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1. Introduction

New constructive Bosonic field theory methods have been recently proposed which are based
on applying a canonical forest formula to repackage perturbation theory in a better way.
This allows to compute the connected quantities of the theory by the same formula but
summed over trees instead of forests. ( Constructive Fermionic field theory is easier and was
repackaged in terms of trees much earlier [1–3].) The resulting formulation of the theory
is given by a convergent rather than divergent expansion. In short this is because there are
much less trees than graphs, but they still capture the vital physical information, which is
connectedness.

Combining such a forest formula with the intermediate field method leads to a
convenient resummation of φ4 perturbation theory. The main advantage of this formalism
over previous cluster and Mayer expansions is that connected functions are captured by a
single formula, and for example, a Borel summability theorem for matrix φ4 models can be
obtained which scales correctly with the size of the matrix [4]. The resulting method applies
to ordinary quantum field theory on commutative space as well [5]. However in this point
of view the connected functions still involve functional integrals over many replicas of the
intermediate field.

Another even more recent constructive point of view [6] is that a quantum Euclidean
Bosonic field theory is a particular positive scalar product on a universal vector space
spanned by “marked trees.” That scalar product is obtained by applying a tree or forest
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formula to the ordinary perturbative expansion of the QFT model under consideration.
That formula itself is model-independent and reorganizes perturbation theory differently,
by breaking Feynman amplitudes into pieces and putting these pieces into boxes labeled by
trees.

In this point of view, constructive bounds reduce essentially to the positivity of
the universal Hamiltonian operator. The vacuum is the trivial tree and the correlation
functions are given by “vacuum expectation values” of the resolvent of that combinatoric
Hamiltonian operator. Model-dependent details such as space-time dimension, interactions
and propagators enter the definition of the matrix elements of this scalar product. These
matrix elements are just finite sums of finite dimensional Feynman integrals.

We were urged to explain these new ideas in a pedagogical way. This is what we do
in this short note on the simplest possible example, namely, the connected graphs of the zero
dimensional φ4 theory. This theory corresponds to an ordinary integral on a single variable,
and we hope that following the different constructive steps on this simple example will
expose the core ideas better. The main picture that emerges is that the essence of constructive
theory is about using cleverly trees and replicas.

2. The Forest Formula

A forest on n points is a graph on these points with no cycle (a cycle is usually called a loop by
physicists). The graph without lines is a forest called the empty forest. With this convention
the reader can check that there are 2 differents, forests on 2 points, 7 different, forests on three
points, and 28 on four points.

A tree (also called spanning tree) on n points is a connected forest, that is a graph
without cycles which connects all the n points. A famous theorem by Cayley states that there
are exactly nn−2 different trees on n points.

Consider n of such points, the set of pairs Pn of such points which has n(n − 1)/2
elements � = (i, j) for 1 ≤ i < j ≤ n, and a smooth function f of n(n−1)/2 variables x� , � ∈ Pn.
Noting ∂� for ∂/∂x� , the standard canonical forest formula is [7, 8]

f(1, . . . , 1) =
∑

F

[
∏

�∈F

∫1

0
dw�

]([
∏

�∈F
∂�

]
f

)[
xF
� ({w�′ })

]
, (2.1)

where

(i) the sum over F is over forests over the n vertices, including the empty one;

(ii) xF
� ({w�′ }) is the infimum of the w�′ for �′ in the unique path from i to j in F, where
� = (i, j). If there is no such path, xF

�
({w�′ }) = 0 by definition;

(iii) the symmetric n by n matrix XF({w}) defined by XF
ii = 1 and XF

ij = xF
ij ({w�′ }) for

1 ≤ i < j ≤ n is positive.

One can easily check that for n = 2, this is nothing but the fundamental theorem of
calculus: H(1) = H(0) +

∫1
0dh H

′(h). For higher values of n, on the other hand, the outcome
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Figure 1: The complete graph over 3 vertices and its 7 forests.

of (2.1) is genuinely nontrivial, as the case n = 3 already demonstrates, where we get a sum
of seven terms matching the seven forests of Figure 1:

H(1, 1, 1) = H(0, 0, 0) +
∫1

0
dh1∂1H(h1, 0, 0) +

∫1

0
dh2 ∂2H(0, h2, 0)

+
∫1

0
dh3∂3H(0, 0, h3) +

∫1

0
dh1

∫1

0
dh2 ∂

2
12H(h1, h2,min(h1, h2))

+
∫1

0
dh1

∫1

0
dh3∂

2
13H(h1,min(h1, h3), h3)

+
∫1

0
dh2

∫1

0
dh3∂

2
23H(min(h2, h3), h2, h3).

(2.2)

A particular variant of this formula (2.1) is in fact better suited to direct application
to the parametric representation of Feynman amplitudes. It consists in changing variables
x → 1 − x and rescaling to [0, 1] → [0,∞] of the range of the variables. One gets that if f is
smooth with well-defined limits for any combination of x� tending to ∞,

f(0, . . . , 0) =
∑

F

[
∏

�∈F

∫∞

0
ds�

]([
∏

�∈F
− ∂�

]
f

)[
xF
� ({s�′ })

]
, (2.3)

where

(i) the sum over F is like above;

(ii) xF
�
({s�′ }) is the supremum of the s�′ for �′ in the unique path from i to j in F, where

� = (i, j). If there is no such path, xF
�
({s�′ }) = ∞ by definition. This is because the

change of variables exchanged inf and sup.

To distinguish these two formulas we call w the parameters of the first one (like
“weakening”) since the formula involves infima, and s the parameters of the second one
(like “strengthening” or “supremum”) since the formula involves suprema.

Scale analysis is the key to renormalization, and scales can be conveniently defined
in quantum field theory through the parametric representation of the propagator H−1 =∫∞

0 e
−αHdα. The strengthening formula (2.3) rather than the weakening formula is therefore

particularly adapted to scale analysis and renormalization.
Finally notice that various extensions of these formulas should be useful to study

further the theory. A quite general theory of such formulas is given in [9].
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3. Borel Summability

Borel summability of a power series
∑

n anλ
n means existence of a function f with two

properties [10]:

(i) analyticity in a disk tangent to the imaginary axis at the origin lying on the right-
hand side of that disk, hence defined by a condition Rλ−1 > R−1,

(ii) plus remainder estimates uniform in that disk:

∣∣∣∣∣f(λ) −
N∑

n=0

anλ
n

∣∣∣∣∣ ≤ K
N N! |λ|N+1. (3.1)

Given any power series
∑

n anλ
n, there is at most one such function f . When there is

one, it is called the Borel sum, and it can be computed from the series to arbitrary accuracy.
Therefore Borel summability is a perfect substitute for ordinary analyticity when a

function is expanded at a point on the frontier of its analyticity domain. Borel summability is
just a rigidity which plays the same role than analyticity: it selects a unique map between
a certain class of functions and a certain class of power series. Within that class, all the
information about the function is therefore captured in the much more compact list of its
Taylor coefficients.

Very early, both functional integrals and the Feynman perturbative series were
introduced to study quantum field theory, but it was realized that the corresponding power
series were generically divergent. When a link between both approaches can be established,
it is usually through Borel summability or a variant thereof. This is why Borel summability is
important for quantum field theory.

4. Φ4 Constructive Theory in Zero Dimension

In this section we propose to test the evolution of ideas in constructive theory on the simple
example of a single-variable ordinary integral which represents the φ4 field theory in zero
dimensions.

The normalization or partition function of that theory is the ordinary integral:

F(λ) =
∫+∞

−∞
e−λx

4−x2/2 dx√
2π

. (4.1)

It is obvious that F(λ) is well defined for Reλ ≥ 0 with |F(λ)| ≤ 1, and analytic for Reλ > 0. It
has a Taylor series at the origin F 	

∑
n an(−λ)

n with an = (4n)!!/n!. Using a Taylor expansion
with integral remainder it is also very easy to prove that F is Borel summable. But in physics
we are interested in computing connected quantities, hence in the function G(λ) = logF(λ).
We can therefore formulate the simplest of all Bosonic constructive field theory problems as
follows.

Problem. How to compute G(λ) and prove its Borel summability in the most explicit and efficient
manner?
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We shall review how different methods of increasing sophistication answer this
question:

(i) composition of series (XIXth century),

(ii) a la Feynman (1950),

(iii) “Classical Constructive,” à la Glimm-Jaffe-Spencer (1970s–2000s)

(iv) with loop vertices (2007),

(v) with tree vector space (2008).

4.1. Composition of Series

The first remark is that we know the explicit power series for F, and it starts with 1, so that
F = 1+H; we know the explicit series for log(1+x) so we can substituteH for x and reexpand
and we get an explicit formula for the coefficient bn of the Taylor series of G:

F = 1 +H, H =
∑

p≥1

ap(−λ)p, ap =
(
4p

)
!!

p!

log(1 + x) =
∞∑

n=1

(−1)n+1x
n

n
,

G =
∞∑

n=1

(−1)n+1H(λ)n

n
=
∑

k≥1

bk(−λ)k,

bk =
k∑

n=1

(−1)n+1

n

∑

p1,...,pn≥1
p1+···+pn=k

∏

j

(
4pj

)
!!

pj !
.

(4.2)

To summarize, this method leads to an explicit formula for bk, but of little use. Borel
summability of G is unclear. Even the sign of bk is unclear.

4.2. A la Feynman

Feynman understood that an can be represented as a sum of terms associated to drawings,
the famous Feynman graphs. But the real mathematical power of this idea is that it allows a
quick computation of logarithms: they are simply given by the same sum but over connected
drawings!

The theory of combinatoric species is a rich mathematical orchestration of this
intuition; see [11]. A species is roughly a structure on finite sets of “points,” and
combinatorics consists in counting the number an of elements in that species on n points.
A fundamental tool to this effect is the generating power series of the species which is∑

n(an/n!)λn. Let us say that a species proliferate if its generating power series has zero radius
of convergence. A big problem of the current formulation of perturbative quantum field
theory is that the species of ordinary Feynman graphs proliferate, whereas trees do not. The
main problem of constructive theory is therefore to replace Feynman graphs by trees.
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In our case the drawings are the Wick contractions of φ4 vacuum graphs, that is graphs
on n vertices with coordination 4 at each vertex (loops, called tadpoles by physicists, being
allowed):

F = 1 +H, H =
∑

p≥1

ap(−λ)p, ap =
1
p!

#
{

vacuum graphs on p vertices
}
, (4.3)

G =
∞∑

k=1

(−λ)kbk, bk =
1
k!

#
{

vacuum connected graphs on k vertices
}
. (4.4)

We can easily compute in this way that b1 = 3, b2 = 48, b3 = 1584 . . . .
Usually in the quantum field theory literature there are painful discussions on what

is a Feynman graph and what is its combinatoric weight or “symmetry factor.” This is
important to make the shortest possible list of independent Feynman amplitudes that one
has to compute in practice. But conceptually it is much better to consider a graph as a set of
“Wick contractions,” that is a set of pairing of fields, so that no “symmetry factors” are ever
discussed. ( Fields correspond to half-lines, also called flags in the mathematics literature and
the physicists point of view that flags, not lines, are the fundamental elements in graph theory
is slowly making its way in the mathematics literature [12, 13].)

Borel summability remains unclear. But as a first fruit of the idea of Feynman graphs
clearly, we now see explicitly that bk ≥ 0: we know that G has an alternate power series.

4.3. Classical Constructive

The standard method in Bosonic constructive field theory is to first break up the functional
integrals over a discretization of space-time and then test the couplings between the
corresponding functional integrals (cluster expansion), which results in the theory being
written as a polymer gas with hardcore constraints. For that gas to be dilute at small coupling,
the normalization of the free functional integrals must be factored out. Finally the connected
functions are computed by expanding away the hardcore constraint through a so-called
Mayer expansion [14–17].

In the zero-dimensional case there is no need to discretize the single point of space-
time; hence it seems that the first step, namely, the cluster expansion is trivial. This is correct
except for the fact that what remains from this step is to factorize the “free functional” inte-
gral; so a single first-order Taylor expansion with remainder around λ = 0 corresponds to the
zero-dimensional cluster expansion. But after that the Mayer expansion is completely non-
trivial and very instructive, because a single point has indeed hardcore constraint with itself!

The first step (cluster expansion) is therefore

F = 1 +H, H = −λ
∫1

0
dt

∫+∞

−∞
x4e−λtx

4−x2/2 dx√
2π

(4.5)

The more interesting Mayer expansion in this case consists in introducing many copies or
“replicas” of H:

∀i H = Hi = −λ
∫1

0
dt

∫+∞

−∞
x4
i e

−λtx4
i −x

2
i /2 dxi√

2π
, (4.6)
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Defining εij = 0 for all i, j we can write the apparently stupid formula:

F = 1 +H =
∞∑

n=0

n∏

i=1

Hi(λ)
∏

1≤i<j≤n
εij . (4.7)

But defining ηij = −1, εij = 1 + ηij = 1 + xijηij |xij=1 and applying the forest formula lead to

F =
∞∑

n=0

1
n!

∑

F

n∏

i=1

Hi(λ)

{
∏

�∈F

[∫1

0
dw�

]
η�

}
∏

� /∈F

[
1 + η�x

F
� ({w})

]
, (4.8)

which allows easily to take the logarithm

G =
∞∑

n=1

1
n!

∑

T

n∏

i=1

Hi(λ)

{
∏

�∈T

[∫1

0
dw�

]
η�

}
∏

� /∈T

[
1 + η�xT

� ({w})
]
, (4.9)

where the second sum runs over trees! In this way we obtain the following.

(i) Convergence is now easy because each Hi contains a different “copy”
∫
dxi of the

“functional integration” (which of course here is an ordinary integration).

(ii) Borel summability for G follows now easily from the Borel summability of H.

A shortcoming is that “space-time” and functional integrals remains present. Also the
cluster step, suitably generalized in non zero dimension by Glimm, Jaffe, Spencer, and follow-
ers, heavily relies on locality, hence does not seem to have the potential to work on nonstan-
dard space-times or for nonlocal or matrix-like theories like the Grosse-Wulkenhaar model of
noncommutative theory [18] or for the group field theory models of quantum gravity.

4.4. Loop Vertices

The intermediate field representation is a well-known trick to represent a quartic interaction,
in terms of a cubic one:

F =
∫+∞

−∞
e−λx

4−x2/2 dx√
2π

=
∫+∞

−∞

∫+∞

−∞
e−i

√
2λσx2−x2/2−σ2/2 dx√

2π

dσ√
2π

=
∫+∞

−∞
e−1/2 log[1+i

√
8λσ]−σ2/2 dσ√

2π

=
∫+∞

−∞

∞∑

n=0

V n

n!
dμ(σ), with V = −1

2
log

[
1 + i

√
8λσ

]
,

(4.10)

where dμ(σ) is the Gaussian measure on σ of covariance 1, namely:

dμ(σ) = e−σ
2/2 dσ√

2π
. (4.11)
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x0

(a)

x0

(b)

Figure 2: Loop vertices and a tree on them, or cactus.

We can introduce again replicas but in a slightly different way. We duplicate the
intermediate field into copies, V n(σ) →

∏n
i=1Vi(σi), one associated to each factor V , also

called a “loop vertex.” The theory has not changed if we use for all these fields a jointly
Gaussian measure with degenerate covariance, dμ(σ) → dμC({σi}), Cij = 1 = xij |xij=1.
Remark that the corresponding measure has no density with respect to the Lebesgue measure
since

dμC({σi}) =
dσ1√

2π
e−σ

2
1/2

n∏

i=2

δ(σ1 − σi) dσi. (4.12)

It is not enough known that a delta function is a Gaussian measure!
This does not change the expectation value of any polynomial; hence by the

Weierstrass theorem it does not change the theory. But one can now apply the forest formula
to the off-diagonal couplings Cij . It gives

F =
∞∑

n=0

1
n!

∑

F

{
∏

�∈F

[∫1

0
dw�

]}∫{∏

�∈F

∂

∂σi(�)

∂

∂σj(�)

n∏

i=1

V (σi)

}
dμCF , (4.13)

where CF
ij = x

F
� ({w}) if i < j, CF

ii = 1 and

G =
∞∑

n=1

1
n!

∑

T

{
∏

�∈T

[∫1

0
dw�

]}∫{∏

�∈T

∂

∂σi(�)

∂

∂σj(�)

n∏

i=1

V (σi)

}
dμCT , (4.14)

where the second sum runs over trees!
The main advantage is that the role of propagators and vertices has been exchanged!

The result is a sum over trees on loops, or cacti.
Since

∂k

∂σk
log

[
1 + i

√
8λσ

]
= −(k − 1)!

(
−i
√

8λ
)k[

1 + i
√

8λσ
]−k

, (4.15)
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the loop vertices involve denominators or “resolvents” [1 + i
√

8λσ]
−1

rather than log’s.
However there is a little subtlety with the first “trivial” term in G for n = 1 which is a
single vertex loop with value log[1 + i

√
8λσ]. To transform it also into an expression with

denominators one should perform a single Taylor expansion step and integrate the σ field
through integration by parts:

∫
dμ(σ) log

[
1 + i

√
8λσ

]
=
∫
dμ(σ)

∫1

0
dt

i
√

8λσ

1 + i
√

8λtσ
=
∫
dμ(σ)

∫1

0
dt

8λt
[
1 + i

√
8λtσ

]2
. (4.16)

Once G has been rewritten in this way we have the following.

(i) Convergence is easy because |[1 + i
√

8λσ]
−k| ≤ 1, and because trees do not

proliferate.

(ii) Borel summability is easy.

(iii) This method extends to noncommutative field theory and gives correct estimates
for matrix-like models.

The drawback is that the method is more difficult when the interaction is of higher
degree, for example, φ6, because more intermediate fields are needed. Moreover functional
integrals over the intermediate fields are still present.

4.5. Tree QFT

This last method no longer requires functional integral at all! It is in a way the closest to
Feynman graphs, hence looks at first sight like a step backwards in constructive theory. It
starts exactly like constructive Fermionic theory.

Within a given quantum field model, the forest formula indeed associates a natural
amplitude AT to a tree T . It is the sum of all contributions associated to that tree when one
applies the tree formula to the nth order of perturbation theory of that model.

In our zero-dimensional case it means that we start with the usual formal perturbation
theory:

F =
∫+∞

−∞
e−λx

4−x2/2 dx√
2π

=
∫ ∞∑

n=0

V n

n!
dμ(x), (4.17)

where V = (−λx4) and dμ(x) is the Gaussian measure of covariance 1. Beware that this
interchange of sums and integrals is not licit, contrary to (4.10). That is why the result, namely
ordinary perturbation theory diverges! Nevertheless we shall use this perturbation series in
a heuristic way; namely, we shall repackage according to a forest formula and use the pieces
so obtained to build a (semidefinite) scalar product on a vector space generated by marked
trees. This will allow still another rigorous constructive expansion of the function G.

Then we introduce replicas again but on the ordinary vertices:

F =
∞∑

n=0

∫
1
n!

n∏

i=1

(
−λx4

i

)
dμ({xi}), (4.18)
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where dμ is the degenerate measure with covariance Cij = 1 for all i, j.
Applying the tree formula to that covariance gives in the same vein than before

F =
∞∑

n=0

1
n!

∑

F

{
∏

�∈F

[∫1

0
dw�

]}∫{∏

�∈F

∂

∂xi(�)

∂

∂xj(�)

n∏

i=1

(
−λx4

i

)}
dμCF , (4.19)

where CF
ij = x

F
� ({w}) if i < j, CF

ii = 1, so that formally

G =
∞∑

n=1

1
n!

∑

T

{
∏

�∈T

[∫1

0
dw�

]}∫{∏

�∈T

∂

∂xi(�)

∂

∂xj(�)

n∏

i=1

(
−λx4

i

)}
dμCT . (4.20)

The zero-dimensional φ4 tree amplitude for a tree T is therefore nothing but

AT =

{
∏

�∈T

[∫1

0
dw�

]}∫{∏

�∈T

∂

∂xi(�)

∂

∂xj(�)

n∏

i=1

(
−λx4

i

)}
dμCT . (4.21)

Remark that it is zero for trees with degree more than four at a vertex.
It seems that little has been achieved at the constructive level by rewriting Feynman

graphs simply in terms of an underlying tree, like in Fermionic theories. But there is a hidden
convexity in AT which hides the nonperturbative stability of the underlying theory.

It has indeed be shown in [6] that one can construct a scalar product over an abstract
infinite dimensional vector space E with a spanning basis eT labeled by marked trees, which
are trees with a mark on a particular leaf (i.e, vertex of degree 1). On E there is a natural
external gluing operation which sends (T, T ′) onto the (unmarked) tree T � T ′ by gluing the
two marks.

This operation induces a natural (semidefinite) scalar product and a natural φ4

Hamiltonian operator H. The scalar product 〈eT , eT ′ 〉 is simply AT�T ′. Roughly speaking the
Hamiltonian operator glues all the trees hanging to a single vertex with two marks. It is a
Hermitian negative operator on the Hilbert space which is the completion of E for the scalar
product above.

For the φ4 theory one can always restrict to trees with degrees at most 4 at each vertex.
The constructive expression for the connected two-point function

G2 =
1
F

∫+∞

−∞
x2e−λx

4−x2/2 dx√
2π

(4.22)

computed with this method is

G2 =
〈
eT0 ,

1
1 −HeT0

〉
, (4.23)

where T0 is the trivial tree with a single line. It is well defined at nonperturbative level because
H is Hermitian negative.
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This approach does not require any functional integral, since E is spanned by
finite order trees and its scalar product depends only on finite dimensional perturbative
computations. It seems the most promising way to study quantum field theory in the future,
including noninteger dimensions. However Borel summability is not completely obvious in
this expression hence more work is needed.

Also notice that the expressions of the functions F and G within this method should
require a slight extension of [6]. The tree formulas (2.1)–(2.3) should be pushed a single
Taylor step further to endotree formulas; see above. Vacuum-connected graphs should be
distributed as a sum over endotrees rather than tree, and the space E should be enlarged
accordingly. The corresponding formalism together with the multiscale version of this
approach is to be developed. Still we think that this approach is the most general and promis-
ing one for the future of constructive theory, since it is the most abstract and general. Neither
functional integrals nor a space time plays a central role, which makes the theory appealing
for situations such as noninteger dimensions or the future theory of quantum gravity.
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