonormal eigenstates of a linear Hermitian operator onH. Set

ωl = −
√

2
l(l + 1)

(P11 + P22 + · · · + Pll − lPl+1,l+1),

ujk = Pjk + Pkj , vjk = i
(
Pjk − Pkj

)
,

(2.10)

where 1 ≤ l ≤N − 1 and 1 ≤ j < k ≤N. We get a set of N2 − 1 operators

Γ ≡ {ωl,ω2, . . . , ωN−1, u12, u13, . . . , v12, v13, . . .}, (2.11)

which satisfies the relations

Tr[λi] = 0, Tr
[
λiλj
]
= 2δij , ∀λi ∈ Γ, (2.12)

and thus generate the SU(N) [85].
Any Hermitian operator ρ in H can be represented in terms of these generators of

SU(N) as

ρ =
1
N
IN +

1
2

N2−1∑

j=1

rjλj , (2.13)

where IN is a unit matrix and r = (r1, r2, . . . , rN2−1) ∈ R
N2−1 and r is called Bloch vector. The set

of all the Bloch vectors that constitute a density operator is known as the Bloch vector space
B(RN2−1).
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A matrix of the form (2.13) is of unit trace and Hermitian, but it might not be positive.
To guarantee the positivity restrictions must be imposed on the Bloch vector. It is shown that
B(RN2−1) is a subset of the ball DR(RN2−1) of radius R =

√
2(1 − 1/N), which is the minimum

ball containing it, and that the ball Dr(RN2−1) of radius r =
√

2/N(N − 1) is included in
B(RN2−1) [86], that is,

Dr

(
R
N2−1

)
⊆ B
(
R
N2−1

)
⊆ DR

(
R
N2−1

)
. (2.14)

Let the dimensions of systems A, B, and C be dA = N1, dB = N2, and dC = N3,
respectively. Any tripartite quantum states ρABC ∈ HA ⊗HB ⊗HC can be written as

ρABC = IN1 ⊗ IN2 ⊗M0 +
N2

1−1∑

i=1

λi(1) ⊗ IN2 ⊗Mi +
N2

2−1∑

j=1

IN1 ⊗ λj(2) ⊗ M̃j

+
N2

1−1∑

i=1

N2
2−1∑

j=1

λi(1) ⊗ λj(2) ⊗Mij,

(2.15)

where λi(1), λj(2) are the generators of SU(N1) and SU(N2); Mi, M̃j , and Mij are operators
ofHC.

Theorem 2.2. Let r ∈ R
N2

1−1, s ∈ R
N2

2−1 and |r| ≤
√

2/N1(N1 − 1), |s| ≤
√

2/N2(N2 − 1). For a
tripartite quantum state ρ ∈ HA ⊗HB ⊗HC with representation (2.15), one has [87]

M0 −
N2

1−1∑

i=1

riMi −
N2

2−1∑

j=1

sjM̃j +
N2

1−1∑

i=1

N2
2−1∑

j=1

risjMij ≥ 0. (2.16)

Proof. Since r ∈ R
N2

1−1, s ∈ R
N2

2−1 and |r| ≤
√

2/N1(N1 − 1), |s| ≤
√

2/N2(N2 − 1), we have that

A1 ≡ (1/2)((2/N1)I −
∑N2

1−1
i=1 riλi(1)) and A2 ≡ (1/2)((2/N2)I −

∑N2
2−1

j=1 sjλj(2)) are positive

Hermitian operators. Let A =
√
A1 ⊗

√
A2 ⊗ IN3 . Then AρA ≥ 0 and (AρA)† = AρA. The

partial trace of AρA overHA (andHB) should be also positive. Hence

0 ≤ TrAB
[
AρA

]

= TrAB

[

A1 ⊗A2 ⊗M0 +
∑

i

√
A1λi(1)

√
A1 ⊗A2 ⊗Mi

+
∑

j

A1 ⊗
√
A2λj(2)

√
A2 ⊗ M̃j +

∑

ij

√
A1λi(1)

√
A1 ⊗

√
A2λj(2)

√
A2 ⊗Mij

⎤

⎦

=M0 −
N2

1−1∑

i=1

riMi −
N2

2−1∑

j=1

sjM̃j +
N2

1−1∑

i=1

N2
2−1∑

j=1

risjMij .

(2.17)
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Formula (2.16) is valid for any tripartite state. By setting s = 0 in (2.16), one can get a
result for bipartite systems.

Corollary 2.3. Let ρAB ∈ HA⊗HB, which can be generally written as ρAB = IN1 ⊗M0 +
∑N2

1−1
j=1 λj ⊗

Mj , then, for any r ∈ R
N2

1−1 with |r| ≤
√

2/N1(N1 − 1),M0 −
∑N2

1−1
j=1 rjMj ≥ 0.

A separable tripartite state ρABC can be written as

ρABC =
∑

i

pi
∣
∣
∣ψAi

〉〈
ψAi

∣
∣
∣ ⊗
∣
∣
∣φBi

〉〈
φBi

∣
∣
∣ ⊗
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣. (2.18)

From (2.13) it can also be represented as

ρABC =
∑

i

pi
1
2

⎛

⎝ 2
N1

IN1 +
N2

1−1∑

k=1

a
(k)
i λk(1)

⎞

⎠ ⊗ 1
2

⎛

⎝ 2
N2

IN2 +
N2

2−1∑

l=1

b
(l)
i λl(2)

⎞

⎠ ⊗
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣

= IN1 ⊗ IN2 ⊗
1

N1N2

∑

i

pi
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣

+
N2

1−1∑

k=1

λk(1) ⊗ IN2 ⊗
1

2N2

∑

i

a
(k)
i pi

∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣

+
N2

2−1∑

l=1

IN1 ⊗ λl(2) ⊗
1

2N1

∑

i

b
(l)
i pi
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣

+
N2

1−1∑

k

N2
2−1∑

l

λk(1) ⊗ λl(2) ⊗
1
4

∑

i

a
(k)
i b

(l)
i pi
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣,

(2.19)

where (a(1)i , a
(2)
i , . . . , a

(N2
1−1)

i ) and (b(1)i , b
(2)
i , . . . , b

(N2
2−1)

i ) are real vectors on the Bloch sphere

satisfying |−→ai|2 =
∑N2

1−1
j=1 (a(j)i )2 = 2(1 − 1/N1) and |

−→
bi|2 =

∑N2
2−1

j=1 (b(j)i )2 = 2(1 − 1/N2).
Comparing (2.15) with (2.19), we have

M0 =
1

N1N2

∑

i

pi
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣, Mk =

1
2N2

∑

i

a
(k)
i pi

∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣,

M̃l =
1

2N1

∑

i

b
(l)
i pi
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣, Mkl =

1
4

∑

i

a
(k)
i b

(l)
i pi
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣.

(2.20)
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For any (N2
1 − 1) × (N2

1 − 1) real matrix R(1) and (N2
2 − 1) × (N2

2 − 1) real matrix R(2)
satisfying (1/(N1 − 1)2)I − R(1)TR(1) ≥ 0 and (1/(N2 − 1)2)I − R(2)TR(2) ≥ 0, we define a
new matrix

R =

⎛

⎜
⎜
⎝

R(1) 0 0

0 R(2) 0

0 0 T

⎞

⎟
⎟
⎠, (2.21)

where T is a transformation acting on an (N2
1 − 1) × (N2

2 − 1) matrix M by

T(M) = R(1)MRT (2). (2.22)

Using R, we define a new operator γR:

γR
(
ρABC

)
= IN1 ⊗ IN2 ⊗M′

0 +
N2

1−1∑

i=1

λi(1) ⊗ IN2 ⊗M′
i +

N2
2−1∑

j=1

IN1 ⊗ λj(2) ⊗ M̃′
j

+
N2

1−1∑

i=1

N2
2−1∑

j=1

λi(1) ⊗ λj(2) ⊗M′
ij ,

(2.23)

where M′
0 = M0, M

′
k
=
∑N2

1−1
m=1 Rkm(1)Mm, M̃

′
l
=
∑N2

2−1
n=1 Rln(2)M̃n, and M′

ij = (T(M))ij =
(R(1)MRT (2))ij .

Theorem 2.4. If ρABC is separable, then [87] γR(ρABC) ≥ 0.

Proof. From (2.20) and (2.23) we get

M′
0 =M0 =

1
N1N2

∑

i

pi
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣, M′

k =
1

2N2

∑

mi

Rkm(1)a
(m)
i pi

∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣,

M̃′
l =

1
2N1

∑

ni

Rln(2)b
(n)
i pi

∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣, M′

kl =
1
4

∑

mni

Rkm(1)a
(m)
i Rln(2)b

(n)
i pi

∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣.

(2.24)

A straightforward calculation gives rise to

γR
(
ρABC

)
=
∑

i

pi
1
2

⎛

⎝ 2
N1

IN1 +
N2

1−1∑

k=1

N2
1−1∑

m=1

Rkm(1)a
(m)
i λk(1)

⎞

⎠

⊗ 1
2

⎛

⎝ 2
N2

IN2 +
N2

2−1∑

l=1

N2
2−1∑

n=1

Rln(2)b
(n)
i λl(2)

⎞

⎠ ⊗
∣
∣
∣ωC

i

〉〈
ωC
i

∣
∣
∣.

(2.25)



Advances in Mathematical Physics 11

As (1/(N1 − 1)2)I − R(1)TR(1) ≥ 0 and (1/(N2 − 1)2)I − R(2)TR(2) ≥ 0, we get

∣
∣
∣
−→
a′i

∣
∣
∣

2
=
∣
∣R(1)−→ai

∣
∣2 ≤ 1

(N1 − 1)2

∣
∣−→ai
∣
∣2 =

2
N1(N1 − 1)

,

∣
∣
∣
−→
b′i

∣
∣
∣

2
=
∣
∣
∣R(2)

−→
bi
∣
∣
∣

2
≤ 1

(N2 − 1)2

∣
∣
∣
−→
bi
∣
∣
∣

2
=

2
N2(N2 − 1)

.

(2.26)

Therefore γR(ρABC) is still a density operator, that is, γR(ρABC) ≥ 0.

Theorem 2.4 gives a necessary separability criterion for general tripartite systems. The

result can be also applied to bipartite systems. Let ρAB ∈ HA ⊗HB, ρAB = IN1⊗M0+
∑N2

1−1
j=1 λj⊗

Mj . For any real (N2
1 − 1) × (N2

1 − 1) matrix R satisfying (1/(N1 − 1)2)I − RTR ≥ 0 and any
state ρAB, we define

γR
(
ρAB
)
= IN1 ⊗M0 +

N2
1−1∑

j=1

λj ⊗M′
j , (2.27)

where M′
j =
∑

k RjkMk.

Corollary 2.5. For ρAB ∈ HA ⊗HB, if there exists an R with (1/(N1 − 1)2)I − RTR ≥ 0 such that
γR(ρAB) < 0, then ρAB must be entangled.

For 2 ×N systems, the above corollary is reduced to the results in [88]. As an example
we consider the 3 × 3 istropic states

ρI =
1 − p

9
I3 ⊗ I3 +

p

3

3∑

i,j=1

|ii〉
〈
jj
∣
∣ = I3 ⊗

(
1
9
I3

)

+
5∑

i=1

λi ⊗
(
p

6
λi

)

−
8∑

i=6

λi ⊗
(
p

6
λi

)

. (2.28)

If we choose R to be Diag{1/2, 1/2, 1/2, 1/2, 1/2,−1/2,−1/2,−1/2}, we get that ρI is
entangled for 0.5 < p ≤ 1.

For tripartite case, we take the following 3 × 3 × 3 mixed state as an example:

ρ =
1 − p

27
I27 + p

∣
∣ψ
〉〈
ψ
∣
∣, (2.29)

where |ψ〉 = (1/
√

3)(|000〉 + |111〉 + |222〉)(〈000| + 〈111| + 〈222|). Taking R(1) = R(2) =
Diag{1/2, 1/2, 1/2, 1/2, 1/2,−1/2,−1/2,−1/2}, we have that ρ is entangled for 0.6248 < p ≤
1.

In fact the criterion for 2 × N systems [88] is equivalent to the PPT criterion [89].
Similarly Theorem 2.4 is also equivalent to the PPT criterion for 2 × 2 ×N systems.
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2.1.5. Covariance Matrix Criterion

In this subsection we study the separability problem by using the covariance matrix
approach. We first give a brief review of covariance matrix criterion proposed in [49]. Let
HA

d and HB
d be d-dimensional complex vector spaces and ρAB a bipartite quantum state

in HA
d
⊗ HB

d
. Let Ak (resp., Bk) be d2 observables on HA

d
(resp., HB

d
) such that they form

an orthonormal normalized basis of the observable space, satisfying Tr[AkAl] = δk,l (resp.,
Tr[BkBl] = δk,l). Consider the total set {Mk} = {Ak ⊗ I, I ⊗ Bk}. It can be proven that [44]

N2∑

k=1

(Mk)2 = dI,
N2∑

k=1

〈Mk〉2 = Tr
[
ρ2
AB

]
. (2.30)

The covariance matrix γ is defined with entries

γij
(
ρAB, {Mk}

)
=
〈MiMj〉 + 〈MjMi〉

2
− 〈Mi〉〈Mj〉, (2.31)

which has a block structure [49]

γ =

(
A C

CT B

)

, (2.32)

whereA = γ(ρA, {Ak}), B = γ(ρB, {Bk}), Cij = 〈Ai⊗Bj〉ρAB −〈Ai〉ρA〈Bj〉ρB , ρA = TrB[ρAB], and
ρB = TrA[ρAB]. Such covariance matrix has a concavity property: for a mixed density matrix
ρ =
∑

k pkρk with pk ≥ 0 and
∑

k pk = 1, one has γ(ρ) ≥
∑

k pkγ(ρk).
For a bipartite product state ρAB = ρA ⊗ ρB, C in (2.32) is zero. Generally if ρAB is

separable, then there exist states |ak〉〈ak| onHA
d
, |bk〉〈bk| onHB

d
and pk such that

γ
(
ρ
)
≥ κA ⊕ κB, (2.33)

where κA =
∑
pkγ(|ak〉〈ak|, {Ak}), κB =

∑
pkγ(|bk〉〈bk|, {Bk}).

For a separable bipartite state, it has been shown that [49]

d2∑

i=1

|Cii| ≤
(
1 − Tr

[
ρ2
A

])
+
(
1 − Tr

[
ρ2
B

])

2
. (2.34)

Criterion (2.34) depends on the choice of the orthonormal normalized basis of the
observables. In fact the term

∑d2

i=1 |Cii| has an upper bound ‖C‖KF which is invariant under
unitary transformation and can be attained by choosing proper local orthonormal observable
basis, where ‖C‖KF stands for the Ky Fan norm of C, ‖C‖KF = Tr[

√
CC†], with † denoting the

transpose and conjugation. It has been shown in [46] that if ρAB is separable, then

‖C‖KF ≤
(
1 − Tr

[
ρ2
A

])
+
(
1 − Tr

[
ρ2
B

])

2
. (2.35)
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From the covariance matrix approach, we can also get an alternative criterion. From
(2.32) and (2.33) we have that if ρAB is separable, then

X ≡
(
A − κA C

CT B − κB

)

≥ 0. (2.36)

Hence all the 2 × 2 minor submatrices of X must be positive. Namely, one has

∣
∣
∣
∣
∣

(A − κA)ii Cij

Cji (B − κB)jj

∣
∣
∣
∣
∣
≥ 0, (2.37)

that is, (A − κA)ii(B − κB)jj ≥ C2
ij . Summing over all i, j and using (2.30), we get

d2∑

i,j=1

C2
i,j ≤ (Tr[A] − Tr[κA])(Tr[B] − Tr[κB])

=
(
d − Tr

[
ρ2
A

]
− d + 1

)(
d − Tr

[
ρ2
B

]
− d + 1

)
=
(

1 − Tr
[
ρ2
A

])(
1 − Tr

[
ρ2
B

])
.

(2.38)

That is,

‖C‖2
HS ≤

(
1 − Tr

[
ρ2
A

])(
1 − Tr

[
ρ2
B

])
, (2.39)

where ‖C‖HS stands for the Euclid norm of C, that is, ‖C‖HS =
√

Tr[CC†].
Formulae (2.35) and (2.39) are independent and could be complement. When

√(
1 − Tr

[
ρ2
A

])(
1 − Tr

[
ρ2
B

])
< ‖C‖HS ≤ ‖C‖KF ≤

(
1 − Tr

[
ρ2
A

])
+
(
1 − Tr

[
ρ2
B

])

2
, (2.40)

(2.39) can recognize the entanglement but (2.35) cannot. When

‖C‖HS ≤
√(

1 − Tr
[
ρ2
A

])(
1 − Tr

[
ρ2
B

])
≤
(
1 − Tr

[
ρ2
A

])
+
(
1 − Tr

[
ρ2
B

])

2
< ‖C‖KF, (2.41)

(2.35) can recognize the entanglement while (2.39) cannot.
The separability criteria based on covariance matrix approach can be generalized to

multipartite systems. We first consider the tripartite case ρABC ∈ HA
d
⊗ HB

d
⊗ HC

d
. Take d2

observables Ak onHA, respectively, Bk onHB, respectively, Ck onHC. Set {Mk} = {Ak ⊗ I ⊗
I, I ⊗ Bk ⊗ I, I ⊗ I ⊗Ck}. The covariance matrix defined by (2.31) has then the following block
structure:

γ =

⎛

⎜
⎜
⎝

A D E

DT B F

ET FT C

⎞

⎟
⎟
⎠, (2.42)
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where A = γ(ρA, {Ak}), B = γ(ρB, {Bk}), C = γ(ρC, {Ck}), Dij = 〈Ai ⊗ Bj〉ρAB − 〈Ai〉ρA〈Bj〉ρB ,
Eij = 〈Ai ⊗ Cj〉ρAC − 〈Ai〉ρA〈Cj〉ρC , and Fij = 〈Bi ⊗ Cj〉ρBC − 〈Bi〉ρB〈Cj〉ρC .

Theorem 2.6. If ρABC is fully separable, then [90]

‖D‖2
HS ≤

(
1 − Tr

[
ρ2
A

])(
1 − Tr

[
ρ2
B

])
, (2.43)

‖E‖2
HS ≤

(
1 − Tr

[
ρ2
A

])(
1 − Tr

[
ρ2
C

])
, (2.44)

‖F‖2
HS ≤

(
1 − Tr

[
ρ2
B

])(
1 − Tr

[
ρ2
C

])
, (2.45)

2‖D‖KF ≤
(

1 − Tr
[
ρ2
A

])
+
(

1 − Tr
[
ρ2
B

])
, (2.46)

2‖E‖KF ≤
(

1 − Tr
[
ρ2
A

])
+
(

1 − Tr
[
ρ2
C

])
, (2.47)

2‖F‖KF ≤
(

1 − Tr
[
ρ2
B

])
+
(

1 − Tr
[
ρ2
C

])
. (2.48)

Proof. For a tripartite product state ρABC = ρA ⊗ ρB ⊗ ρC, D, E, and F in (2.42) are zero. If
ρABC is fully separable, then there exist states |ak〉〈ak| in HA

d
, |bk〉〈bk| in HB

d
, and |ck〉〈ck|

in HC
d

, and pk such that γ(ρ) ≥ κA ⊕ κB ⊕ κC, where κA =
∑
pkγ(|ak〉〈ak|, {Ak}), κB =

∑
pkγ(|bk〉〈bk|, {Bk}), and κC =

∑
pkγ(|ck〉〈ck|, {Ck}), that is,

Y ≡

⎛

⎜
⎜
⎝

A − κA D E

DT B − κB F

ET FT C − κC

⎞

⎟
⎟
⎠ ≥ 0. (2.49)

Thus all the 2 × 2 minor submatrices of Y must be positive. Selecting one with two rows and
columns from the first two block rows and columns of Y , we have

∣
∣
∣
∣
∣

(A − κA)ii Dij

Dji (B − κB)jj

∣
∣
∣
∣
∣
≥ 0, (2.50)

that is, (A − κA)ii(B − κB)jj ≥ |Dij |2. Summing over all i, j and using (2.30), we get

‖D‖2
HS =

d2∑

i,j=1

D2
i,j ≤ (Tr[A] − Tr[κA])(Tr[B] − Tr[κB]

=
(
d − Tr

[
ρ2
A

]
− d + 1

)(
d − Tr

[
ρ2
B

]
− d + 1

)
=
(

1 − Tr
[
ρ2
A

])(
1 − Tr

[
ρ2
B

])
,

(2.51)

which proves (2.43). Equations (2.44) and (2.45) can be similarly proved.
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From (2.50) we also have (A − κA)ii + (B − κB)ii ≥ 2|Dii|. Therefore

∑

i

|Dii| ≤
(Tr[A] − Tr[κA]) + (Tr[B] − Tr[κB]

2

=

(
d − Tr

[
ρ2
A

]
− d + 1

)
+
(
d − Tr

[
ρ2
B

]
− d + 1

)

2

=

(
1 − Tr

[
ρ2
A

])
+
(
1 − Tr

[
ρ2
B

])

2
.

(2.52)

Note that
∑d2

i=1 Dii ≤
∑d2

i=1 |Dii|. By using that Tr[MU] ≤ ‖M‖KF = Tr[
√
MM†] for any matrix

M and any unitary U [91], we have
∑d2

i=1 Dii ≤ ‖D‖KF .
Let D = U†ΛV be the singular value decomposition of D. Make a transformation of

the orthonormal normalized basis of the local orthonormal observable space Ãi =
∑

l UilAl

and B̃j =
∑

m V
∗
jmBm. In the new basis we have

D̃ij =
∑

lm

UilDlmVjm =
(
UDV †

)

ij
= Λij . (2.53)

Then (2.52) becomes

d2∑

i=1

D̃ii = ‖D‖KF ≤
(
1 − Tr

[
ρ2
A

])
+
(
1 − Tr

[
ρ2
B

])

2
, (2.54)

which proves (2.46). Equations (2.47) and (2.48) can be similarly treated.

We consider now the case that ρABC is bipartite separable.

Theorem 2.7. If ρABC is a bipartite separable state with respect to the bipartite partition of the sub-
systems A and BC (resp., AB and C; resp., AC and B), then (2.43), (2.44) and (2.46), (2.47) (resp.,
(2.44), (2.45) and (2.47), (2.48); resp., (2.43), (2.45) and (2.46), (2.48)) must hold [90].

Proof. We prove the case that ρABC is bipartite separable with respect to the A system and BC
systems partition. The other cases can be similarly treated. In this case the matrices D and E
in the covariance matrix (2.42) are zero. ρABC takes the form ρABC =

∑
m pmρ

m
A ⊗ ρ

m
BC. Define

κA =
∑
pmγ(ρmA, {Ak}), κBC =

∑
pmγ(ρmBC, {Bk ⊗ I, I ⊗ Ck}). κBC has a form

κBC =

(
κB F ′

(F ′)T κC

)

, (2.55)
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where κB =
∑
pkγ(|bk〉〈bk|, {Bk}) and κC =

∑
pkγ(|ck〉〈ck|, {Ck}), (F ′)ij =

∑
m pm(〈Bi ⊗

Cj〉ρmBC − 〈Bi〉ρmB 〈Cj〉ρmC ). By using the concavity of covariance matrix we have

γ
(
ρABC

)
≥
∑

m

pmγ
(
ρmA ⊗ ρ

m
BC

)
=

⎛

⎜
⎜
⎝

κA 0 0

0 κB F ′

0 (F ′)T κC

⎞

⎟
⎟
⎠. (2.56)

Accounting to the method used in proving Theorem 2, we get (2.43), (2.44), and (2.46), (2.47).

From Theorems 2.6 and 2.7 we have the following corollary.

Corollary 2.8. If two of the inequalities (2.43), (2.44), and (2.45) (or (2.46), (2.47), and (2.48)) are
violated, then the state must be fully entangled.

The result of Theorem 2.6 can be generalized to general multipartite case ρ ∈ H(1)
d ⊗

H(2)
d ⊗ · · · ⊗H

(N)
d . Define Âi

α = I ⊗ I ⊗ · · ·λα ⊗ I ⊗ · · · ⊗ I, where λ0 = I/d, λα (α = 1, 2, . . . , d2 − 1)
are the normalized generators of SU(d) satisfying Tr[λαλβ] = δαβ and acting on the ith system
H(i)

d
, i = 1, 2, . . . ,N. Denote {Mk} as the set of all Âi

α. Then the covariance matrix of ρ can be
written as

γ
(
ρ
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A12 · · · A1N

AT
12 A22 · · · A2N

...
...

...

AT
1N AT

2N · · · ANN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.57)

whereAii = γ(ρ, {Âi
k}) and (Aij)mn = 〈Âi

m ⊗ Â
j
n〉 − 〈Âi

m〉〈Â
j
n〉 for i /= j.

For a product state ρ12···N ,Aij , i /= j, in (2.57) are zero matrices. Define

κAii =
∑

k

pkγ
(∣
∣
∣ψik

〉〈
ψik

∣
∣
∣,
{
Âi
l

})
. (2.58)

Then for a fully separable multipartite state ρ =
∑

k pk|ψ1
k
〉〈ψ1

k
| ⊗ |ψ2

k
〉〈ψ2

k
| ⊗ · · · ⊗ |ψN

k
〉〈ψN

k
|,

one has

Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 − κA11 A12 · · · A1N

AT
12 A22 − κA22 · · · A2N

...
...

...

AT
1N AT

2N · · · ANN − κANN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

≥ 0, (2.59)

from which we have the following separability criterion for multipartite systems.
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Theorem 2.9. If a state ρ ∈ H(1)
d ⊗H

(2)
d ⊗· · ·⊗H

(N)
d is fully separable, then the following inequalities

∥
∥Aij

∥
∥2
HS
≤
(

1 − Tr
[
ρ2
i

])(
1 − Tr

[
ρ2
j

])
,

∥
∥Aij

∥
∥
KF
≤

(
1 − Tr

[
ρ2
i

])
+
(

1 − Tr
[
ρ2
j

])

2

(2.60)

must be fulfilled for any i /= j [90].

2.2. Normal Form of Quantum States

In this subsection we show that the correlation matrix (CM) criterion can be improved
from the normal form obtained under filtering transformations. Based on CM criterion
entanglement witness in terms of local orthogonal observables (LOOs) [92] for both bipartite
and multipartite systems can be also constructed.

For bipartite case, ρ ∈ H = HA ⊗HB with dimHA = M, dimHB = N, and M ≤ N is
mapped to the following form under local filtering transformations [93]:

ρ −→ ρ̃ =
(FA ⊗ FB)ρ(FA ⊗ FB)†

Tr
[
(FA ⊗ FB)ρ(FA ⊗ FB)†

] , (2.61)

where FA/B ∈ GL(M/N,C) are arbitrary invertible matrices. This transformation is also
known as stochastic local operations assisted by classical communication (SLOCC). By
the definition it is obvious that filtering transformation will preserve the separability of a
quantum state.

It has been shown that under local filtering operations one can transform a strictly
positive ρ into a normal form [94]:

ρ̃ =
(FA ⊗ FB)ρ(FA ⊗ FB)†

Tr
[
(FA ⊗ FB)ρ(FA ⊗ FB)†

] =
1

MN

(

I +
M2−1∑

i=1

ξiG
A
i ⊗G

B
i

)

, (2.62)

where ξi ≥ 0 and GA
i and GB

i are some traceless orthogonal observables. The matrices FA and
FB can be obtained by minimizing the function

f(A,B) =
Tr
[
ρ(A ⊗ B)

]

(detA)1/M (detB)1/N
, (2.63)

where A = F†AFA and B = F†BFB. In fact, one can choose F0
A ≡ |det(ρA)|1/2M(√ρA)−1, and

F0
B ≡ |det(ρ′B)|1/2N(

√
ρ′B)

−1, where ρ′B = TrA[I ⊗ (
√
ρA)

−1ρI ⊗ (√ρA)−1]. Then by iterations one
can get the optimal A and B. In particular, there is a matlab code available in [95].
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For bipartite separable states ρ, the CM separability criterion [96] says that

‖T‖KF ≤
√
MN(M − 1)(N − 1), (2.64)

where T is an (M2−1)×(N2−1) matrix with Tij =MN ·Tr[ρλAi ⊗λ
B
j ], ‖T‖KF stands for the trace

norm of T , λA/B
k

s are the generators of SU(M/N) and have been chosen to be normalized,
and Tr[λ(A/B)k λ

(A/B)
l ] = δkl.

As the filtering transformation does not change the separability of a state, one can
study the separability of ρ̃ instead of ρ. Under the normal form (2.62) the criterion (2.64)
becomes

∑

i

ξi ≤
√
MN(M − 1)(N − 1). (2.65)

In [44] a separability criterion based on local uncertainty relation (LUR) has been
obtained. It says that, for any separable state ρ,

1 −
∑

k

〈
GA
k ⊗G

B
k

〉
− 1

2

〈
GA
k ⊗ I − I ⊗G

B
k

〉2
≥ 0, (2.66)

where GA/B
k s are LOOs such as the normalized generators of SU(M/N) and GA

k = 0 for
k =M2+1, . . . ,N2. The criterion is shown to be strictly stronger than the realignment criterion
[61]. Under the normal form (2.62) criterion (2.66) becomes

1 −
∑

k

〈
GA
k ⊗G

B
k

〉
− 1

2

〈
GA
k ⊗ I − I ⊗G

B
k

〉2
= 1 − 1

MN

∑

k

ξk −
1
2

(
1
M

+
1
N

)

≥ 0, (2.67)

that is,

∑

k

ξk ≤MN − M +N
2

. (2.68)

As
√
MN(M − 1)(N − 1) ≤MN−(M+N)/2 holds for any M and N, from (2.65) and (2.68)

it is obvious that the CM criterion recognizes entanglement better when the normal form is
taken into account.
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We now consider multipartite systems. Let ρ be a strictly positive density matrix in
H =H1 ⊗H2 ⊗ · · · ⊗HN and dimHi = di. ρ can be generally expressed in terms of the SU(n)
generators λαk [97] as

ρ =
1

ΠN
i di

⎛

⎝⊗Nj Idj +
∑

{μ1}

∑

α1

T{μ1}
α1 λ

{μ1}
α1 +

∑

{μ1μ2}

∑

α1α2

T{μ1μ2}
α1α2 λ

{μ1}
α1 λ

{μ2}
α2

+
∑

{μ1μ2μ3}

∑

α1α2α3

T{μ1μ2μ3}
α1α2α3 λ

{μ1}
α1 λ

{μ2}
α2 λ

{μ3}
α3

+ · · · +
∑

{μ1μ2···μM}

∑

α1α2···αM
T{μ1μ2···μM}
α1α2···αM λ

{μ1}
α1 λ

{μ2}
α2 · · ·λ

{μM}
αM

+ · · · +
∑

α1α2···αN
T{1,2,...,N}α1α2···αM λ

{1}
α1 λ

{2}
α2 · · ·λ

{N}
αN

)

,

(2.69)

where λ{μk}αk = Id1 ⊗ Id2 ⊗ · · · ⊗ λαk ⊗ Idμk+1 ⊗ · · · ⊗ IdN with λαk appears at the μkth position and

T{μ1μ2···μM}
α1α2···αM =

∏M
i=1dμi
2M

Tr
[
ρλ
{μ1}
α1 λ

{μ2}
α2 · · ·λ

{μM}
αM

]
. (2.70)

The generalized CM criterion says that if ρ in (2.69) is fully separable, then

∥
∥
∥T{μ1,μ2,...,μM}

∥
∥
∥
KF
≤

√
√
√
√ 1

2M

M∏

k=1

dμk
(
dμk − 1

)
, (2.71)

for 2 ≤M ≤N, {μ1, μ2, . . . , μM} ⊂ {1, 2, . . . ,N}. The KF norm is defined by

∥
∥
∥T{μ1,μ2,...,μM}

∥
∥
∥
KF

= max
m=1,2,...,M

∥
∥T(m)

∥
∥
KF, (2.72)

where T(m) is a kind of matrix unfolding of T{μ1,μ2,...,μM}.
The criterion (2.71) can be improved by investigating the normal form of (2.69).

Theorem 2.10. By filtering transformations of the form

ρ̃ = F1 ⊗ F2 ⊗ · · · ⊗ FNρF†1 ⊗ F
†
2 ⊗ F

†
N, (2.73)
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where Fi ∈ GL(di,C), i = 1, 2, . . .N, followed by normalization, any strictly positive state ρ can be
transformed into a normal form [98]:

ρ =
1

ΠN
i di

⎛

⎝⊗Nj Idj +
∑

{μ1μ2}

∑

α1α2

T{μ1μ2}
α1α2 λ

{μ1}
α1 λ

{μ2}
α2

+
∑

{μ1μ2μ3}

∑

α1α2α3

T{μ1μ2μ3}
α1α2α3 λ

{μ1}
α1 λ

{μ2}
α2 λ

{μ3}
α3

+ · · · +
∑

{μ1μ2···μM}

∑

α1α2···αM
T{μ1μ2···μM}
α1α2···αM λ

{μ1}
α1 λ

{μ2}
α2 · · ·λ

{μM}
αM

+ · · · +
∑

α1α2···αN
T{1,2,...,N}α1α2···αM λ

{1}
α1 λ

{2}
α2 · · ·λ

{N}
αN

)

.

(2.74)

Proof. Let D1, D2, . . . , DN be the sets of density matrices of the N subsystems. The cartesian
product D1 ×D2 × · · · ×DN consisting of all product density matrices ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN with
normalization Tr[ρi] = 1, i = 1, 2, . . . ,N, is a compact set of matrices on the full Hilbert space
H. For the given density matrix ρ we define the following function of ρi:

f
(
ρ1, ρ2, . . . , ρN

)
=

Tr
[
ρ
(
ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN

)]

∏N
i=1 det

(
ρi
)1/di

. (2.75)

The function is well defined on the interior of D1 × D2 × · · · × DN where det ρi > 0. As ρ is
assumed to be strictly positive, we have Tr[ρ(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)] > 0. Since D1 ×D2 × · · · ×DN

is compact, we have Tr[ρ(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)] ≥ C > 0 with a lower bound C depending on ρ.
It follows that f → ∞ on the boundary of D1 × D2 × · · · × DN where at least one of

the ρis satisfies det ρi = 0. It follows further that f has a positive minimum on the interior of
D1 ×D2 × · · · ×DN with the minimum value attained for at least one product density matrix
τ1 ⊗ τ2 ⊗ · · · ⊗ τN with det τi > 0, i = 1, 2, . . . ,N. Any positive density matrix τi with det τi > 0
can be factorized in terms of Hermitian matrices Fi as

τi = F
†
i Fi, (2.76)

where Fi ∈ GL(di,C). Denote that F = F1 ⊗ F2 ⊗ · · · ⊗ FN , so that τ1 ⊗ τ2 ⊗ · · · ⊗ τN = F†F. Set
ρ̃ = FρF† and define

f̃
(
ρ1, ρ2, . . . , ρN

)
=

Tr
[
ρ̃
(
ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN

)]

∏N
i=1 det

(
ρi
)1/di

=
N∏

i=1

det (τi)1/di ·
Tr
[
ρ
(
F†1ρ1F1 ⊗ F†2ρ2F2 ⊗ · · · ⊗ F†NρNFN

)]

∏N
i=1 det (τi)1/di det

(
ρi
)1/di

=
N∏

i=1

det (τi)1/di · f
(
F†1ρ1F1, F

†
2ρ2F2, . . . , F

†
NρNFN

)
.

(2.77)
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We see that, when F†i ρiFi = τi, f̃ has a minimum and

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN =
(
F†
)−1

τ1 ⊗ τ2 ⊗ · · · ⊗ τNF−1 = I. (2.78)

Since f̃ is stationary under infinitesimal variations about the minimum, it follows that

Tr
[
ρ̃δ
(
ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN

)]
= 0 (2.79)

for all infinitesimal variations

δ
(
ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN

)
= δρ1 ⊗ Id2 ⊗ · · · ⊗ IdN + Id1 ⊗ δρ2 ⊗ Id3 ⊗ · · · ⊗ IdN

+ · · · + Id1 ⊗ Id2 ⊗ · · · ⊗ IdN−1 ⊗ δρN,
(2.80)

subjected to the constraint det(Idi +δρi) = 1, which is equivalent to Tr[δρi] = 0, i = 1, 2, . . . ,N,
using det(eA) = eTr[A] for a given matrix A. Thus, δρi can be represented by the SU

generators, δρi =
∑

k δc
i
k
λi
k
. It follows that Tr[ρ̃λ{μk}αk ] = 0 for any αk and μk. Hence the terms

proportional to λ{μk}αk in (2.69) disappear.

Corollary 2.11. The normal form of a product state inH must be proportional to the identity.

Proof. Let ρ be such a state. From (2.74), we get that

ρ̃i = Tr1,2,...,i−1,i+1,...,N
[
ρ
]
=

1
di
Idi . (2.81)

Therefore for a product state ρ we have

ρ̃ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN =
1

∏N
i=1di

⊗Ni=1Idi . (2.82)

As an example for separability of multipartite states in terms of their normal forms
(2.74), we consider the PPT entangled edge state [79]

ρ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 1

0 a 0 0 0 0 0 0

0 0 b 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0
1
c

0 0 0

0 0 0 0 0
1
b

0 0

0 0 0 0 0 0
1
a

0

1 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.83)
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mixed with noises

ρp = pρ +

(
1 − p

)

8
I8. (2.84)

Select a = 2, b = 3, and c = 0.6. Using the criterion in [97] we get that ρp is entangled for
0.92744 < p ≤ 1. But after transforming ρp to its normal form (2.74), the criterion can detect
entanglement for 0.90285 < p ≤ 1.

Here we indicate that the filtering transformation does not change the PPT property.
Let ρ ∈ HA ⊗ HB be PPT, that is, ρTA ≥ 0, and ρTB ≥ 0. Let ρ̃ be the normal form of ρ. From
(2.61) we have

ρ̃TA =

(
F∗A ⊗ FB

)
ρTA
(
FTA ⊗ F

†
B

)

Tr
[
(FA ⊗ FB)ρ(FA ⊗ FB)†

] . (2.85)

For any vector |ψ〉, we have

〈
ψ
∣
∣ρ̃TA

∣
∣ψ
〉
=

〈
ψ
∣
∣
(
F∗A ⊗ FB

)
ρTA
(
FTA ⊗ F

†
B

)∣
∣ψ
〉

Tr
[
(FA ⊗ FB)ρ(FA ⊗ FB)†

] ≡
〈
ψ ′
∣
∣ρTA

∣
∣ψ ′
〉
≥ 0, (2.86)

where |ψ ′〉 = (FTA ⊗ F
†
B)|ψ〉/

√

Tr[(FA ⊗ FB)ρ(FA ⊗ FB)†]. ρ̃TB ≥ 0 can be proved similarly. This
property is also valid for multipartite case. Hence a bound entangled state will be bound
entangled under filtering transformations.

2.3. Entanglement Witness Based on Correlation Matrix Criterion

Entanglement witness (EW) is another way to describe separability. Based on CM criterion
we can further construct entanglement witness in terms of LOOs. EW [92] is an observable of
the composite system such that (i) nonnegative expectation values in all separable states and
(ii) at least one negative eigenvalue (can recognize at least one entangled state). Consider
bipartite systems inHM

A ⊗H
N
B with M ≤N.

Theorem 2.12. For any properly selected LOOs GA
k and GB

k ,

W = I − α
N2−1∑

k=0

GA
k ⊗G

B
k

(2.87)

is an EW [98], where α =
√
MN/(

√
(M − 1)(N − 1) + 1) and

GA
0 =

1√
M

IM, GB
0 =

1√
N
IN. (2.88)
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Proof. Let ρ =
∑N2−1

l,m=0 Tlmλ
A
l ⊗ λ

B
m be a separable state, where λA/Bk are normalized generators

of SU(M/N) with λA0 = (1/
√
M)IM, λB0 = (1/

√
N)IN . Any other LOOs GA/B

k
fulfilling

(2.88) can be obtained from these λs through orthogonal transformations OA/B, GA/B
k =

∑N2−1
l=0 OA/B

kl
λl, where OA/B =

( 1 0

0 RA/B

)
and RA/B are (N2 − 1) × (N2 − 1) orthogonal matrices.

We have

Tr
[
ρW
]
= 1 − α 1√

MN
− α

N2−1∑

k=1

N2−1∑

l,m=1

RAklR
B
km Tr

[
ρ
(
λAl ⊗ λ

B
m

)]

=

√
(M − 1)(N − 1)

√
(M − 1)(N − 1) + 1

− 1
√
MN

(√
(M − 1)(N − 1) + 1

)
N2−1∑

k=1

N2−1∑

l,m=1

RAklTlmR
B
km

≥
√
MN(M − 1)(N − 1) − ‖T‖KF√
MN

(√
(M − 1)(N − 1) + 1

) ≥ 0,

(2.89)

where we have used Tr[RT] ≤ ‖T‖KF for any unitary R in the first inequality and the CM
criterion in the second inequality.

Now let ρ = (1/MN)(IMN +
∑M2−1

i=1 siλ
A
i ⊗ IN +

∑N2−1
j=1 rjIM ⊗ λBj +

∑M2−1
i=1

∑N2−1
j=1 Tijλ

A
i ⊗

λBj ) be a state in HM
A ⊗ H

N
B which violates the CM criterion. Denote σk(T) as the singular

values of T . By singular value decomposition, one has T = U†ΛV ∗, where Λ is a diagonal
matrix with Λkk = σk(T). Now choose LOOs to be GA

k
=
∑

l Uklλ
A
l

, GB
k

=
∑

m Vkmλ
B
m for

k = 1, 2, . . . ,N2 − 1 and GA
0 = (1/M)IM, GB

0 = (1/N)IN . We obtain

Tr
[
ρW
]
= 1 − α 1√

MN
− α

N2−1∑

k=1

N2−1∑

l,m=1

UklVkm Tr
[
ρ
(
λAl ⊗ λ

B
m

)]

=

√
(M − 1)(N − 1)

√
(M − 1)(N − 1) + 1

− 1
√
MN

(√
(M − 1)(N − 1) + 1

) Tr
[
UTV T

]

=

√
MN(M − 1)(N − 1) − ‖T‖KF√
MN

(√
(M − 1)(N − 1) + 1

) < 0,

(2.90)

where the CM criterion has been used in the last step.

As the CM criterion can be generalized to multipartite form [97], we can also define
entanglement witness for multipartite system inHd1

1 ⊗H
d2
2 ⊗· · ·⊗H

dN
N . Set d(M) = max{dμi , i =

1, 2, . . . ,M}. Choose LOOs G{μi}k for 0 ≤ k ≤ d(M)2 − 1 with G{μi}0 = (1/dμi)Idμi and define

W (M) = I − β(M)
d(M)2−1∑

k=0

G
{μ1}
k
⊗G{μ2}

k
⊗ · · · ⊗G{μM}

k
, (2.91)
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where β(M) =
√∏M

i=1dμi/(1+
√∏M

i=1(dμi − 1)), 2 ≤M ≤N. One can prove that (2.91) is an EW
candidate for multipartite states. First we assume that ‖T(M)‖KF = ‖T(m0)‖KF . Note that, for

any T(m0), there must exist an elementary transformation P such that
∑d(M)2−1

k=1 T{μ1μ2···μM}
kk···k =

Tr[T(m0)P]. Then for an N-partite separable state we have

Tr
[
ρW (M)

]
= 1 − β(M) 1

√∏M
i=1dμi

− β(M) 1
∏M

i=1dμi
Tr
[
T(m0)P

]

≥ 1 − β(M) 1
√∏M

i=1dμi

− β(M) 1
∏M

i=1dμi

∥
∥T(m0)

∥
∥
KF

≥ 1 − β(M) 1
√∏M

i=1dμi

− β(M) 1
∏M

i=1dμi

√
√
√
√

M∏

k=1

dμk
(
dμk − 1

)

= 0

(2.92)

for any 2 ≤ M ≤ N, where we have taken into account that P is orthogonal and
Tr[MU] ≤ ‖M‖KF for any unitary U at the first inequality. The second inequality is due
to the generalized CM criterion.

By choosing proper LOOs, it is also easy to show that W (M) has negative eigenvalues.
For example, for three-qubit case, taking the normalized Pauli matrices as LOOs, one finds a
negative eigenvalue of W (M), (1 −

√
3)/2.

3. Concurrence and Tangle

In this section, we focus on two important measures: concurrence and tangle (see [99, 100]).
An elegant formula for concurrence of two-qubit states is derived analytically by Wootters
[53, 101]. This quantity has recently been shown to play an essential role in describing
quantum phase transition in various interacting quantum many-body systems [102, 103] and
may affect macroscopic properties of solids significantly [104, 105]. Furthermore, concurrence
also provides an estimation [106, 107] for the entanglement of formation (EOF) [76], which
quantifies the required minimally physical resources to prepare a quantum state.

LetHA (resp.,HB) be anM-(resp.,N-) dimensional complex vector space with |i〉, i =
1, . . . ,M (resp., |j〉, j = 1, . . . ,N), as an orthonormal basis. A general pure state onHA ⊗HB

is of the form

|Ψ〉 =
M∑

i=1

N∑

j=1

aij |i〉 ⊗
∣
∣j
〉
, (3.1)

where aij ∈ C satisfy the normalization
∑M

i=1
∑N

j=1 aija
∗
ij = 1.

The concurrence of (3.1) is defined by [27, 108, 109]

C
(∣
∣ψ
〉)

=
√

2
(
1 − Tr

[
ρ2
A

])
, (3.2)
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where ρA = TrB[|ψ〉〈ψ|]. The definition is extended to general mixed states ρ =
∑

i pi|ψi〉〈ψi|
by the convex roof

C
(
ρ
)
= min
{pi,|ψi〉}

∑

i

piC
(∣
∣ψi
〉)
. (3.3)

For two-qubits systems, the concurrence of |Ψ〉 is given by

C(|Ψ〉) =
∣
∣
∣
〈
Ψ | Ψ̃

〉∣
∣
∣ = 2|a11a22 − a12a21|, (3.4)

where |Ψ̃〉 = σy ⊗ σy|Ψ∗〉, |Ψ∗〉 is the complex conjugate of |Ψ〉, and σy is the Pauli matrix,

σy =
(

0 −i
i 0

)
.

For a mixed two-qubit quantum state ρ, the entanglement of formation E(ρ) has a
simple relation with the concurrence [53, 101]

E
(
ρ
)
= h

⎛

⎜
⎝

1 +
√

1 − C
(
ρ
)2

2

⎞

⎟
⎠, (3.5)

where h(x) = −x log2x − (1 − x)log2(1 − x),

C
(
ρ
)
= max{λ1 − λ2 − λ3 − λ4, 0}, (3.6)

where the λis are the eigenvalues, in decreasing order, of the Hermitian matrix
√√

ρρ̃
√
ρ and

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).
Another entanglement measure called tangle is defined by

τ
(∣
∣ψ
〉)

= C2(∣∣ψ
〉)

= 2
(

1 − Tr
[
ρ2
A

])
(3.7)

for a pure state |ψ〉. For mixed state ρ =
∑

i pi|ψi〉〈ψi|, the definition is given by

τ
(
ρ
)
= min
{pi,|ψi〉}

∑

i

piτ
(∣
∣ψi
〉)
. (3.8)

For multipartite state |ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , dimHi = di, i = 1, . . . ,N, the
concurrence of |ψ〉 is defined by [110, 111]

CN

(∣
∣ψ
〉〈
ψ
∣
∣
)
= 21−N/2

√(
2N − 2

)
−
∑

α

Tr
[
ρ2
α

]
, (3.9)

where α labels all different reduced density matrices.
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Up to constant factor (3.9) can be also expressed in another way. Let H denote a d-
dimensional vector space with basis |i〉, i = 1, 2, . . . , d. An N-partite pure state in H ⊗ · · · ⊗H
is generally of the form

|Ψ〉 =
d∑

i1,i2,...iN=1

ai1,i2,...iN |i1, i2, . . . iN〉, ai1,i2,...iN ∈ C. (3.10)

Let α and α′ (resp., β and β′) be subsets of the subindices of a, associated to the same
sub Hilbert spaces but with different summing indices. α (or α′) and β (or β′) span the whole
space of the given subindix of a. The generalized concurrence of |Ψ〉 is then given by [27]

CN
d (|Ψ〉) =

√
√
√
√ d

2m(d − 1)

∑

p

d∑

{α,α′,β,β′}

∣
∣aαβaα′β′ − aαβ′aα′β

∣
∣2, (3.11)

where m = 2N−1 − 1 and
∑

p stands for the summation over all possible combinations of the
indices of α and β.

For a mixed multipartite quantum state, ρ =
∑

i pi|ψi〉〈ψi| inH1 ⊗ H2 ⊗ · · · ⊗ HN , the
corresponding concurrence is given by the convex roof:

CN

(
ρ
)
= min
{pi,|ψi}〉

∑

i

piCN

(∣
∣ψi
〉)
. (3.12)

3.1. Lower and Upper Bounds of Concurrence

Calculations of the concurrence for general mixed states are extremely difficult. However, one
can try to find the lower and the upper bounds to estimate the exact values of the concurrence
[46, 61, 64, 65].

3.1.1. Lower Bound of Concurrence from Covariance Matrix Criterion

In [61] a lower bound of C(ρ) has been obtained as

C
(
ρ
)
≥
√

2
M(M − 1)

[
Max

(∥
∥TA
(
ρ
)∥
∥,
∥
∥R
(
ρ
)∥
∥
)
− 1
]
, (3.13)

where TA and R stand for partial transpose with respect to subsystem A and the realignment,
respectively. This bound is further improved based on local uncertainty relations [64]

C
(
ρ
)
≥
M +N − 2 −

∑
iΔ

2
ρ

(
GA
i ⊗ I + I ⊗G

B
i

)

√
2M(M − 1)

, (3.14)

where GA
i and GB

i are any set of local orthonormal observables, Δ2
ρ(X) = Tr[X2ρ]− (Tr[Xρ])2.
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Bound (3.14) again depends on the choice of the local orthonormal observables. This
bound can be optimized, in the sense that a local orthonormal observable-independent up
bound of the right-hand side of (3.14) can be obtained.

Theorem 3.1. Let ρ be a bipartite state inHA
M ⊗H

B
N . Then C(ρ) satisfies [90]

C
(
ρ
)
≥

2‖C‖KF −
(
1 − Tr

[
ρ2
A

])
−
(
1 − Tr

[
ρ2
B

])

√
2M(M − 1)

. (3.15)

Proof. The other orthonormal normalized basis of the local orthonormal observable space
can be obtained from Ai and Bi by unitary transformations U and V : Ãi =

∑
l UilAl and

B̃j =
∑

m V
∗
jmBm. Select U and V so that C = U†ΛV is the singular value decomposition of C.

Then the new observables can be written as Ãi =
∑

l UilAl, B̃j = −
∑

m V
∗
jmBm. We have

∑

i

Δ2
ρ

(
Ãi ⊗ I + I ⊗ B̃i

)
=
∑

i

[
Δ2
ρA

(
Ãi

)
+ Δ2

ρA

(
B̃i
)
+ 2
(〈
Ãi ⊗ B̃i

〉
−
〈
Ãi

〉〈
B̃i
〉)]

=M − Tr
[
ρ2
A

]
+N − Tr

[
ρ2
B

]
− 2
∑

i

(
UCV †

)

ii

=M − Tr
[
ρ2
A

]
+N − Tr

[
ρ2
B

]
− 2‖C‖KF.

(3.16)

Substituting above relation to (3.14), one gets (3.15).

Bound (3.15) does not depend on the choice of local orthonormal observables. It can
be easily applied and realized by direct measurements in experiments. It is in accord with the
result in [46] where optimization of entanglement witness based on local uncertainty relation
has been taken into account. As an example, let us consider the 3 × 3 bound entangled state
[76]

ρ =
1
4

(

I9 −
4∑

i=0
|ξi〉〈ξi|

)

, (3.17)

where I9 is the 9×9 identity matrix, |ξ0〉 = (1/
√

2)|0〉(|0〉−|1〉), |ξ1〉 = (1/
√

2)(|0〉−|1〉)|2〉, |ξ2〉 =
(1/
√

2)|2〉(|1〉−|2〉), |ξ3〉 = (1/
√

2)(|1〉−|2〉)|0〉, and |ξ4〉 = (1/3)(|0〉+|1〉+|2〉)(|0〉+|1〉+|2〉). We
simply choose the local orthonormal observables to be the normalized generators of SU(3).
Formula (3.13) gives C(ρ) ≥ 0.050. Formula (3.14) gives C(ρ) ≥ 0.052 [64], while formula
(3.15) yields a better lower bound C(ρ) ≥ 0.0555.

If we mix the bound entangled state (3.17) with |ψ〉 = (1/
√

3)
∑2

i=0 |ii〉, that is,

ρ′ = (1 − x)ρ + x
∣
∣ψ
〉〈
ψ
∣
∣, (3.18)

then it is easily seen that (3.15) gives a better lower bound of concurrence than formula (3.13)
(Figure 1).
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Figure 1: Lower bounds from (3.15) (dashed line) and (3.13) (solid line) for mixed state (3.18).

3.1.2. Lower Bound of Concurrence from “Two-Qubit” Decomposition

In [67] the authors derived an analytical lower bound of concurrence for arbitrary bipartite
quantum states by decomposing the joint Hilbert space into many 2 ⊗ 2 dimensional
subspaces, which does not involve any optimization procedure and gives an effective
evaluation of entanglement together with an operational sufficient condition for the distill
ability of any bipartite quantum states.

(1) Lower Bound of Concurrence for Bipartite States

The lower bound τ2 of concurrence for bipartite states has been obtained in [67]. For a
bipartite quantum state ρ in H ⊗H, the concurrence C(ρ) satisfies

τ2
(
ρ
)
≡ d

2(d − 1)

d(d−1)/2∑

m,n=1

C2
mn

(
ρ
)
≤ C2(ρ

)
, (3.19)

where Cmn(ρ) = max{0, λ(1)mn − λ(2)mn − λ(3)mn − λ(4)mn} with λ
(1)
mn, . . . , λ

(4)
mn being the square roots of

the four nonzero eigenvalues, in decreasing order, of the non-Hermitian matrix ρρ̃mn with
ρ̃mn = (Lm ⊗ Ln)ρ∗(Lm ⊗ Ln), while Lm and Ln are the generators of SO(d).

The lower bound τ2 in (3.19) in fact characterizes all two qubits’ entanglement in a high
dimensional bipartite state. One can directly verify that there are at most 4 × 4 = 16 nonzero
elements in each matrix ρρ̃mn. These elements constitute a 4 × 4 matrix �(σy ⊗ σy)�∗(σy ⊗ σy),
where σy is the Pauli matrix, the matrix � is a submatrix of the original ρ:

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ρik,ik ρik,il ρik,jk ρik,jl

ρil,ik ρil,il ρil,jk ρil,jl

ρjk,ik ρjk,il ρjk,jk ρjk,jl

ρjl,ik ρjl,il ρjl,jk ρjl,jl

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (3.20)
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i /= j, and k /= l, with subindices i and j associated with the first space, k and l with the second
space. The two-qubit submatrix � is not normalized but positive semidefinite. Cmn are just the
concurrences of these states (3.20).

The bound τ2 provides a much clearer structure of entanglement, which not only yields
an effective separability criterion and an easy evaluation of entanglement, but also helps one
to classify mixed-state entanglement.

(2) Lower Bound of Concurrence for Multipartite States

We first consider tripartite case. A general pure state on H ⊗H ⊗H is of the form

|Ψ〉 =
d∑

i,j,k=1

aijk
∣
∣ijk
〉
, aijk ∈ C,

d∑

i,j,k=1

aijka
∗
ijk = 1 (3.21)

with

C3
d(|Ψ〉)

=

√
d

6(d − 1)

√
∑(∣

∣aijkapqm−aijmapqk
∣
∣2 +

∣
∣aijkapqm−aiqkapjm

∣
∣2+
∣
∣aijkapqm−apjkaiqm

∣
∣2
)
,

(3.22)

or equivalently

C3
d(|Ψ〉) =

√
d

6(d − 1)
(
3 −
(
Tr
[
ρ2

1

]
+ Tr
[
ρ2

2

]
+ Tr
[
ρ2

3

]))
, (3.23)

where ρ1 = Tr23[ρ], ρ2 = Tr13[ρ], and ρ3 = Tr12[ρ] are the reduced density matrices of ρ =
|Ψ〉〈Ψ|.

Define C
12|3
αβ (|Ψ〉) = |aijkapqm − aijmapqk|, C13|2

αβ (|Ψ〉) = |aijkapqm − aiqkapjm|, and

C
23|1
αβ

(|Ψ〉) = |aijkapqm − apjkaiqm|, where α and β of C12|3
αβ

(resp., C13|2
αβ

, resp., C23|1
αβ

) stand for
the subindices of a associated with the subspaces 1, 2, and 3 (resp., 1, 3, and 2; resp., 2, 3, and
1). Let Li1i2···iN denote the generators of group SO(di1di2 · · ·diN ) associated to the subsystems
i1, i2, . . . , iN . Then for a tripartite pure state (3.21), one has

C3
d(|Ψ〉) =

√
√
√
√ d

6(d − 1)

d2(d2−1)/2∑

α

d(d−1)/2∑

β

[(
C

12|3
αβ

(|Ψ〉)
)2

+
(
C

13|2
αβ

(|Ψ〉)
)2

+
(
C

23|1
αβ

(|Ψ〉)
)2
]

=

√
√
√
√

d

6(d − 1)

∑

αβ

[(∣
∣
∣〈Ψ|S12|3

αβ |Ψ∗〉
∣
∣
∣
)2

+
(∣
∣
∣〈Ψ|S13|2

αβ |Ψ∗〉
∣
∣
∣
)2

+
(∣
∣
∣〈Ψ|S23|2

αβ |Ψ∗〉
∣
∣
∣
)2
]

,

(3.24)

where S12|3
αβ

= (L12
α ⊗ L3

β
), S13|2

αβ
= (L13

α ⊗ L2
β
), and S

23|1
αβ

= (L1
β
⊗ L23

α ).
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Theorem 3.2. For an arbitrary mixed state ρ inH ⊗H ⊗H, the concurrence C(ρ) satisfies [112]

τ3
(
ρ
)
≡ d

6(d − 1)

d2(d2−1)/2∑

α

d(d−1)/2∑

β

[(
C

12|3
αβ (ρ)

)2
+
(
C

13|2
αβ (ρ)

)2
+
(
C

23|1
αβ (ρ)

)2
]

≤ C2(ρ
)
, (3.25)

where τ3(ρ) is a lower bound of C(ρ)

C
12|3
αβ

(
ρ
)
= max

{
0, λ(1)12|3

αβ − λ(2)
12|3
αβ − λ(3)

12|3
αβ − λ(4)

12|3
αβ

}
, (3.26)

where λ(1)12|3
αβ , λ(2)

12|3
αβ , λ(3)

12|3
αβ , and λ(4)

12|3
αβ are the square roots of the four nonzero eigenvalues, in

decreasing order, of the non-Hermitian matrix ρρ̃12|3
αβ

with ρ̃12|3
αβ

= S
12|3
αβ

ρ∗S
12|3
αβ

. C13|2
αβ

(ρ) and C23|1
αβ

(ρ)

are defined in a similar way to C12|3
αβ

(ρ).

Proof. Set |ξi〉 = √pi|ψi〉, xiαβ = |〈ξi|S12|3
αβ |ξ

∗
i 〉|, y

i
αβ = |〈ξi|S13|2

αβ |ξ
∗
i 〉|, and ziαβ = |〈ξi|S1|23

αβ |ξ
∗
i 〉|. We

have, from Minkowski inequality,

C
(
ρ
)
= min

∑

i

√
√
√
√

d

6(d − 1)

∑

αβ

[(
xiαβ

)2
+
(
yiαβ

)2
+
(
ziαβ

)2
]

≥ min

√
√
√
√
√

d

6(d − 1)

∑

αβ

(
∑

i

[(
xiαβ

)2
+
(
yiαβ

)2
+
(
ziαβ

)2
]1/2
)2

.

(3.27)

Noting that for nonnegative real variables xα, yα, zα and given that X =
∑N

α=1 xα, Y =
∑N

α=1 Yα, and Z =
∑N

α=1 zα, by using Lagrange multipliers, one obtains that the following
inequality holds:

N∑

α=1

(
x2
α + y

2
α + z

2
α

)1/2
≥
(
X2 + Y 2 + Z2

)1/2
. (3.28)

Therefore we have

C
(
ρ
)
≥ min

√
√
√
√
√

d

6(d − 1)

∑

αβ

⎡

⎣

(
∑

i

xiαβ

)2

+

(
∑

i

yiαβ

)2

+

(
∑

i

ziαβ

)2
⎤

⎦

≥

√
√
√
√
√

d

6(d − 1)

∑

αβ

⎡

⎣

(

min
∑

i

xiαβ

)2

+

(

min
∑

i

yiαβ

)2

+

(

min
∑

i

ziαβ

)2
⎤

⎦.

(3.29)
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The values of C12|3
αβ (ρ) ≡ min

∑
i x

i
αβ, C13|2

αβ (ρ) ≡ min
∑

i y
i
αβ, and C

23|1
αβ (ρ) ≡ min

∑
i z

i
αβ

can be calculated by using the similar procedure in [53]. Here we compute the value of
C

12|3
αβ (ρ) in detail. The values of C13|2

αβ (ρ) and C
23|1
αβ (ρ) can be obtained analogously.

Let λi and |χi〉 be eigenvalues and eigenvectors of ρ, respectively. Any decomposition
of ρ can be obtained from a unitary d3 × d3 matrix Vij , |ξj〉 =

∑d3

i=1 V
∗
ij(
√
λi|χi〉). Therefore

one has 〈ξi|S12|3
αβ
|ξ∗j 〉 = (VYαβV T )ij , where the matrix Yαβ is defined by (Yαβ)ij = 〈χi|S

12|3
αβ
|χ∗j 〉.

Namely, C12|3
αβ

(ρ) = min
∑

i |[VYαβV T ]ii|, which has an analytical expression [53], that

C
12|3
αβ (ρ) = max{0, λ(1)12|3

αβ −
∑

j>1 λ(j)
12|3
αβ }, where λ12|3

αβ (k) are the square roots of the eigenvalues

of the positive Hermitian matrix YαβY
†
αβ

, or equivalently the non-Hermitian matrix ρρ̃αβ, in

decreasing order. Here as the matrix S12|3
αβ

has d2−4 rows and d2−4 columns that are identically

zero, the matrix ρρ̃αβ has a rank not greater than 4, that is, λ12|3
αβ (j) = 0 for j ≥ 5. From (3.29)

we have (3.25).

Theorem 3.2 can be directly generalized to arbitrary multipartite case.

Theorem 3.3. For an arbitraryN-partite state ρ ∈ H ⊗H ⊗· · ·⊗H, the concurrence defined in (4.1)
satisfies [112],

τN
(
ρ
)
≡ d

2m(d − 1)

∑

p

∑

αβ

(
C
p

αβ

(
ρ
))2
≤ C2(ρ

)
, (3.30)

where τN(ρ) is the lower bound of C(ρ),
∑

p stands for the summation over all possible combinations
of the indices of α, β, Cp

αβ
(ρ) = max{0, λ(1)p

αβ
− λ(2)p

αβ
− λ(3)p

αβ
− λ(4)p

αβ
}, and λ(i)p

αβ
, i = 1, 2, 3, 4,

are the square roots of the four nonzero eigenvalues, in decreasing order, of the non-Hermitian matrix
ρρ̃

p

αβ
where ρ̃p

αβ
= Sp

αβ
ρ∗S

p
αβ
.

Lower Bound and Separability

An N-partite quantum state ρ is fully separable if and only if there exist pi with pi ≥ 0,
∑

i pi =
1, and pure states ρji = |ψ

j

i 〉〈ψ
j

i | such that

ρ =
∑

i

piρ
1
i ⊗ ρ

2
i ⊗ · · · ⊗ ρ

N
i . (3.31)

It is easily verified that, for a fully separable multipartite state ρ, τN(ρ) = 0. Thus
τN(ρ) > 0 indicates that there must be some kinds of entanglement inside the quantum state,
which shows that the lower bound τN(ρ) can be used to recognize entanglement.

As an example, we consider a tripartite quantum state [79] ρ = ((1−p)/8)I8+p|W〉〈W |,
where I8 is the 8 × 8 identity matrix, and |W〉 = (1/

√
3)(|100〉 + |010〉 + |001〉) is the tripartite

W state. Select an entanglement witness operator to be W = (1/2)I8 − |GHZ〉〈GHZ|, where
|GHZ〉 = (1/

√
2)(|000〉+ |111〉) is to be the tripartite GHZ-state. From the condition Tr[Wρ] <

0, the entanglement of ρ is detected for (3/5) < p ≤ 1 in [79]. In [97] the authors have obtained
the generalized correlation matrix criterion which says that if an N-qubit quantum state is
fully separable, then the inequality ‖TN‖KF ≤ 1 must hold, where ‖TN‖KF = max{‖TNn ‖KF},
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TNn is a kind of matrix unfold of tα1α2···αN defined by tα1α2···αN = Tr[ρσ(1)
α1 σ

(2)
α2 · · ·σ

(N)
αN ], and

σ
(i)
αi stands for the Pauli matrix. Now using the generalized correlation, matrix criterion the

entanglement of ρ is detected for 0.3068 < p ≤ 1. From Theorem 3.2, we have the lower bound
τ3(ρ) > 0 for 0.2727 < p ≤ 1. Therefore the bound (3.71) detects entanglement better than these
two criteria in this case. If we replace W with GHZ state in ρ, then the criterion in [97] detects
the entanglement of ρ for 0.35355 < p ≤ 1, while τ3(ρ) detects, again better, the entanglement
for 0.2 < p ≤ 1.

Nevertheless for PPT states ρ, we have τ3(ρ) = 0, which can be seen in the following
way. A density matrix ρ is called PPT if the partial transposition of ρ over any subsystem(s)
is still positive. Let ρTi denote the partial transposition with respect to the ith subsystem.
Assume that there is a PPT state ρ with τ(ρ) > 0. Then at least one term in (3.25), say C12|3

α0β0
(ρ),

is not zero. Define ρα0β0 = L
12
α0
⊗ L3

β0
ρ(L12

α0
⊗ L3

β0
)†. By using the PPT property of ρ, we have

ρT3
α0β0

= L12
α0
⊗
(
L3
β0

)∗
ρT3
(
L12
α0

)†
⊗
(
L3
β0

)T
≥ 0. (3.32)

Noting that both L12
α0

and L3
β0

are projectors to two-dimensional subsystems, ρα0β0 can be
considered as a 4×4 density matrix, while a PPT 4×4 density matrix ρα0β0 must be a separable
state, which contradicts with C12|3

α0β0
(ρ)/= 0.

Relation between Lower Bounds of Bi- and Tripartite Concurrence

τ3 is basically different from τ2 as τ3 characterizes also genuine tripartite entanglement that
can not be described by bipartite decompositions. Nevertheless, there are interesting relations
between them.

Theorem 3.4. For any pure tripartite state (3.21), the following inequality holds [112]:

τ2
(
ρ12
)
+ τ2
(
ρ13
)
+ τ2
(
ρ23
)
≤ 3τ3

(
ρ
)
, (3.33)

where τ2 is the lower bound of bipartite concurrence (3.19), τ3 is the lower bound of tripartite
concurrence (3.25), and ρ12 = Tr3[ρ], ρ13 = Tr2[ρ], ρ23 = Tr1[ρ], and ρ = |Ψ〉123〈Ψ|.

Proof. Since C2
αβ ≤ (λαβ(1))

2 ≤
∑4

i=1(λαβ(i))
2 = Tr[ρρ̃αβ] for ρ = ρ12, ρ = ρ13, and ρ = ρ23, we

have

τ2
(
ρ12
)
+ τ2
(
ρ13
)
+ τ2
(
ρ23
)

≤ d

2(d − 1)

⎛

⎝
d(d−1)/2∑

α,β=1

Tr
[
ρ12
(
ρ̃12
)
αβ

]
+
d(d−1)/2∑

α,β=1

Tr
[
ρ13
(
ρ̃13
)
αβ

]
+
d(d−1)/2∑

α,β=1

Tr
[
ρ23
(
ρ̃23
)
αβ

]
⎞

⎠

=
d

2(d − 1)

(
3 − Tr

[
ρ2

1

]
− Tr
[
ρ2

2

]
− Tr
[
ρ2

3

])
= 3C2(ρ

)
= 3τ3

(
ρ
)
,

(3.34)
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where we have used the similar analysis in [67, 113] to obtain the equalities
∑

α,β Tr[ρ12(ρ̃12)αβ] = 1−Tr[ρ2
1]−Tr[ρ2

2]+Tr[ρ2
3],
∑

α,β Tr[ρ13(ρ̃13)αβ] = 1−Tr[ρ2
1]+Tr[ρ2

2]−Tr[ρ2
3],

and
∑

α,β Tr[ρ23(ρ̃23)αβ] = 1 + Tr[ρ2
1] − Tr[ρ2

2] − Tr[ρ2
3]. The last equality is due to the fact that ρ

is a pure state.

In fact, the bipartite entanglement inside a tripartite state is useful for distilling
maximally entangled states. Assume that there are two of the qualities {τ(ρ12), τ(ρ13), τ(ρ23)}
larger than zero; say τ(ρ12) > 0 and τ(ρ13) > 0. According to [67], one can distill two maximal
entangled states |ψ12〉 and |ψ13〉which belong toH1 ⊗H2 andH1 ⊗H3, respectively. In terms
of the result in [114], one can use them to produce a GHZ state.

3.1.3. Estimation of Multipartite Entanglement

For a pure N-partite quantum state |ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , dimHi = di, i = 1, . . . ,N,
the concurrence of bipartite decomposition between subsystems 12 · · ·M and M + 1 · · ·N is
defined by

C2
(∣
∣ψ
〉)

=
√

2
(
1 − Tr

[
ρ2

12···M
])

(3.35)

where ρ2
12···M = TrM+1···N[|ψ〉〈ψ|] is the reduced density matrix of ρ = |ψ〉〈ψ| by tracing over

subsystems M + 1 · · ·N. On the other hand, the concurrence of |ψ〉 is defined by (3.9).
For a mixed multipartite quantum state ρ =

∑
i pi|ψi〉〈ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , the

corresponding concurrences of (3.35) and (3.9) are then given by the convex roof

C2
(
ρ
)
= min
{pi,|ψi}〉

∑

i

piC2
(∣
∣ψi
〉〈
ψi
∣
∣
)
, (3.36)

and (3.12). We now investigate the relation between these two kinds of concurrences.

Lemma 3.5. For a bipartite density matrix ρ ∈ HA ⊗HB, one has

1 − Tr
[
ρ2
]
≤ 1 − Tr

[
ρ2
A

]
+ 1 − Tr

[
ρ2
B

]
, (3.37)

where ρA/B = TrB/A[ρ] are the reduced density matrices of ρ.
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Proof. Let ρ =
∑

ij λij |ij〉〈ij| be the spectral decomposition, where λij ≥ 0,
∑

ij λij = 1. Then
ρ1 =

∑
ij λij |i〉〈i|, ρ2 =

∑
ij λij |j〉〈j|. Therefore

1 − Tr
[
ρ2
A

]
+ 1 − Tr

[
ρ2
B

]
− 1 + Tr

[
ρ2
]

= 1 − Tr
[
ρ2
A

]
− Tr
[
ρ2
B

]
+ Tr
[
ρ2
]

=

⎛

⎝
∑

ij

λij

⎞

⎠

2

−
∑

i,j,j ′
λijλij ′ −

∑

i,i′,j

λijλi′j +
∑

ij

λ2
ij

=

⎛

⎝
∑

i=i′,j=j ′
λ2
ij +

∑

i=i′,j /= j ′
λijλij ′ +

∑

i /= i′,j=j ′
λijλi′j +

∑

i /= i′,j /= j ′
λijλi′j ′

⎞

⎠

=
∑

i /= i′,j /= j ′
λijλi′j ′ ≥ 0.

(3.38)

This lemma can be also derived in another way [46, 115].

Theorem 3.6. For a multipartite quantum state ρ ∈ H1 ⊗H2 ⊗ · · · ⊗HN withN ≥ 3, the following
inequality holds [116]:

CN

(
ρ
)
≥ max 2(3−N)/2C2

(
ρ
)
, (3.39)

where the maximum is taken over all kinds of bipartite concurrence.

Proof. Without loss of generality, we suppose that the maximal bipartite concurrence is
attained between subsystems 12 · · ·M and (M + 1) · · ·N.

For a pure multipartite state |ψ〉 ∈ H1 ⊗H2 ⊗ · · ·⊗HN , Tr[ρ2
12···M] = Tr[ρ2

(M+1)···N]. From
(3.37) we have

C2
N

(∣
∣ψ
〉〈
ψ
∣
∣
)
= 22−N

(
(

2N − 2
)
−
∑

α

Tr
[
ρ2
α

]
)

≥ 23−N
(

N −
N∑

k=1

Tr
[
ρ2
k

]
)

≥ 23−N
(

1 − Tr
[
ρ2

12···M

]
+ 1 − Tr

[
ρ2
(M+1)···N

])

= 23−N ∗ 2
(

1 − Tr
[
ρ2

12···M

])
= 23−NC2

2
(∣
∣ψ
〉〈
ψ
∣
∣
)
,

(3.40)

that is, CN(|ψ〉〈ψ|) ≥ 2(3−N)/2C2(|ψ〉〈ψ|).
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Let ρ =
∑

i pi|ψi〉〈ψi| attain the minimal decomposition of the multipartite concurrence.
One has

CN

(
ρ
)
=
∑

i

piCN

(∣
∣ψi
〉〈
ψi
∣
∣
)
≥ 2(3−N)/2

∑

i

piC2
(∣
∣ψi
〉〈
ψi
∣
∣
)

≥ 2(3−N)/2 min
{pi,|ψi}

∑

i

piC2
(∣
∣ψi
〉〈
ψi
∣
∣
)
= 2(3−N)/2C2

(
ρ
)
.

(3.41)

Corollary 3.7. For a tripartite quantum state ρ ∈ H1 ⊗H2 ⊗H3, the following inequality holds:

C3
(
ρ
)
≥ maxC2

(
ρ
)
, (3.42)

where the maximum is taken over all kinds of bipartite concurrence.

In [46, 64], from the separability criteria related to local uncertainty relation,
covariance matrix, and correlation matrix, the following lower bounds for bipartite
concurrence are obtained:

C2
(
ρ
)
≥

2
∥
∥C
(
ρ
)∥
∥ −
(
1 − Tr

[
ρ2
A

])
−
(
1 − Tr

[
ρ2
B

])

√
2dA(dA − 1)

, (3.43)

C2
(
ρ
)
≥
√

8
d3
Ad

2
B(dA − 1)

(
∥
∥T
(
ρ
)∥
∥ −
√
dAdB(dA − 1)(dB − 1)

2

)

, (3.44)

where the entries of the matrix C, Cij = 〈λAi ⊗λ
B
j 〉−〈λ

A
i ⊗IdB〉〈IdA ⊗λ

B
j 〉, Tij = dAdB/2〈λAi ⊗λ

B
j 〉,

λA/Bk stand for the normalized generator of SU(dA/dB), that is, Tr[λA/Bk λA/Bl ] = δkl and 〈X〉 =
Tr[ρX]. It is shown that the lower bounds (3.43) and (3.44) are independent of (3.13).

Now we consider a multipartite quantum state ρ ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN as a bipartite
state belonging to HA ⊗ HB with the dimensions of the subsystems A and B being dA =
ds1ds2 · · ·dsm and dB = dsm+1dsm+2 · · ·dsN , respectively. By using Corollary 3.7, (3.13), (3.43),
and (3.44), one has the following lower bound.

Theorem 3.8. For any N-partite quantum state ρ [116],

CN

(
ρ
)
≥ 2(3−N)/2 max{B1, B2, B3}, (3.45)

where

B1 = max
{i}

√
2

Mi(Mi − 1)

[
max

(∥
∥
∥TA

(
ρi
)∥
∥
∥,
∥
∥
∥R
(
ρi
)∥
∥
∥
)
− 1
]
,

B2 = max
{i}

2
∥
∥C
(
ρi
)∥
∥ −
(

1 − Tr
[(
ρiA
)2
])
−
(

1 − Tr
[(
ρiB
)2
])

√
2Mi(Mi − 1)

,

B3 = max
{i}

√
8

M3
i N

2
i (Mi − 1)

(
∥
∥
∥T
(
ρi
)∥
∥
∥ −
√
MiNi(Mi − 1)(Ni − 1)

2

)

,

(3.46)
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ρi’s are all possible bipartite decompositions of ρ, and

Mi = min{ds1ds2 · · ·dsm, dsm+1dsm+2 · · ·dsN},

Ni = max{ds1ds2 · · ·dsm, dsm+1dsm+2 · · ·dsN}.
(3.47)

In [46, 106, 107, 117], it is shown that the upper and lower bounds of multipartite
concurrence satisfy

√(
4 − 23−N)Tr

[
ρ2
]
− 22−N

∑

α

Tr
[
ρ2
α

]
≤ CN

(
ρ
)
≤

√
√
√
√22−N

[
(
2N − 2

)
−
∑

α

Tr
[
ρ2
α

]
]

. (3.48)

In fact one can obtain a more effective upper bound for multipartite concurrence. Let
ρ =

∑
i λi|ψi〉〈ψi| ∈ H1 ⊗ H2 ⊗ · · · ⊗ HN , where |ψi〉’s are the orthogonal pure states and

∑
i λi = 1. We have

CN

(
ρ
)
= min
{pi,|ϕi}〉

∑

i

piCN

(∣
∣ϕi
〉〈
ϕi
∣
∣
)
≤
∑

i

λiCN

(∣
∣ψi
〉〈
ψi
∣
∣
)
. (3.49)

The right side of (3.49) gives a new upper bound of CN(ρ). Since

∑

i

λiCN

(∣
∣ψi
〉〈
ψi
∣
∣
)
= 21−N/2

∑

i

λi

√
(
2N − 2

)
−
∑

α

Tr
[(
ρiα
)2
]

≤ 21−N/2

√
√
√
√(2N − 2

)
−
∑

α

Tr

[
∑

i

λi
(
ρiα
)2
]

≤ 21−N/2

√
(
2N − 2

)
−
∑

α

Tr
[(
ρα
)2
]
,

(3.50)

the upper bound obtained in (3.49) is better than that in (3.48).

3.1.4. Bounds of Concurrence and Tangle

In [68], a lower bound for tangle defined in (3.8) has been derived as

τ
(
ρ
)
≥ 8
MN(M +N)

(
∥
∥T
(
ρ
)∥
∥2
HS −

MN(M − 1)(N − 1)
4

)

, (3.51)

where ‖X‖HS =
√

Tr[XX†] denotes the Frobenius or Hilbert-Schmidt norm. Experimentally
measurable lower and upper bounds for concurrence have been also given by Mintert et al.
in [106, 107] and Zhang et al. in [46]:

√
2
(
Tr
[
ρ2
]
− Tr
[
ρ2
A

])
≤ C
(
ρ
)
≤
√

2
(
1 − Tr

[
ρ2
A

])
. (3.52)
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Since the convexity of C2(ρ), we have that τ(ρ) ≥ C2(ρ) always holds. For two-qubit
quantum systems, tangle τ is always equal to the square of concurrence C2 [58, 113], as a
decomposition {pi, |ψi〉} achieving the minimum in (3.3) has the property that C(|ψi〉) =
C(|ψj〉) ∀i, j. For higher dimensional systems we do not have similar relations. Thus it is
meaningful to derive valid upper bound for tangle and lower bound for concurrence.

Theorem 3.9. For any quantum state ρ ∈ HA ⊗HB, one has [118]

τ
(
ρ
)
≤ min

{
1 − Tr

[
ρ2
A

]
, 1 − Tr

[
ρ2
B

]}
, (3.53)

C
(
ρ
)
≥
√

8
MN(M +N)

(
∥
∥T
(
ρ
)∥
∥
HS −

√
MN(M − 1)(N − 1)

2

)

, (3.54)

where ρA is the reduced matrix of ρ, and T(ρ) is the correlation matrix of ρ defined in (3.44).

Proof. We assume that 1 − Tr[ρ2
A] ≤ 1 − Tr[ρ2

B] for convenience. By the definition of τ , we

have that for a pure state |ψ〉, τ(|ψ〉) = 2(1 − Tr[(ρ|ψ〉A )2]). Let ρ =
∑

i piρi be the optimal
decomposition such that τ(ρ) =

∑
i piτ(ρi). We get

τ
(
ρ
)
=
∑

i

piτ
(
ρi
)
=
∑

i

pi2
[

1 − Tr
[(
ρ
|ψi〉
A

)2
]]

= 2

[

1 − Tr

[
∑

i

pi
(
ρ
|ψi〉
A

)2
]]

≤ 2
[
1 − Tr

[
ρ2
A

]]
.

(3.55)

Note that, for pure state |ψ〉 ∈ HA ⊗HB [68],

C
(∣
∣ψ
〉)

=

√
8

MN(M +N)

(
∥
∥T
(∣
∣ψ
〉)∥
∥2 − MN(M − 1)(N − 1)

4

)

. (3.56)

Using the inequality
√
a − b ≥

√
a −
√
b for any a ≥ b, we get

C
(∣
∣ψ
〉)
≥
√

8
MN(M +N)

(
∥
∥T
(∣
∣ψ
〉)∥
∥
HS −

√
MN(M − 1)(N − 1)

2

)

. (3.57)

Now let ρ =
∑

i piρi be the optimal decomposition such that C(ρ) =
∑

i piC(ρi). We get

C
(
ρ
)
=
∑

i

piC
(
ρi
)
≥
∑

i

pi

√
8

MN(M +N)

(
∥
∥T
(
ρi
)∥
∥
HS −

√
MN(M − 1)(N − 1)

2

)

=

√
8

MN(M +N)

(
∑

i

pi
∥
∥T
(
ρi
)∥
∥
HS −

√
MN(M − 1)(N − 1)

2

)

≥
√

8
MN(M +N)

(
∥
∥T
(
ρ
)∥
∥
HS −

√
MN(M − 1)(N − 1)

2

)

,

(3.58)

which ends the proof.
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The upper bound (3.53), together with the lower bounds (3.54), (3.43), (3.44), (3.51),
and (3.52), can allow for estimations of entanglement for arbitrary quantum states. Moreover,
since the upper bound is exactly the value of tangle for pure states, the upper bound can be a
good estimation when the state is very weakly mixed.

3.2. Concurrence and Tangle of Two Entangled States Are
Strictly Larger Than Those of One

In this subsection we show that although bound entangled states cannot be distilled, the
concurrence and tangle of two entangled states will be always strictly larger than those of
one, even if the two entangled states are both bound entangled.

Let ρ =
∑

ijkl ρij,kl|ij〉〈kl| ∈ HA ⊗ HB and σ =
∑

i′j ′k′l′ σi′j ′,k′l′ |i′j ′〉〈k′l′| ∈ HA′ ⊗
HB′ be two quantum states shared by subsystems AA′ and BB′. We use ρ ⊗ σ =
∑

ijkl,i′j ′k′l′ ρij,klσi′j ′,k′l′ |ii′〉AA′ 〈kk′| ⊗ |jj ′〉BB′ 〈ll′| to denote the state of the whole system.

Lemma 3.10. For pure states |ψ〉 ∈ HA ⊗HB and |ϕ〉 ∈ HA′ ⊗ HB′ , the inequalities

C
(∣
∣ψ
〉
⊗
∣
∣ϕ
〉)
≥ max

{
C
(∣
∣ψ
〉)
, C
(∣
∣ϕ
〉)}

, (3.59)

τ
(∣
∣ψ
〉
⊗
∣
∣ϕ
〉)
≥ max

{
τ
(∣
∣ψ
〉)
, τ
(∣
∣ϕ
〉)}

(3.60)

always hold, and “=” in the two inequalities hold if and only if at least one of {|ψ〉, |ϕ〉} is separable.

Proof. Without loss of generality we assume that C(|ψ〉) ≥ C(|ϕ〉). First note that

ρ
|ψ〉⊗|ϕ〉
AA′ = ρ|ψ〉A ⊗ ρ

|ϕ〉
A′ . (3.61)

Let ρ|ψ〉A =
∑

i λi|i〉〈i| and ρ
|ϕ〉
A′ =

∑
j πj |j〉〈j| be the spectral decomposition of ρ|ψ〉A and ρ|ϕ〉A′ , with

∑
i λi = 1 and

∑
j πj = 1, respectively. By using (3.61) one obtains that

Tr
[(
ρ
|ψ〉⊗|ϕ〉
AA′

)2
]

=
∑

λiπjλi′πj ′
∣
∣ij
〉〈
ij | i′j ′

〉〈
i′j ′
∣
∣ =
∑

λ2
i π

2
j , (3.62)

while

Tr
[(
ρ
|ψ〉
A

)2
]

=
∑

i

λ2
i . (3.63)

Now using the definition of concurrence and the normalization conditions of λi and
πj , one immediately gets

C
(∣
∣ψ
〉
⊗
∣
∣ϕ
〉)

=

√

2
(

1 − Tr
[(
ρ
|ψ〉⊗|ϕ〉
AA′

)2
])

≥
√

2
(

1 − Tr
[(
ρ
|ψ〉
A

)2
])

= C
(∣
∣ψ
〉)
. (3.64)



Advances in Mathematical Physics 39

If one of {|ψ〉, |ϕ〉} is separable, say |ϕ〉, then the rank of ρ|ϕ〉A′ must be one, which means that

there is only one item in the spectral decomposition in ρ|ϕ〉A′ . Using the normalization condition

of πj , we obtain Tr[(ρ|ψ〉⊗|ϕ〉AA′ )2] = Tr[(ρ|ψ〉A )2]. Then inequality (3.64) becomes an equality.
On the other hand, if both |ψ〉 and |ϕ〉 are entangled (not separable), then there must

be at least two items in the decomposition of their reduced density matrices ρ|ψ〉A and ρ
|ϕ〉
A′ ,

which means that Tr[(ρ|ψ〉⊗|ϕ〉AA′ )2] is strictly larger than Tr[(ρ|ψ〉A )2].
The inequality (3.60) also holds because, for pure quantum state ρ, τ(ρ) = C2(ρ).

From the lemma, we have, for mixed states the following.

Theorem 3.11. For any quantum states ρ ∈ HA ⊗HB and σ ∈ HA′ ⊗ HB′ , the inequalities

C
(
ρ ⊗ σ

)
≥ max

{
C
(
ρ
)
, C(σ)

}
,

τ
(
ρ ⊗ σ

)
≥ max

{
τ
(
ρ
)
, τ(σ)

} (3.65)

always hold, and the “=” in the two inequalities hold if and only if at least one of {ρ, σ} is separable,
that is, if both ρ and σ are entangled (even if bound entangled), then C(ρ ⊗ σ) > max{C(ρ), C(σ)}
and τ(ρ ⊗ σ) > max{τ(ρ), τ(σ)} always hold [118].

Proof. We still assume that C(ρ) ≥ C(σ) for convenience. Let ρ =
∑

i piρi and σ =
∑

j qjσj be
the optimal decomposition such that C(ρ ⊗ σ) =

∑
i piqjC(ρi ⊗ σj). By using the inequality

obtained in Lemma 3.10, we have

C
(
ρ ⊗ σ

)
=
∑

i

piqjC
(
ρi ⊗ σj

)
≥
∑

i

piqjC
(
ρi
)
=
∑

i

piC
(
ρi
)
≥ C
(
ρ
)
. (3.66)

Case 1. Now let one of {ρ, σ} be separable, say σ, with ensemble representation σ =
∑

j qjσj ,
where

∑
j qj = 1, and σj is the density matrix of separable pure state. Suppose that ρ =

∑
i piρi

is the optimal decomposition of ρ such that C(ρ) =
∑

i piC(ρi). Using Lemma 3.10, we have

C
(
ρ ⊗ σ

)
≤
∑

i

piqjC
(
ρi ⊗ σj

)
=
∑

i

piqjC
(
ρi
)
=
∑

i

piC
(
ρi
)
= C
(
ρ
)
. (3.67)

The inequalities (3.66) and (3.67) show that if σ is separable, then C(ρ ⊗ σ) = C(ρ).

Case 2. If both ρ and σ are inseparable, that is, there is at least one pure state in the ensemble
decomposition of ρ (and σ, resp.), using Lemma 3.10, then we have

C
(
ρ ⊗ σ

)
=
∑

i

piqjC
(
ρi ⊗ σj

)
>
∑

i

piqjC
(
ρi
)
=
∑

i

piC
(
ρi
)
≥ C
(
ρ
)
. (3.68)

The inequality for tangle τ can be proved in a similar way.

Remark 3.12. In [119] it is shown that any entangled state ρ can enhance the teleportation
power of another state σ. This holds even if the state ρ is bound entangled. But if ρ is bound
entangled, then the corresponding σ must be free entangled (distillable). By Theorem 3.11,
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we can see that even if two entangled quantum states ρ and σ are bound entangled, their
concurrence and tangle are strictly larger than those of one state.

3.3. Subadditivity of Concurrence and Tangle

We now give a proof of the subadditivity of concurrence and tangle, which illustrates that
concurrence and tangle may be proper entanglement measurements.

Theorem 3.13. Let ρ and σ be quantum states inHA ⊗HB, the one has [118]

C
(
ρ ⊗ σ

)
≤ C
(
ρ
)
+ C(σ), τ

(
ρ ⊗ σ

)
≤ τ
(
ρ
)
+ τ(σ). (3.69)

Proof. We first prove that the theorem holds for pure states, that is, for |ψ〉 and |φ〉 inHA ⊗HB:

C
(∣
∣ψ
〉
⊗
∣
∣φ
〉)
≤ C
(∣
∣ψ
〉)

+ C
(∣
∣φ
〉)
, τ

(∣
∣ψ
〉
⊗
∣
∣φ
〉)
≤ τ
(∣
∣ψ
〉)

+ τ
(∣
∣φ
〉)
. (3.70)

Assume that ρ|ψ〉A =
∑

i λi|i〉〈i| and ρ
|φ〉
A =

∑
j πj |j〉〈j| are the spectral decomposition of the

reduced matrices ρ|ψ〉A and ρ
|φ〉
A . One has

1
2
[
C
(∣
∣ψ
〉)

+ C(
∣
∣φ
〉
)
]2 ≥ 1 − Tr

[(
ρ
|ψ〉
A

)2
]

+ 1 − Tr
[(
ρ
|φ〉
A

)2
]

= 1 −
∑

i

λ2
i + 1 −

∑

j

π2
j ≥ 1 −

∑

ij

λ2
i π

2
j =

1
2
C2(∣∣ψ

〉
⊗
∣
∣φ
〉)
.

(3.71)

Now we prove that (3.69) holds for any mixed-quantum states ρ and σ. Let ρ =
∑

i piρi
and σ =

∑
j qjσj be the optimal decomposition such that C(ρ) =

∑
i piC(ρi) and C(σ) =

∑
j qjC(σj). We have

C
(
ρ
)
+ C(σ) =

∑

ij

piqj
[
C
(
ρi
)
+ C
(
σj
)]
≥
∑

ij

piqjC
(
ρi ⊗ σj

)
≥ C
(
ρ ⊗ σ

)
. (3.72)

The inequality for τ can be derived in a similar way.

4. Fidelity of Teleportation and Distillation of Entanglement

Quantum teleportation is an important subject in quantum information processing. In terms
of a classical communication channel and a quantum resource (a nonlocal entangled state
like an EPR pair of particles), the teleportation protocol gives ways to transmit an unknown
quantum state from a sender traditionally named “Alice” to a receiver “Bob” who are
spatially separated. These teleportation processes can be viewed as quantum channels. The
nature of a quantum channel is determined by the particular protocol and the state used
as a teleportation resource. The standard teleportation protocol T0 proposed by Bennett
et al. in 1993 uses Bell measurements and Pauli rotations. When the maximally entangled
pure state |φ〉 = (1/

√
n)
∑n−1

i=0 |ii〉 is used as the quantum resource, it provides an ideal
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noiseless quantum channel Λ(|φ〉〈φ|)
T0

(ρ) = ρ. However in realistic situation, instead of the
pure maximally entangled states, Alice and Bob usually share a mixed entangled state due
to the decoherence. Teleportation using mixed state as an entangled resource is, in general,
equivalent to having a noisy quantum channel. An explicit expression for the output state of
the quantum channel associated with the standard teleportation protocol T0 with an arbitrary
mixed-state resource has been obtained [120, 121].

It turns out that, by local quantum operations (including collective actions over all
members of pairs in each lab) and classical communication (LOCC) between Alice and Bob,
it is possible to obtain a number of pairs in nearly maximally entangled state |ψ+〉 from
many pairs of nonmaximally entangled states. Such a procedure proposed in [73–77] is called
distillation. In [73] the authors give operational protocol to distill an entangled two-qubit
state whose single fraction F, defined by F(ρ) = 〈ψ+|ρ|ψ+〉, is larger than 1/2. The protocol is
then generalized in [77] to distill any d-dimensional bipartite entangled quantum states with
F(ρ) > 1/d. It is shown that a quantum state ρ violating the reduction criterion can always be
distilled. For such states, if their single fraction of entanglement F(ρ) = 〈ψ+|ρ|ψ+〉 is greater
than 1/d, one can distill these states directly by using the generalized distillation protocol,
otherwise a proper filtering operation has to be used at first to transform ρ to another state ρ′

so that F(ρ′) > 1/d.

4.1. Fidelity of Quantum Teleportation

LetH be a d-dimensional complex vector space with computational basis |i〉, i = 1, . . . , d. The
fully entangled fraction (FEF) of a density matrix ρ ∈ H ⊗H is defined by

F
(
ρ
)
= max

U

〈
ψ+
∣
∣
(
I ⊗U†

)
ρ(I ⊗U)

∣
∣ψ+
〉

(4.1)

under all unitary transformations U, where |ψ+〉 = (1/
√
d)
∑d

i=1 |ii〉 is the maximally
entangled state and I is the corresponding identity matrix.

In [8, 9], the authors give an optimal teleportation protocol by using a mixed entangled
quantum state. The optimal teleportation fidelity is given by

fmax
(
ρ
)
=
dF
(
ρ
)

d + 1
+

1
d + 1

, (4.2)

which solely depends on the FEF of the entangled resource state ρ.
In fact the fully entangled fraction is tightly related to many quantum information

processing such as dense coding [10], teleportation [5–7], entanglement swapping [14–18],
and quantum cryptography (Bell inequalities) [11–13]. As the optimal fidelity of teleportation
is given by FEF [8, 9], experimentally measurement of FEF can be also used to determine
the entanglement of the nonlocal source used in teleportation. Thus an analytic formula
for FEF is of great importance. In [122] an elegant formula of FEF for two-qubit system
is derived analytically by using the method of Lagrange multipliers. For high-dimensional
quantum states the analytical computation of FEF remains formidable and less results have
been known. In the following we give an estimation on the values of FEF by giving some
upper bounds of FEF.
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Let λi, i = 1, . . . , d2 − 1, be the generators of the SU(d) algebra. A bipartite state ρ ∈
H ⊗H can be expressed as

ρ =
1
d2
I ⊗ I + 1

d

d2−1∑

i=1

ri
(
ρ
)
λi ⊗ I +

1
d

d2−1∑

j=1

sj
(
ρ
)
I ⊗ λj +

d2−1∑

i,j=1

mij

(
ρ
)
λi ⊗ λj , (4.3)

where ri(ρ) = (1/2)Tr[ρλi(1) ⊗ I], sj(ρ) = (1/2)Tr[ρI ⊗ λj(2)], and mij(ρ) = (1/4)Tr[ρλi(1) ⊗
λj(2)]. Let M(ρ) denote the correlation matrix with entries mij(ρ).

Theorem 4.1. For any ρ ∈ H ⊗H, the fully entangled fraction F(ρ) satisfies [123]

F
(
ρ
)
≤ 1
d2

+ 4
∥
∥
∥MT (ρ)M(P+)

∥
∥
∥
KF
, (4.4)

whereMT stands for the transpose ofM and ‖M‖KF = Tr[
√
MM†] is the Ky Fan norm ofM.

Proof. First, we note that

P+ =
1
d2
I ⊗ I +

d2−1∑

i,j=1

mij(P+)λi ⊗ λj , (4.5)

where mij(P+) = (1/4)Tr[P+λi ⊗ λj]. By definition (4.1), one obtains

F
(
ρ
)
= max

U

〈
ψ+
∣
∣
(
I ⊗U†

)
ρ(I ⊗U)

∣
∣ψ+
〉

= max
U

Tr
[
ρ(I ⊗U)P+

(
I ⊗U†

)]

= max
U

⎧
⎨

⎩

1
d2

Tr
[
ρ
]
+
d2−1∑

i,j=1

mij(P+)Tr
[
ρλi ⊗UλjU†

]
⎫
⎬

⎭
.

(4.6)

Since UλiU
† is a traceless Hermitian operator, it can be expanded according to the

SU(d) generators as

UλiU
† =

d2−1∑

j=1

1
2

Tr
[
UλiU

†λj
]
λj ≡

d2−1∑

j=1

Oijλj . (4.7)

Entries Oij define a real (d2 − 1)× (d2 − 1) matrix O. From the completeness relation of SU(d)
generators

d2−1∑

j=1

(
λj
)
ki

(
λj
)
mn

= 2δimδkn −
2
d
δkiδmn, (4.8)
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one can show that O is an orthonormal matrix. Using (4.7), we have

F
(
ρ
)
≤ 1
d2

+ max
O

∑

i,j,k

mij(P+)Ojk Tr
[
ρλi ⊗ λk

]

=
1
d2

+ 4 max
O

∑

i,j,k

mij(P+)Ojkmik

(
ρ
)
=

1
d2

+ 4 max
O

Tr
[
M
(
ρ
)T
M(P+)O

]

=
1
d2

+ 4
∥
∥
∥M
(
ρ
)T
M(P+)

∥
∥
∥
KF
.

(4.9)

For the case d = 2, we can get an exact result from (4.4).

Corollary 4.2. For two-qubit system, one has

F
(
ρ
)
=

1
4
+ 4
∥
∥
∥M(ρ)TM(P+)

∥
∥
∥
KF
, (4.10)

that is, the upper bound derived in Theorem 4.1 is exactly the FEF.

Proof. We have shown in (4.7) that, given an arbitrary unitary U, one can always obtain an
orthonormal matrixO. Now we show that in two-qubit case, for any 3×3 orthonormal matrix
O, there always exits 2 × 2 unitary matrix U such that (4.7) holds.

For any vector t = {t1, t2, t3} with unit norm, define an operator X ≡
∑3

i=1 tiσi, where
σi’s are Pauli matrices. Given an orthonormal matrix O, one obtains a new operator X′ ≡
∑3

i=1 t
′
iσi =

∑3
i,j=1 Oijtjσi.

X and X′ are both Hermitian traceless matrices. Their eigenvalues are given by the
norms of the vectors t and t′ = {t′1, t

′
2, t
′
3}, respectively. As the norms are invariant under

orthonormal transformations O, they have the same eigenvalues: ±
√
t21 + t

2
2 + t

2
3. Thus there

must be a unitary matrix U such that X′ = UXU†. Hence the inequality in the proof of
Theorem 4.1 becomes an equality. The upper bound (4.4) then becomes exact at this situation,
which is in accord with the result in [122].

Remark 4.3. The upper bound of FEF (4.4) and the FEF (4.10) depend on the correlation
matrices M(ρ) and M(P+). They can be calculated directly according to a given set of SU(d)
generators λi, i = 1, . . . , d2 − 1. As an example, for d = 3, if we choose

λ1 =

⎛

⎜
⎜
⎝

1 0 0

0 −1 0

0 0 0

⎞

⎟
⎟
⎠, λ2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
3

0 0

0
1√
3

0

0 0 − 2√
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, λ3 =

⎛

⎜
⎜
⎝

0 1 0

1 0 0

0 0 0

⎞

⎟
⎟
⎠, λ4 =

⎛

⎜
⎜
⎝

0 0 1

0 0 0

1 0 0

⎞

⎟
⎟
⎠,

λ5 =

⎛

⎜
⎜
⎝

0 0 0

0 0 1

0 1 0

⎞

⎟
⎟
⎠, λ6 =

⎛

⎜
⎜
⎝

0 i 0

−i 0 0

0 0 0

⎞

⎟
⎟
⎠, λ7 =

⎛

⎜
⎜
⎝

0 0 i

0 0 0

−i 0 0

⎞

⎟
⎟
⎠, λ8 =

⎛

⎜
⎜
⎝

0 0 0

0 0 i

0 −i 0

⎞

⎟
⎟
⎠,

(4.11)
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then we have

M(P+) = Diag
{

1
6
,

1
6
,

1
6
,

1
6
,

1
6
,−1

6
,−1

6
,−1

6

}

. (4.12)

Nevertheless the FEF and its upper bound do not depend on the choice of the SU(d)
generators.

The usefulness of the bound depends on detailed states. In the following we give two
new upper bounds, which is different from Theorem 4.1. These bounds work for different
states.

Let h and g be n × n matrices such that h|j〉 = |(j + 1) mod n〉, g|j〉 = ωj |j〉, with
ω = exp{−2iπ/n}. We can introduce n2 linear-independent n × n matrices Ust = htgs, which
satisfy

UstUs′t′ = ωst′−ts′Us′t′Ust, Tr[Ust] = nδs0δt0. (4.13)

One can also check that {Ust} satisfy the condition of bases of the unitary operators in the sense
of [124], that is,

Tr
[
UstU

+
s′t′
]
= nδtt′δss′ , UstU

+
st = In×n, (4.14)

where In×n is the n × n identity matrix. {Ust} form a complete basis of n × n matrices, namely,
for any n × n matrix W , W can be expressed as

W =
1
n

∑

s,t

Tr
[
U+
stW
]
Ust. (4.15)

From {Ust}, we can introduce the generalized Bell states

|Φst〉 =
(
I ⊗U∗st

)∣
∣ψ+
〉
=

1√
d

∑

i,j

(Ust)∗ij
∣
∣ij
〉
, |Φ00〉 =

∣
∣ψ+
〉
, (4.16)

where |Φst〉 are all maximally entangled states and form a complete orthogonal normalized
basis ofHd ⊗Hd.

Theorem 4.4. For any quantum state ρ ∈ Hd ⊗ Hd, the fully entangled fraction defined in (4.1)
fulfills the following inequality:

F
(
ρ
)
≤ max

j

{
λj
}
, (4.17)

where λjs are the eigenvalues of the real part of matrix M =
(

T iT

−iT T

)
, T is a d2 × d2 matrix with

entries Tn,m = 〈Φn|ρ|Φm〉, and Φj are the maximally entangled basis states defined in (4.16) [125].
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Proof. From (4.15), any d × d unitary matrix U can be represented by U =
∑d2

k=1 zkUk, where
zk = (1/d)Tr[U†kU]. Define

xl =

⎧
⎨

⎩

Re[zl], 1 ≤ l ≤ d2,

Im[zl], d2 < l ≤ 2d2,
U′l =

⎧
⎨

⎩

Ul, 1 ≤ l ≤ d2,

i ∗Ul, d2 < l ≤ 2d2.
(4.18)

Then the unitary matrix U can be rewritten as U =
∑2d2

k=1 zkU
′
k. The necessary condition for

the unitary property of U implies that
∑

k x
2
k
= 1. Thus we have

F
(
ρ
)
≡
〈
ψ+
∣
∣
(
I ⊗U†

)
ρ(I ⊗U)

∣
∣ψ+
〉
=

2d2∑

m,n=1

xmxnMmn, (4.19)

where Mmn is defined in the theorem. One can deduce that

M∗
mn =Mnm (4.20)

from the hermiticity of ρ.
Taking into account the constraint with an undetermined Lagrange multiplier λ, we

have

∂

∂xk

{

F
(
ρ
)
+ λ

(
∑

l

x2
l − 1

)}

= 0. (4.21)

Accounting to (4.20) we have the eigenvalue equation

2d2∑

n=1

Re[Mk,n]xn = −λxk. (4.22)

Inserting (4.22) into (4.19) results in

F
(
ρ
)
= max

U
F ≤ max

j

{
ηj
}
, (4.23)

where ηj = −λj is the corresponding eigenvalues of the real part of the matrix M.
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Figure 2: Upper bound of F(ρ(a)) from (4.17) (solid line) and upper bound from (4.4) (dashed line) for
state (4.24).

Example 4.5. Horodecki gives a very interesting bound entangled state in [31] as

ρ(a) =
1

8a + 1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0
1 + a

2
0

√
1 − a2

2
0 0 0 0 0 0 0 a 0

a 0 0 0 a 0

√
1 − a2

2
0

1 + a
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.24)

One can easily compare the upper bound obtained in (4.17) and that in (4.4). From Figure 2
we see that, for 0 ≤ a < 0.572, the upper bound in (4.17) is larger than that in (4.4). But for
0.572 < a < 1 the upper bound in (4.17) is always lower than that in (4.4), which means that
the upper bound (4.17) is tighter than (4.4).

In fact, we can drive another upper bound for FEF which will be very tight for weakly
mixed-quantum states.

Theorem 4.6. For any bipartite quantum state ρ ∈ Hd ⊗Hd, the following inequality holds [125]:

F
(
ρ
)
≤ 1
d

(
Tr
[√

ρA
])2

, (4.25)

where ρA is the reduced matrix of ρ.
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Proof. Note that in [77] the authors have obtained the FEF for pure state |ψ〉 as

F
(∣
∣ψ
〉)

=
1
d

(

Tr
[√

ρ
|ψ〉
A

])2

, (4.26)

where ρ|ψ〉A is the reduced matrix of |ψ〉〈ψ|.
For mixed state ρ =

∑
i piρ

i, we have

F
(
ρ
)
= max

U

〈
ψ+
∣
∣
(
I ⊗U†

)
ρ(I ⊗U)

∣
∣ψ+
〉
≤
∑

i

pi max
U

〈
ψ+
∣
∣
(
I ⊗U†

)
ρi(I ⊗U)

∣
∣ψ+
〉

=
1
d

∑

i

pi

(

Tr
[√

ρiA

])2

=
1
d

∑

i

(

Tr
[√

piρ
i
A

])2

.

(4.27)

Let λij be the real and nonnegative eigenvalues of the matrix piρiA. Recall that for any function
F =

∑
i(
∑

j x
2
ij)

1/2 subjected to the constraints zj =
∑

i xij with xij being real and nonnegative,
the inequality

∑
j z

2
j ≤ F2 holds, from which it follows that

F
(
ρ
)
≤ 1
d

∑

i

⎛

⎝
∑

j

√
λij

⎞

⎠

2

≤ 1
d

⎛

⎝
∑

j

√∑

i

λij

⎞

⎠

2

=
1
d

(
Tr
[√

ρA
])2

, (4.28)

which ends the proof.

4.2. Fully Entangled Fraction and Concurrence

The upper bound of FEF has also interesting relations to the entanglement measure
concurrence. As shown in [122], the concurrence of a two-qubit quantum state has some
kinds of relation with the optimal teleportation fidelity. For quantum state with high
dimension, we have the similar relation between them too.

Theorem 4.7. For any bipartite quantum state ρ ∈ Hd ⊗Hd, one has [118]

C
(
ρ
)
≥

√
2d
d − 1

[

F
(
ρ
)
− 1
d

]

. (4.29)

Proof. In [126], the authors show that, for any pure state |ψ〉 ∈ HA ⊗ HB, the following
inequality holds:

C
(∣
∣ψ
〉)
≥

√
2d
d − 1

(

max
|φ〉∈ε

∣
∣
〈
ψ | φ

〉∣
∣2 − 1

d

)

, (4.30)

where ε denotes the set of d × d dimensional maximally entangled states.
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Let ρ =
∑

i pi|φi〉〈φi| be the optimal decomposition such that C(ρ) =
∑

i piC(|ψi〉). We
have

C
(
ρ
)
=
∑

i

piC
(∣
∣ψi
〉)
≥
∑

i

pi

√
2d
d − 1

(

max
|φ〉∈ε

∣
∣
〈
ψi | φ

〉∣
∣2 − 1

d

)

≥

√
2d
d − 1

(

max
|φ〉∈ε

∑

i

pi
∣
∣
〈
ψi | φ

〉∣
∣2 − 1

d

)

=

√
2d
d − 1

(

max
|φ〉∈ε

〈
φ
∣
∣ρ
∣
∣φ
〉
− 1
d

)

=

√
2d
d − 1

(

F
(
ρ
)
− 1
d

)

,

(4.31)

which ends the proof.

Inequality (4.29) has demonstrated the relation between the lower bound of
concurrence and the fully entangled fraction (thus the optimal teleportation fidelity), that
is, the fully entangled fraction of a quantum state ρ is limited by its concurrence.

We now consider tripartite case. Let ρABC be a state of three-qubit systems denoted
by A, B, and C. We study the upper bound of the FEF, F(ρAB), between qubits A and B,
and its relations to the concurrence under bipartite partition AB and C. For convenience we
normalize F(ρAB) to be

FN
(
ρAB
)
= max

{
2F
(
ρAB
)
− 1, 0

}
. (4.32)

Let C(ρAB|C) denote the concurrence between subsystems AB and C.

Theorem 4.8. For any triqubit state ρABC, FN(ρAB) satisfies [123]

FN
(
ρAB
)
≤
√

1 − C2
(
ρAB|C

)
. (4.33)

Proof. We first consider the case that ρABC is pure, ρABC = |ψ〉ABC〈ψ|. By using the Schmidt
decomposition between qubits A,B, and C, |ψ〉ABC can be written as

∣
∣ψ
〉
AB|C =

2∑

i=1

ηi|iAB〉|iC〉, η2
1 + η

2
2 = 1, η1 ≥ η2, (4.34)

for some orthonormalized bases |iAB〉, |iC〉 of subsystems AB, C, respectively. The reduced
density matrix ρAB has the form

ρAB = TrC
[
ρABC

]
=

2∑

i=1

η2
i |iAB〉〈iAB| = U

TΛU∗, (4.35)

where Λ is a 4× 4 diagonal matrix with diagonal elements {η2
1, η

2
2, 0, 0}, U is a unitary matrix,

and U∗ denotes the conjugation of U.
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The FEF of the two-qubit state ρAB can be calculated by using formula (4.10) or the
one in [122]. Let

M =
1√
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 i

0 i −1 0

0 i 1 0

1 0 0 −i

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(4.36)

be the 4 × 4 matrix constituted by the four Bell bases. The FEF of ρAB can be written as

F
(
ρAB
)
= ηmax

(
Re
{
M†ρABM

})
=

1
2
ηmax

(
M†ρABM +MTρ∗ABM

∗
)

≤ 1
2

[
ηmax

(
M†UTΛU∗M

)
+ ηmax

(
MTU†ΛUM∗

)]
= η2

1,

(4.37)

where ηmax(X) stands for the maximal eigenvalues of the matrix X.
For pure state (4.34) in bipartite partition AB and C, we have

C
(∣
∣ψ
〉
AB|C

)
=
√

2
(
1 − Tr

[
ρ2
AB

])
= 2η1η2. (4.38)

From (4.32), (4.37), and (4.38) we get

FN
(
ρAB
)
≤
√

1 − C2
(∣
∣ψ
〉
AB|C

)
. (4.39)

We now prove that the above inequality (4.39) also holds for mixed state ρABC.
Let ρABC =

∑
i pi|ψi〉ABC〈ψi| be the optimal decomposition of ρABC such that C(ρAB|C) =

∑
i piC(|ψi〉)AB|C. We have

FN
(
ρAB
)
≤
∑

i

piFN
(
ρiAB

)
≤
∑

i

pi

√

1 − C2
(
ρi
AB|C

)

≤
√

1 −
∑

i

piC2
(
ρi
AB|C

)
≤
√

1 − C2
(
ρAB|C

)
,

(4.40)

where ρi
AB|C = |ψi〉ABC〈ψi| and ρiAB = TrC[ρiAB|C].

From Theorem 4.8 we see that the FEF of qubits A and B are bounded by the
concurrence between qubits A, B, and qubit C. The upper bound of FEF for ρAB decreases
when the entanglement between qubits A,B, and C increases. As an example, we consider
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Figure 3: FN(ρW
′

AB) (dashed line) and upper bound
√

1 − C2(|W ′〉AB|C) (solid line) of state |W ′〉AB|C at |α| =
|β|.

the generalized W state defined by |W ′〉 = α|100〉 + β|010〉 + γ |001〉, |α|2 + |β|2 + |γ |2 = 1. The
reduced density matrix is given by

ρW
′

AB =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∣
∣γ
∣
∣2 0 0 0

0
∣
∣β
∣
∣2 α∗β 0

0 αβ∗ |α|2 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.41)

The FEF of ρW
′

AB is given by

FN
(
ρW

′

AB

)
= −1

2
+ 2|α|

∣
∣β
∣
∣ +

1
2

∣
∣
∣|α|2 +

∣
∣β
∣
∣2 −

∣
∣γ
∣
∣2
∣
∣
∣, (4.42)

while the concurrence of |W ′〉 has the form CAB|C(|W ′〉) = 2|γ |
√
|α|2 + |β|2. We see that (4.33)

always holds. In particular for |α| = |β| and |γ | ≤
√

2/2, the inequality (4.33) is saturated (see
Figure 3).

4.3. Improvement of Entanglement Distillation Protocol

The upper bound can give rise to not only an estimation of the fidelity in quantum
information processing such as teleportation, but also an interesting application in
entanglement distillation of quantum states. In [77] a generalized distillation protocol has
been presented. It is shown that a quantum state ρ violating the reduction criterion can
always be distilled. For such states if their single fraction of entanglement F(ρ) = 〈ψ+|ρ|ψ+〉 is
greater than 1/d, then one can distill these states directly by using the generalized distillation
protocol. If the FEF (the largest value of single fraction of entanglement under local unitary
transformations) is less than or equal to 1/d, then a proper filtering operation has to be used
at first to transform ρ to another state ρ′ so that F(ρ′) > 1/d. For d = 2, one can compute
FEF analytically according to the corollary. For d ≥ 3 our upper bound (4.4) can supply a
necessary condition in the distillation.
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Figure 4: Upper bound of F(ρ) − 1/3 from (4.4) (solid line) and fidelity F(ρ) − 1/3 (dashed line) for state
(4.43).

Theorem 4.9. For an entangled state ρ ∈ H ⊗ H violating the reduction criterion, if the upper
bound (4.4) is less than or equal to 1/d, then the filtering operation has to be applied before using the
generalized distillation protocol [123].

As an example, we consider a 3 × 3 state

ρ =
8
9
σ +

1
9
∣
∣ψ+
〉〈
ψ+
∣
∣, (4.43)

where σ = (x|0〉〈0|+(1−x)|1〉〈1|)⊗ (x|0〉〈0|+(1−x)|1〉〈1|). It is direct to verify that ρ violates
the reduction criterion for 0 ≤ x ≤ 1, as (ρ1⊗ I)−ρ has a negative eigenvalue −2/27. Therefore
the state is distillable. From Figure 4, we see that for 0 ≤ x < 0.0722 and 0.9278 < x ≤ 1, the
fidelity is already greater than 1/3; thus the generalized distillation protocol can be applied
without the filtering operation. However for 0.1188 ≤ x ≤ 0.8811, even the upper bound of
the fully entangled fraction is less than or equal to 1/3; hence the filtering operation has to be
applied first, before using the generalized distillation protocol.

Moreover, the lower bounds of concurrence can be also used to study the distillability
of quantum states. Based on the positive partial transpose (PPT) criterion, a necessary and
sufficient condition for the distillability was proposed in [127], which is not operational in
general. An alternative distillability criterion based on the bound τ2 in (3.19) can be obtained
to improve the operationality.

Theorem 4.10. A bipartite quantum state ρ is distillable if and only if τ2(ρ⊗N) > 0 for some number
N [67].

Proof. It was shown in [127] that a density matrix ρ is distillable if and only if there are some
projectors P ,Q that map high-dimensional spaces to two-dimensional ones and some number
N such that the state P ⊗Qρ⊗NP ⊗Q is entangled [127]. Thus if τ2(ρ⊗N) > 0, then there exists
one submatrix of matrix ρ⊗N , similar to (3.20), which has nonzero τ2 and is entangled in a
2 ⊗ 2 space; hence ρ is distillable.
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Corollary 4.11. (a) The lower bound τ2(ρ) > 0 is a sufficient condition for the distillability of any
bipartite state ρ.

(b) The lower bound τ2(ρ) = 0 is a necessary condition for separability of any bipartite state ρ.

Remark 4.12. Corollary 4.11 directly follows from Theorem 4.10 and this case is referred to as
one distillable [128]. The problem of whether non-PPT (NPPT) nondistillable states exist is
studied numerically in [128, 129]. By using Theorem 4.10, although it seems impossible to
solve the problem completely, it is easy to judge the distillability of a state under condition
that is one distillable.

The lower bound τ2, PPT criterion, separability, and distillability for any bipartite
quantum state ρ have the following relations: if τ2(ρ) > 0, then ρ is entangled. If ρ is separable,
then it is PPT. If τ2(ρ) > 0, then ρ is distillable. If ρ is distillable, then it is NPPT. From the last
two propositions it follows that if ρ is PPT, then τ2(ρ) = 0, that is, if τ2(ρ) > 0, then ρ is NPPT.

Theorem 4.13. For any pure tripartite state |φ〉ABC in arbitrary d⊗d⊗d dimensional spaces, bound
τ2 satisfies [67]

τ2
(
ρAB
)
+ τ2
(
ρAC
)
≤ τ2
(
ρA:BC

)
, (4.44)

where ρAB = TrC(|φ〉ABC〈φ|), ρAC = TrB(|φ〉ABC〈φ|), and ρA:BC = TrBC(|φ〉ABC〈φ|).

Proof . Since C2
mn ≤ (λ(1)mn)

2
≤
∑4

i=1 (λ
(i)
mn)

2
= Tr(ρρ̃mn), one can derive the inequality

τ
(
ρAB
)
+ τ
(
ρAC
)
≤

D∑

l,k

Tr
[
ρAB
(
ρ̃AB
)
lk

]
+

D∑

p,q

Tr
[
ρAC
(
ρ̃AC
)
pq

]
, (4.45)

where D = d(d − 1)/2. Note that
∑

lk Tr[ρAB(ρ̃AB)lk] ≤ 1 − Tr ρ2
A − Tr ρ2

B + Tr ρ2
C and

∑
pq Tr[ρAC(ρ̃AC)pq] ≤ 1 − Tr ρ2

A + Tr ρ2
B − Tr ρ2

C, where l, pk, q,= 1, . . . , D. By using the similar
analysis in [113], one has that the right-hand side of (4.45) is equal to 2(1−Tr ρ2

A) = C
2(ρA:BC).

Taking into account that τ2(ρA:BC) = C2(ρA:BC) for a pure state, one obtains inequality (4.44).
Generally for any pure multipartite quantum state ρAB1B2···bn , one has the following

monogamy inequality:

τ2
(
ρAB1

)
+ τ2
(
ρAB2

)
+ · · · + τ2

(
ρABn

)
≤ τ2
(
ρA:B1B2···Bn

)
. (4.46)

5. Summary and Conclusion

We have introduced some recent results on three aspects in quantum information theory. The
first one is the separability of quantum states. New criteria to detect more entanglements have
been discussed. The normal forms of quantum states have been also studied, which helps in
investigating the separability of quantum states. Moreover, since many kinds of quantum
states can be transformed into the same normal forms, quantum states can be classified in
terms of the normal forms. For the well-known entanglement measure concurrence, we have
discussed the tight lower and upper bounds. It turns out that, although one cannot distill
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a singlet from many pairs of bound entangled states, the concurrence and tangle of two
entangled quantum states are always larger than those of one, even if both of two entangled
quantum states are bound entangled. Related to the optimal teleportation fidelity, upper
bounds for the fully entangled fraction have been studied, which can be used to improve the
distillation protocol. Interesting relations between fully entangled fraction and concurrence
have been also introduced. All these related problems in the theory of quantum entanglement
have not been completely solved yet. Many problems remain open concerning the physical
properties and mathematical structures of quantum entanglement, and the applications of
entangled states in information processing.
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