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New oscillation criteria are established for second-ordermixed-nonlinear delay dynamic equations
on time scales by utilizing an interval averaging technique. No restriction is imposed on the
coefficient functions and the forcing term to be nonnegative.

1. Introduction

In this paper we are concerned with oscillatory behavior of the second-order nonlinear delay
dynamic equation of the form

(
r(t)xΔ(t)

)Δ
+ p0(t)x(τ0(t)) +

n∑
i=1

pi(t)|x(τi(t))|αi−1x(τi(t)) = e(t), t ≥ t0 (1.1)

on an arbitrary time scale T, where

α1 > α2 > · · · > αm > 1 > αm+1 > · · · > αn > 0, (n > m ≥ 1); (1.2)

the functions r, pi, e: T → R are right-dense continuous with r > 0 nondecreasing; the delay
functions τi : T → T are nondecreasing right-dense continuous and satisfy τi(t) ≤ t for t ∈ T

with τi(t) → ∞ as t → ∞.
We assume that the time scale T is unbounded above, that is, supT = ∞ and define

the time scale interval [t0,∞)
T
by [t0,∞)

T
:= [t0,∞) ∩ T. It is also assumed that the reader is

already familiar with the time scale calculus. A comprehensive treatment of calculus on time
scales can be found in [1–3].
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By a solution of (1.1) we mean a nontrivial real valued function x : T → R such that
x ∈ C1

rd
[T,∞)

T
and rxΔ ∈ C1

rd
[T,∞)

T
for all T ∈ T with T ≥ t0, and that x satisfies (1.1).

A function x is called an oscillatory solution of (1.1) if x is neither eventually positive nor
eventually negative, otherwise it is nonoscillatory. Equation (1.1) is said to be oscillatory if
and only if every solution x of (1.1) is oscillatory.

Notice that when T = R, (1.1) is reduced to the second-order nonlinear delay
differential equation

(
r(t)x′(t)

)′ + p0(t)x(τ0(t)) +
n∑
i=1

pi(t)|x(τi(t))|αi−1x(τi(t)) = e(t), t ≥ t0 (1.3)

while when T = Z, it becomes a delay difference equation

Δ(r(k)Δx(k)) + p0(k)x(τ0(k)) +
n∑
i=1

pi(k)|x(τi(k))|αi−1x(τi(k)) = e(k), k ≥ k0. (1.4)

Another useful time scale is T = qN := {qm : m ∈ N and q > 1 is a real number}, which leads
to the quantum calculus. In this case, (1.1) is the q-difference equation

Δq

(
r(t)Δqx(t)

)
+ p0(t)x(τ0(t)) +

n∑
i=1

pi(t)|x(τi(t))|αi−1x(τi(t)) = e(t), t ≥ t0, (1.5)

where Δqf(t) = [f(σ(t)) − f(t)]/μ(t), σ(t) = qt, and μ(t) = (q − 1)t.
Interval oscillation criteria are more natural in view of the Sturm comparison theory

since it is stated on an interval rather than on infinite rays and hence it is necessary to establish
more interval oscillation criteria for equations on arbitrary time scales as in T = R. As far
as we know when T = R, an interval oscillation criterion for forced second-order linear
differential equations was first established by El-Sayed [4]. In 2003, Sun [5] demonstrated
nicely how the interval criteria method can be applied to delay differential equations of the
form

x′′(t) + p(t)|x(τ(t))|α−1x(τ(t)) = e(t), (α ≥ 1), (1.6)

where the potential p and the forcing term e may oscillate. Some of these interval oscillation
criteria were recently extended to second-order dynamic equations in [6–10]. Further results
on oscillatory and nonoscillatory behavior of the second order nonlinear dynamic equations
on time scales can be found in [11–23], and the references cited therein.

Therefore, motivated by Sun and Meng’s paper [24], using similar techniques
introduced in [17] by Kong and an arithmetic-geometric mean inequality, we give oscillation
criteria for second-order nonlinear delay dynamic equations of the form (1.1). Examples are
considered to illustrate the results.
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2. Main Results

We need the following lemmas in proving our results. The first two lemmas can be found in
[25, Lemma 1].

Lemma 2.1. Let {αi}, i = 1, 2, . . . , n be the n-tuple satisfying α1 > α2 > · · · > αm > 1 > αm+1 > · · · >
αn > 0. Then, there exists an n-tuple {η1, η2, . . . , ηn} satisfying

n∑
i=1

αiηi = 1,
n∑
i=1

ηi < 1, 0 < ηi < 1. (2.1)

Lemma 2.2. Let {αi}, i = 1, 2, . . . , n be the n-tuple satisfying α1 > α2 > · · · > αm > 1 > αm+1 > · · · >
αn > 0. Then there exists an n-tuple {η1, η2, . . . , ηn} satisfying

n∑
i=1

αiηi = 1,
n∑
i=1

ηi = 1, 0 < ηi < 1. (2.2)

The next two lemmas are quite elementary via differential calculus; see [23, 25].

Lemma 2.3. Let u,A, and B be nonnegative real numbers. Then

Auγ + B ≥ γ
(
γ − 1

)1/γ−1
A1/γB1−1/γu, γ > 1. (2.3)

Lemma 2.4. Let u,A, and B be nonnegative real numbers. Then

Cu −Duγ ≥ (
γ − 1

)
γγ/(1−γ)Cγ/(γ−1)D1/(1−γ), 0 < γ < 1. (2.4)

The last important lemma that we need is a special case of the one given in [6]. For
completeness, we provide a proof.

Lemma 2.5. Let τ : T → T be a nondecreasing right-dense continuous function with τ(t) ≤ t, and
a, b ∈ T with a < b. If x ∈ C1

rd[τ(a), b]T
is a positive function such that r(t)xΔ(t) is nonincreasing

on [τ(a), b]
T
with r > 0 nondecreasing, then

x(τ(t))
xσ(t)

≥ τ(t) − τ(a)
σ(t) − τ(a)

, t ∈ [a, b]
T
. (2.5)

Proof. By the Mean Value Theorem [2, Theorem 1.14]

x(t) − x(τ(a)) ≥ xΔ(η)(t − τ(a)), (2.6)

for some η ∈ (τ(a), t)
T
, for any t ∈ (τ(a), b]

T
. Since r(t)xΔ(t) is nonincreasing and r(t) is

nondecreasing, we have

r(t)xΔ(t) ≤ r
(
η
)
xΔ(η) ≤ r(t)xΔ(η), t > η (2.7)
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and so xΔ(t) ≤ xΔ(η), t ≥ η. Now

x(t) − x(τ(a)) ≥ xΔ(t)(t − τ(a)), t ∈ [τ(a), b]
T
. (2.8)

Define

μ(s) := x(s) − (s − τ(a))xΔ(s), s ∈ [τ(t), σ(t)]
T
, t ∈ [a, b)

T
. (2.9)

It follows from (2.8) that μ(s) ≥ x(τ(a)) > 0 for s ∈ [τ(t), σ(t)]
T
and t ∈ [a, b)

T
. Thus, we have

0 <

∫σ(t)

τ(t)

μ(s)
x(s)xσ(s)

Δs =
∫σ(t)

τ(t)

(
s − τ(a)
x(s)

)Δ

Δs =
σ(t) − τ(a)

xσ(t)
− τ(t) − τ(a)

x(τ(t))
, (2.10)

which completes the proof.

In what follows we say that a function H(t, s) : T
2 → R belongs to HT if and only if

H is right-dense continuous function on {(t, s) ∈ T
2 : t ≥ s ≥ t0} having continuous Δ-partial

derivatives on {(t, s) ∈ T
2 : t > s ≥ t0}, withH(t, t) = 0 for all t andH(t, s)/= 0 for all t /= s. Note

that in caseHR, the Δ-partial derivatives become the usual partial derivatives ofH(t, s). The
partial derivatives for the cases HZ and HN will be explicitly given later.

Denoting the Δ-partial derivatives HΔt(t, s) and HΔs(t, s) of H(t, s) with respect to t
and s by H1(t, s) and H2(t, s), respectively, the theorems below extend the results obtained
in [5] to nonlinear delay dynamic equation on arbitrary time scales and coincide with them
whenH2(t, s) is replaced byH(t, s). Indeed, if we set H(t, s) =

√
U(t, s), then it follows that

H1(t, s) =
U1(t, s)√

U(σ(t), s) +
√
U(t, s)

, H2(t, s) =
U2(t, s)√

U(t, σ(s)) +
√
U(t, s)

. (2.11)

When T = R, they become

∂H(t, s)
∂t

=
∂U(t, s)/∂t

2
√
U(t, s)

,
∂H(t, s)

∂s
=

∂U(t, s)/∂s

2
√
U(t, s)

(2.12)

as in [5]. However, we prefer using H2(t, s) instead ofU(t, s) for simplicity.

Theorem 2.6. Suppose that for any given (arbitrarily large) T ∈ T there exist subintervals [a1, b1]T

and [a2, b2]T
of [T,∞)

T
, where a1 < b1 and a2 < b2 such that

pi(t) ≥ 0 for t ∈ [a1, b1]T
∪ [a2, b2]T

, (i = 0, 1, 2, . . . , n),

(−1)le(t) > 0 for t ∈ [al, bl]T
, (l = 1, 2),

(2.13)

where

al = min
{
τj(al) : j = 0, 1, 2, . . . , n

}
(2.14)
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hold. Let {η1, η2, . . . ηn} be an n-tuple satisfying (2.1) of Lemma 2.1. If there exist a functionH ∈ HT

and numbers cν ∈ (aν, bν)T
such that

1
H2(cν, aν)

∫ cν

aν

[
Q(t)H2(σ(t), aν) − r(t)H2

1(t, aν)
]
Δt

+
1

H2(bν, cν)

∫bν

cν

[
Q(t)H2(bν, σ(t)) − r(t)H2

2(bν, t)
]
Δt > 0

(2.15)

for ν = 1, 2, where

Q(t) = p0(t)
τ0(t) − τ0(aν)
σ(t) − τ0(aν)

+ k0|e(t)|η0
n∏
i=1

(
pi(t)

)ηi
(
τi(t) − τi(aν)
σ(t) − τi(aν)

)αiηi

,

k0 =
n∏
i=0

η
−ηi
i , η0 = 1 −

n∑
i=1

ηi,

(2.16)

then (1.1) is oscillatory.

Proof. Suppose on the contrary that x is a nonoscillatory solution of (1.1). First assume that
x(t) and x(τj(t)) (j = 0, 1, 2 . . . , n) are positive for all t ≥ t1 for some t1 ∈ [t0,∞)

T
. Choose a1

sufficiently large so that τj(τj(a1)) ≥ t1. Let t ∈ [a1, b1]T
.

Define

w(t) = −r(t)x
Δ(t)
x(t)

, t ≥ t1. (2.17)

Using the delta quotient rule, we have

wΔ(t) = −
(
r(t)xΔ(t)

)Δ
x(t) − r(t)

(
xΔ(t)

)2
x(t)xσ(t)

= −
(
r(t)xΔ(t)

)Δ
xσ(t)

+
r(t)

(
xΔ(t)

)2
x(t)xσ(t)

. (2.18)

Notice that

x(t)xσ(t) = x(t)
[
x(t) + μ(t)xΔ(t)

]
= x2(t)

[
1 − μ(t)

w(t)
r(t)

]
=

x2(t)
r(t)

[
r(t) − μ(t)w(t)

]
(2.19)

which implies

r(t) − μ(t)w(t) = r(t)
xσ(t)
x(t)

> 0. (2.20)

Hence, we obtain

wΔ(t) = −
(
r(t)xΔ(t)

)Δ
xσ(t)

+
w2(t)

r(t) − μ(t)w(t)
. (2.21)
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Substituting (2.21) into (1.1) yields

wΔ(t) =
p0(t)x(τ0(t))

xσ(t)
+

w2(t)
r(t) − μ(t)w(t)

+
n∑
i=1

pi(t)|x(τi(t))|αi−1x(τi(t))
xσ(t)

− e(t)
xσ(t)

. (2.22)

By assumption, we can choose a1, b1 ≥ t1 such that pi(t) ≥ 0 (i = 1, 2, 3 . . . , n) and e(t) ≤ 0
for all t ∈ [a1, b1]T

, where a1 is defined as in (2.14). Clearly, the conditions of Lemma 2.5 are
satisfied when, τ replaced with τj for each fixed (j = 0, 1, 2, . . . , n). Therefore, from (2.5), we
have

x
(
τj(t)

)

xσ(t)
≥ τj(t) − τj(a1)

σ(t) − τj(a1)
, t ∈ [a1, b1]T

(2.23)

and taking into account (2.22) yields

wΔ(t) ≥ p0(t)
τ0(t) − τ0(a1)
σ(t) − τ0(a1)

+
w2(t)

r(t) − μ(t)w(t)
+

n∑
i=1

pk(t)
(
τi(t) − τi(a1)
σ(t) − τi(a1)

)αi

(xσ(t))αi−1 +
|e(t)|
xσ(t)

.

(2.24)

Denote

Q∗
0(t) := p0(t)

τ0(t) − τ0(a1)
σ(t) − τ0(a1)

, Q∗
i (t) := pi(t)

(
τi(t) − τi(a1)
σ(t) − τi(a1)

)αi

. (2.25)

From (2.24), we have

wΔ(t) ≥ Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+
n∑
i=1

Q∗
i (t)(x

σ(t))αi−1 +
|e(t)|
xσ(t)

. (2.26)

Now recall the well-known arithmetic-geometric mean inequality, see [26],

n∑
i=0

uiηi ≥
n∏
i=0

u
ηi

i , (2.27)

where η0 = 1 −∑n
i=1 ηi and ηi > 0, i = 1, 2, . . . , n. Setting

u0η0 :=
|e(t)|
xσ(t)

, uiηi := Q∗
i (t)(x

σ(t))αi−1 (2.28)

in (2.26) yields

wΔ(t) ≥ Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+
n∑
i=1

uiηi + u0η0 = Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+
n∑
i=0

uiηi. (2.29)
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From (2.29) and taking into account (2.27), we get

wΔ(t) ≥ Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+
n∏
i=0

u
ηi
i (2.30)

and hence,

wΔ(t) ≥ Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+ η
−η0
0

|e(t)|η0
(xσ(t))η0

n∏
i=1

η
−ηi
i

(
Q∗

i (t)
)ηi((xσ(t))αi−1

)ηi

= Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+ η
−η0
0 |e(t)|η0

n∏
i=1

η
−ηi
i

(
Q∗

i (t)
)ηi(xσ(t))−η0+

∑n
j=1(αjηj−ηj )

= Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+ η
−η0
0 |e(t)|η0

n∏
i=1

η
−ηi
i

(
Q∗

i (t)
)ηi

(2.31)

which yields

wΔ(t) ≥ Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+ η
−η0
0 |e(t)|η0

n∏
i=1

η
−ηi
i

(
pi(t)

)ηi(τi(t) − τi(a1)
σ(t) − τi(a1)

)αiηi

= Q(t) +
w2(t)

r(t) − μ(t)w(t)
,

(2.32)

where

Q(t) = Q∗
0(t) + η

−η0
0 |e(t)|η0

n∏
i=1

η
−ηi
i

(
pi(t)

)ηi(τi(t) − τi(a1)
σ(t) − τi(a1)

)αiηi

. (2.33)

Multiplying both sides of (2.32) by H2(σ(t), a1) and integrating both sides of the resulting
inequality from a1 to c1, a1 < c1 < b1 yield

∫ c1

a1

wΔ(t)H2(σ(t), a1)Δt ≥
∫ c1

a1

Q(t)H2(σ(t), a1)Δt +
∫ c1

a1

w2(t)H2(σ(t), a1)
r(t) − μ(t)w(t)

Δt. (2.34)

Fix s and note that

(
w(t)H2(t, s)

)Δt

= H2(σ(t), s)wΔ(t) +
(
H2(t, s)

)Δt

w(t)

= H2(σ(t), s)wΔ(t) +H1(t, s)H(σ(t), s)w(t) +H(t, s)H1(t, s)w(t),
(2.35)

from which we obtain

H2(σ(t), s)wΔ(t) =
(
w(t)H2(t, s)

)Δt −H1(t, s)H(σ(t), s)w(t) −H(t, s)H1(t, s)w(t). (2.36)
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Therefore,

∫ c1

a1

wΔ(t)H2(σ(t), a1)Δt =
∫ c1

a1

(
w(t)H2(t, a1)

)Δt

Δt

−
∫ c1

a1

[H1(t, a1)H(σ(t), a1)w(t) +H(t, a1)H1(t, a1)w(t)]Δt.

(2.37)

Notice that

∫ c1

a1

(
w(t)H2(t, a1)

)Δt

Δt = w(c1)H2(c1, a1) −w(a1)H2(a1, a1) = w(c1)H2(c1, a1) (2.38)

since H(a1, a1) = 0 and hence, we obtain from (2.34) that

w(c1)H2(c1, a1) ≥
∫ c1

a1

Q(t)H2(σ(t), a1)Δt +
∫ c1

a1

w2(t)
r(t) − μ(t)w(t)

H2(σ(t), a1)Δt

+
∫ c1

a1

[H1(t, a1)H(σ(t), a1)w(t) +H(t, a1)H1(t, a1)w(t)]Δt.

(2.39)

On the other hand,

w2(t)H2(σ(t), s)
r(t) − μ(t)w(t)

+w(t)H(σ(t), s)H1(t, s) +H(t, s)H1(t, s)w(t)

=

[
w(t)H(σ(t), s)√
r(t) − μ(t)w(t)

+
√
r(t) − μ(t)w(t)H1(t, s)

]2

− (
r(t) − μ(t)w(t)

)
H2

1(t, s) −w(t)H(σ(t), s)H1(t, s) +H(t, s)H1(t, s)w(t).

(2.40)

Taking into account thatH(σ(t), s) = H(t, s) + μ(t)H1(t, s), we have

w2(t)H2(σ(t), a1)
r(t) − μ(t)w(t)

+w(t)H(σ(t), a1)H1(t, a1) +H(t, a1)H1(t, a1)w(t) ≥ −r(t)H2
1(t, a1).

(2.41)

Using this inequality in (2.39), we have

w(c1)H2(c1, a1) ≥
∫ c1

a1

[
Q(t)H2(σ(t), a1) − r(t)H2

1(t, a1)
]
Δt. (2.42)
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Similarly, by following the above calculation step by step, that is, multiplying both
sides of (2.32) this time byH2(b1, σ(s)) after taking into account that

H2(t, σ(s))wΔ(s) =
(
w(s)H2(t, s)

)Δs −H2(t, s)H(t, σ(s))w(s) −H(t, s)H2(t, s)w(s), (2.43)

one can easily obtain

−w(c1)H2(b1, c1) ≥
∫b1

c1

[
Q(s)H2(b1, σ(s)) − r(s)H2

2(b1, s)
]
Δs. (2.44)

Adding up (2.42) and (2.44), we obtain

0 ≥ 1
H2(c1, a1)

∫ c1

a1

[
Q(t)H2(σ(t), a1) − r(t)H2

1(t, a1)
]
Δt

+
1

H2(b1, c1)

∫b1

c1

[
Q(t)H2(b1, σ(t)) − r(s)H2

2(b1, t)
]
Δt.

(2.45)

This contradiction completes the proof when x(t) is eventually positive. The proof when x(t)
is eventually negative is analogous by repeating the above arguments on the interval [a2, b2]T

instead of [a1, b1]T
.

Corollary 2.7. Suppose that for any given (arbitrarily large) T ≥ t0 there exist subintervals [a1, b1]
and [a2, b2] of [T,∞) such that

pi(t) ≥ 0 for t ∈ [a1, b1] ∪ [a2, b2], (i = 0, 1, 2, . . . , n),

(−1)le(t) ≥ 0 for t ∈ [al, bl], (l = 1, 2),
(2.46)

where al = min{τj(al) : j = 0, 1, 2, . . . , n} holds. Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.1)
of Lemma 2.1. If there exist a function H ∈ HR and numbers cν ∈ (aν, bν) such that

1
H2(cν, aν)

∫ cν

aν

[
Q(t)H2(t, aν) − r(t)H2

1(t, aν)
]
dt

+
1

H2(bν, cν)

∫bν

cν

[
Q(t)H2(bν, t) − r(t)H2

2(bν, t)
]
dt > 0

(2.47)

for ν = 1, 2, where

Q(t) = p0(t)
τ0(t) − τ0(aν)
t − τ0(aν)

+ k0|e(t)|η0
n∏
i=1

(
pi(t)

)ηi
(
τi(t) − τi(aν)
t − τi(aν)

)αiηi

,

k0 =
n∏
i=0

η
−ηi
i , η0 = 1 −

n∑
i=1

ηi,

(2.48)

then (1.3) is oscillatory.
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Corollary 2.8. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a1, b1, a2, b2 ∈ Z with
T ≤ a1 < b1 and T ≤ a2 < b2 such that for each i = 0, 1, 2, . . . , n,

pi(t) ≥ 0 for t ∈ {a1, a1 + 1, a1 + 2, . . . , b1} ∪ {a2, a2 + 1, a2 + 2, . . . , b2},

(−1)le(t) ≥ 0 for t ∈ {al, al + 1, al + 2, . . . , bl} (l = 1, 2),
(2.49)

where al = min{τj(al) : j = 0, 1, 2, . . . , n} holds. Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.1) of
Lemma 2.1. If there exist a functionH ∈ HZ and numbers cν ∈ {aν + 1, aν + 2, . . . , bν − 1} such that

1
H2(cν, aν)

cν−1∑
t=aν

[
Q(t)H2(t + 1, aν) − r(t)H2

1(t, aν)
]

+
1

H2(bν, cν)

bν−1∑
t=cν

[
Q(t)H2(bν, t + 1) − r(t)H2

2(bν, t)
]
> 0

(2.50)

for ν = 1, 2, where

H1(t, aν) := H(t + 1, aν) −H(t, aν), H2(bν, t) := H(bν, t + 1) −H(bν, t),

Q(t) = p0(t)
τ0(t) − τ0(aν)
t + 1 − τ0(aν)

+ k0|e(t)|η0
n∏
i=1

(
pi(t)

)ηi
(
τi(t) − τi(aν)
t + 1 − τi(aν)

)αiηi

,

k0 =
n∏
i=0

η
−ηi
i , η0 = 1 −

n∑
i=1

ηi,

(2.51)

then (1.4) is oscillatory.

Corollary 2.9. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a1, b1, a2, b2 ∈ N with
T ≤ a1 < b1 and T ≤ a2 < b2 such that for each i = 0, 1, 2, . . . , n,

pi(t) ≥ 0 for t ∈
{
qa1 , qa1+1, . . . , qb1

}
∪
{
qa2 , qa2+1, . . . , qb2

}
,

(−1)le(t) ≥ 0 for t ∈
{
qal , qal+1, . . . , qbl

}
, (l = 1, 2)

(2.52)

where qal = min{τj(qal) : j = 0, 1, 2, . . . , n} holds. Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.1)
of Lemma 2.1. If there exist a function H ∈ Hq and numbers qcν ∈ {qaν+1, qaν+2, . . . , qbν−1} such that

1
H2

(
qcν , qaν

)
cν−1∑
m=aν

qm
[
Q
(
qm

)
H2

(
qm+1, qaν

)
− r

(
qm

)
H2

1

(
qm, qaν

)]

+
1

H2
(
qbν , qcν

)
bν−1∑
m=cν

qm
[
Q
(
qm

)
H2

(
qbν , qm+1

)
− r

(
qm

)
H2

2

(
qbν , qm

)]
> 0

(2.53)
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for ν = 1, 2, where

H1
(
qm, qaν

)
:=

H
(
qm+1, qaν

) −H
(
qm, qaν

)
(
q − 1

)
qm

, H2

(
qbν , qm

)
:=

H
(
qbν , qm+1) −H

(
qbν , qm

)
(
q − 1

)
qm

,

Q(t) = p0(t)
τ0(t) − τ0

(
qaν

)

qt − τ0
(
qaν

) + k0|e(t)|η0
n∏
i=1

(
pi(t)

)ηi
(
τi(t) − τi(qaν)
qt − τi(qaν)

)αiηi

,

k0 =
n∏
i=0

η
−ηi
i , η0 = 1 −

n∑
i=1

ηi,

(2.54)

then (1.5) is oscillatory.

Notice that Theorem 2.6 does not apply if there is no forcing term, that is, e(t) ≡ 0. In
this case we have the following theorem.

Theorem 2.10. Suppose that for any given (arbitrarily large) T ∈ T there exists a subinterval [a, b]
T

of [T,∞)
T
, where a < b such that

pi(t) ≥ 0 for t ∈ [a, b]
T
, (i = 0, 1, 2, . . . , n), (2.55)

where a = min{τj(a) : j = 0, 1, 2, . . . , n} holds. Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in
Lemma 2.2. If there exist a function H ∈ HT and a number c ∈ (a, b)

T
such that

1
H2(c, a)

∫ c

a

[
Q(t)H2(σ(t), a) − r(t)H2

1(t, a)
]
Δt

+
1

H2(b, c)

∫b

c

[
Q(t)H2(b, σ(t)) − r(s)H2

2(b, t)
2
]
Δt > 0,

(2.56)

where

Q(t) = p0(t)
τ0(t) − τ0(a)
σ(t) − τ0(a)

+ k0
n∏
i=1

(
pi(t)

)ηi
(
τi(t) − τi(a)
σ(t) − τi(a)

)αiηi

, k0 =
n∏
i=1

η
−ηi
i , (2.57)

then (1.1) with e(t) ≡ 0 is oscillatory.

Proof. We will just highlight the proof since it is the same as the proof of Theorem 2.6. We
should remark here that taking e(t) ≡ 0 and η0 = 0 in proof of Theorem 2.6, we arrive at

wΔ(t) ≥ Q∗
0(t) +

w2(t)
r(t) − μ(t)w(t)

+
n∑
i=1

uiηi. (2.58)
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The arithmetic-geometric mean inequality we now need is

n∑
i=1

uiηi ≥
n∏
i=1

u
ηi
i , (2.59)

where 1 =
∑n

i=1 ηi and ηi > 0, i = 1, 2, . . . , n are as in Lemma 2.2.

Corollary 2.11. Suppose that for any given (arbitrarily large) T ≥ t0 there exists a subinterval [a, b]
of [T,∞), where T ≤ a < b with a, b ∈ R such that

pi(t) ≥ 0 for t ∈ [a, b], (i = 0, 1, 2, . . . , n), (2.60)

where a = min{τj(a) : j = 0, 1, 2, . . . , n} holds. Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in
Lemma 2.2. If there exist a function H ∈ HR and a number c ∈ (a, b) such that

1
H2(c, a)

∫ c

a

[
Q(t)H2(t, a) − r(t)H2

1(t, a)
]
dt

+
1

H2(b, c)

∫b

c

[
Q(s)H2(b, t) − r(t)H2

2(b, t)
]
dt > 0,

(2.61)

where

Q(t) = p0(t)
τ0(t) − τ0(a)
t − τ0(a)

+ k0
n∏
i=1

(
pi(t)

)ηi
(
τi(t) − τi(a)
t − τi(a)

)αiηi

, k0 =
n∏
i=1

η
−ηi
i , (2.62)

then (1.3) with e(t) ≡ 0 is oscillatory.

Corollary 2.12. Suppose that for any given (arbitrarily large) T ≥ t0 there exists a, b ∈ Z with
T ≤ a < b such that

pi(t) ≥ 0 for t ∈ {a, a + 1, . . . , b}, (i = 0, 1, 2, . . . , n), (2.63)

where a = min{τj(a) : j = 0, 1, 2, . . . , n} holds. Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in
Lemma 2.2. If there exist a function H ∈ HZ and a number c ∈ {a + 1, a + 2, . . . , b − 1} such that

1
H2(c, a)

c−1∑
t=a

[
Q(t)H2(t + 1, a) − r(t)H2

1(t, a)
]

+
1

H2(b, c)

b−1∑
t=c

[
Q(t)H2(b, t + 1) − r(t)H2

2(b, t)
]
> 0,

(2.64)
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where

H1(t, a) := H(t + 1, a) −H(t, a), H2(b, t) := H(b, t + 1) −H(b, t),

Q(t) = p0(t)
τ0(t) − τ0(a)
t + 1 − τ0(a)

+ k0
n∏
i=1

(
pi(t)

)ηi
(
τi(t) − τi(a)
t + 1 − τi(a)

)αiηi

, k0 =
n∏
i=1

η
−ηi
i ,

(2.65)

then (1.4) with e(t) ≡ 0 is oscillatory.

Corollary 2.13. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a, b ∈ N with
T ≤ a < b such that

pi(t) ≥ 0 for t ∈
{
qa, qa+1, . . . , qb

}
, (i = 0, 1, 2, . . . , n) (2.66)

where qa = min{τj(qa) : j = 0, 1, 2, . . . , n} holds. Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2)
in Lemma 2.2. If there exist a function H ∈ HqN and a number qc ∈ {qa, qa+1, . . . , qb} such that

1
H2

(
qc, qa

)
c−1∑
m=a

qm
[
Q
(
qm

)
H2

(
qm+1, qa

)
− r

(
qm

)(
H1(qm, qa)

)2]

+
1

H2
(
qb, qc

)
b−1∑
m=c

qm
[
Q
(
qm

)
H2

(
qb, qm+1

)
− r

(
qm

)(
H2(qb, qm)

)2
]
> 0,

(2.67)

where

H1
(
qm, qa

)
:=

H
(
qm+1, qa

) −H
(
qm, qa

)
(
q − 1

)
qm

, H2

(
qb, qm

)
:=

H
(
qb, qm+1) −H

(
qb, qm

)
(
q − 1

)
qm

,

Q(t) = p0(t)
τ0(t) − τ0

(
qa
)

qt − τ0
(
qa
) + k0

n∏
i=1

(
pi(t)

)ηi
(
τi(t) − τi(qa)
qt − τi(qa)

)αiηi

, k0 =
n∏
i=1

η
−ηi
i ,

(2.68)

then (1.5) with e(t) ≡ 0 is oscillatory.

It is obvious that Theorem 2.6 is not applicable if the functions pi(t) are nonpositive
for i = m + 1, m + 2, . . . , n. In this case the theorem below is valid.

Theorem 2.14. Suppose that for any given (arbitrarily large) T ∈ T there exist subintervals [a1, b1]T

and [a2, b2]T
of [T,∞)

T
, where a1 < b1 and a2 < b2 such that

pi(t) ≥ 0 for t ∈ [a1, b1]T
∪ [a2, b2]T

, (i = 0, 1, 2, . . . , n),

(−1)le(t) > 0 for t ∈ [al, bl]T
, (l = 1, 2),

(2.69)
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where al = min{τj(al) : j = 0, 1, 2, . . . , n} holds. If there exist a function H ∈ HT, positive numbers
λi and νi satisfying

m∑
i=1

λi +
n∑

i=m+1

νi = 1, (2.70)

and numbers cν ∈ (aν, bν)T
such that

1
H2(cν, aν)

∫ cν

aν

[
Q(t)H2(σ(t), aν) − r(t)H2

1(t, aν)
]
Δt

+
1

H2(bν, cν)

∫bν

cν

[
Q(t)H2(bν, σ(t)) − r(t)H2

2(bν, t)
]
Δt > 0

(2.71)

for ν = 1, 2, where

Q(t) = p0(t)
τ0(t) − τ0(aν)
σ(t) − τ0(aν)

+
m∑
i=1

μi(λi|e(t)|)1−(1/αi)p1/αi

i (t)
(
τi(t) − τi(aν)
σ(t) − τi(aν)

)

−
n∑

i=m+1

βi(νi|e(t)|)1−(1/αi)p̃i
1/αi(t)

(
τi(t) − τi(aν)
σ(t) − τi(aν)

)
,

(2.72)

with

μi = αi(αi − 1)(1/αi)−1, βi = αi(1 − αi)(1/αi)−1, p̃i = max
{−pi(t), 0

}
, (2.73)

then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution. Without losss of generality, we may
assume that x(t) and x(τi(t)) (i = 0, 1, 2, . . . , n) are eventually positive on [a1, b1]T

when a1 is
sufficiently large. If x(t) is eventually negative, one may repeat the same proof step by step
on the interval [a2, b2]T

.
Rewriting (1.1) for t ∈ [a1, b1]T

as

(
r(t)xΔ(t)

)Δ
+ p0(t)x(τ0(t)) +

m∑
i=1

[
pi(t)xαi(τi(t)) + λi|e(t)|

]
+

n∑
i=m+1

[
pi(t)xαi(τi(t)) + νi|e(t)|

]
= 0

(2.74)

and applying Lemma 2.3 to each term in the first sum, we obtain

(
r(t)xΔ(t)

)Δ
+ p0(t)x(τ0(t)) +

m∑
i=1

μi(λi|e(t)|)1−(1/αi)p1/αi

i (t)x(τi(t))

+
n∑

i=m+1

[
pi(t)xαi(τi(t)) + νi|e(t)|

] ≤ 0,

(2.75)
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where μi = αi(αi − 1)(1/αi)−1 for i = 1, 2, . . . , m. Setting

w(t) = −r(t)x
Δ(t)
x(t)

(2.76)

yields

wΔ(t) = −
(
r(t)xΔ(t)

)Δ
xσ(t)

+
w2(t)

r(t) − μ(t)w(t)
. (2.77)

Substituting the above last equality into (2.75), we have

wΔ(t) ≥ p0(t)
x(τ0(t))
xσ(t)

+
m∑
i=1

μi(λi|e(t)|)1−(1/αi)p1/αi

i (t)
x(τi(t))
xσ(t)

+
1

xσ(t)

n∑
i=m+1

[
pi(t)xαi(τi(t)) + νi|e(t)|

]
+

w2(t)
r(t) − μ(t)w(t)

.

(2.78)

It follows from (2.5) that

x(τ0(t))
xσ(t)

≥ τ0(t) − τ0(a1)
σ(t) − τ0(a1)

, (2.79)

x(τi(t))
xσ(t)

≥ τi(t) − τi(a1)
σ(t) − τi(a1)

, (2.80)

xαi(τi(t))
xσ(t)

≥ xαi−1(τi(t))
τi(t) − τi(a1)
σ(t) − τi(a1)

. (2.81)

Notice that the second sum in (2.78) can be written as

1
xσ(t)

n∑
i=m+1

[
pi(t)xαi(τi(t)) + νi|e(t)|

]
=

n∑
i=m+1

[
pi(t)

xαi(τi(t))
xσ(t)

+
νi|e(t)|
xσ(t)

]

=
n∑

i=m+1

[
τi(t) − τi(a1)
σ(t) − τi(a1)

][
νi|e(t)| 1

x(τi(t))
− p̃i(t)

(
1

x(τi(t))

)1−αi
]
,

(2.82)

and hence applying the Lemma 2.4 yields

n∑
i=m+1

[
τi(t) − τi(a1)
σ(t) − τi(a1)

][
νi|e(t)| 1

x(τi(t))
− p̃i(t)

(
1

x(τi(t))

)1−αi
]

≥ −
n∑

i=m+1

[
τi(t) − τi(a1)
σ(t) − τi(a1)

]
βi(νi|e(t)|)1−(1/αi)p̃i

1/αi(t),

(2.83)
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where βi = αi(1 − αi)
(1/αi)−1 and p̃i = max{−pi(t), 0} for i = m + 1, m + 2, . . . , n. Using (2.79),

(2.80), and (2.78) into (2.78), we obtain

wΔ(t) ≥ p0(t)
τ0(t) − τ0(a1)
σ(t) − τ0(a1)

+
m∑
i=1

[
τi(t) − τi(a1)
σ(t) − τi(a1)

]
μi(λi|e(t)|)1−(1/αi)p1/αi

i (t)

−
n∑

i=m+1

[
τi(t) − τi(a1)
σ(t) − τi(a1)

]
βi(νi|e(t)|)1−(1/αi)p̃i

1/αi(t) +
w2(t)

r(t) − μ(t)w(t)
.

(2.84)

Setting

Q(t) = p0(t)
τ0(t) − τ0(a1)
σ(t) − τ0(a1)

+
m∑
i=1

μi(λi|e(t)|)1−(1/αi)p1/αi

i (t)
(
τi(t) − τi(a1)
σ(t) − τi(a1)

)

−
n∑

i=m+1

βi(νi|e(t)|)1−(1/αi)p̃i
1/αi(t)

(
τi(t) − τi(a1)
σ(t) − τi(a1)

)
,

(2.85)

we have

wΔ(t) ≥ Q(t) +
w2(t)

r(t) − μ(t)w(t)
. (2.86)

The rest of the proof is the same as that of Theorem 2.6 and hence it is omitted.

Corollary 2.15. Suppose that for any given (arbitrarily large) T ≥ t0 there exist subintervals [a1, b1]
and [a2, b2] of [T,∞), where T ≤ a1 < b1 and T ≤ a2 < b2 such that

pi(t) ≥ 0 for t ∈ [a1, b1] ∪ [a2, b2], (i = 0, 1, 2, . . . , n),

(−1)le(t) > 0 for t ∈ [al, bl], (l = 1, 2),
(2.87)

where al = min{τj(al) : j = 0, 1, 2, . . . , n} holds. If there exist a function H ∈ HR, positive numbers
λi and νi satisfying

m∑
i=1

λi +
n∑

i=m+1

νi = 1, (2.88)

and numbers cν ∈ (aν, bν) such that

1
H2(cν, aν)

∫ cν

aν

[
Q(t)H2(t, aν) − r(t)H2

1(t, aν)
]
dt

+
1

H2(bν, cν)

∫bν

cν

[
Q(t)H2(bν, t) − r(t)H2

2(bν, t)
]
dt > 0

(2.89)
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for ν = 1, 2, where

Q(t) = p0(t)
τ0(t) − τ0(aν)
t − τ0(aν)

+
m∑
i=1

μi(λi|e(t)|)1−(1/αi)p1/αi

i (t)
(
τi(t) − τi(aν)
t − τi(aν)

)

−
n∑

i=m+1

βi(νi|e(t)|)1−(1/αi)p̃i
1/αi(t)

(
τi(t) − τi(aν)
t − τi(aν)

) (2.90)

with

μi = αi(αi − 1)(1/αi)−1, βi = αi(1 − αi)(1/αi)−1, p̃i = max
{−pi(t), 0

}
, (2.91)

then (1.3) is oscillatory.

Corollary 2.16. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a1, b1, a2, b2 ∈ Z

with T ≤ a1 < b1 and T ≤ a2 < b2 such that for each i = 0, 1, 2, . . . , n,

pi(t) ≥ 0 for t ∈ {a1, a1 + 1, . . . , b1} ∪ {a2, a2 + 1, . . . , b2}

(−1)le(t) > 0 for t ∈ {al, al + 1, . . . , bl}, (l = 1, 2),
(2.92)

where al = min{τj(al) : j = 0, 1, 2, . . . , n} holds. If there exist a function H ∈ HZ, positive numbers
λi and νi satisfying

m∑
i=1

λi +
n∑

i=m+1

νi = 1, (2.93)

and numbers cν ∈ {aν + 1, aν + 2, . . . , bν − 1} such that

1
H2(cν, aν)

cν−1∑
t=aν

[
Q(t)H2(t + 1, aν) − r(t)H2

1(t, aν)
]

+
1

H2(bν, cν)

bν−1∑
t=cν

[
Q(t)H2(bν, t + 1) − r(t)H2

2(bν, t)
]
> 0

(2.94)

for ν = 1, 2, where

H1(t, aν) := H(t + 1, aν) −H(t, aν), H2(bν, t) := H(bν, t + 1) −H(bν, t),

Q(t) = p0(t)
τ0(t) − τ0(aν)
t + 1 − τ0(aν)

+
m∑
i=1

μi(λi|e(t)|)1−(1/αi)p1/αi

i (t)
(
τi(t) − τi(aν)
t + 1 − τi(aν)

)

−
n∑

i=m+1

βi(νi|e(t)|)1−(1/αi)p̃i
1/αi(t)

(
τi(t) − τi(aν)
t + 1 − τi(aν)

)
(2.95)



18 Advances in Difference Equations

with

μi = αi(αi − 1)(1/αi)−1, βi = αi(1 − αi)(1/αi)−1, p̃i = max
{−pi(t), 0

}
, (2.96)

then (1.4) is oscillatory.

Corollary 2.17. Suppose that for any given (arbitrarily large) T ≥ t0 there exist a1, b1, a2, b2 ∈ N

with T ≤ a1 < b1 and T ≤ a2 < b2 such that for each i = 0, 1, 2, . . . , n,

pi(t) ≥ 0 for t ∈
{
qa1 , qa1+1, . . . , qb1

}
∪
{
qa2 , qa2+1, . . . , qb2

}
,

(−1)le(t) > 0 for t ∈
{
qal , qal+1, . . . , qbl

}
, (l = 1, 2),

(2.97)

where qal = min{τj(qal) : j = 0, 1, 2, . . . , n} holds. If there exist a functionH ∈ Hq, positive numbers
λi and νi satisfying

m∑
i=1

λi +
n∑

i=m+1

νi = 1, (2.98)

and numbers qcν ∈ {qaν+1, qaν+2, . . . , qbν−1} such that

1
H2

(
qcν , qaν

)
cν−1∑
m=aν

qm
[
Q
(
qm

)
H2

(
qm+1, qaν

)
− r(t)H2

1

(
qm, qaν

)]

+
1

H2
(
qbν , qcν

)
bν−1∑
m=cν

qm
[
Q
(
qm

)
H2

(
qbν , qm+1

)
− r(t)H2

2

(
qbν , qm

)]
> 0

(2.99)

for ν = 1, 2, where

H1
(
qm, qaν

)
:=

H
(
qm+1, qaν

) −H
(
qm, qaν

)
(
q − 1

)
qm

, H2

(
qbν , qm

)
:=

H
(
qbν , qm+1) −H

(
qbν , qm

)
(
q − 1

)
qm

,

Q(t) = p0(t)
τ0(t) − τ0

(
qaν

)

qt − τ0
(
qaν

) +
m∑
i=1

μi(λi|e(t)|)1−(1/αi)p1/αi

i (t)

(
τi(t) − τi

(
qaν

)

qt − τi
(
qaν

)
)

−
n∑

i=m+1

βi(νi|e(t)|)1−(1/αi)p̃i
1/αi(t)

(
τi(t) − τi

(
qaν

)

qt − τi
(
qaν

)
)

(2.100)

with

μi = αi(αi − 1)1/αi−1, βi = αi(1 − αi)1/αi−1, p̃i = max
{−pi(t), 0

}
, (2.101)

then (1.5) is oscillatory.
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3. Examples

In this section we give three examples when n = 2, and α1 = 2, α2 = 1/2 in (1.1). That is, we
consider

xΔΔ(t) + p0(t)x(τ0(t)) + p1(t)|x(τ1(t))|x(τ1(t)) + p2(t)|x(τ1(t))|−1/2x(τ2(t)) = 0. (3.1)

For simplicity we take H(t, s) = t − s, thus H1(t, s) = −H2(t, s) = 1. Note that η1 = 1/3 and
η2 = 2/3 by Lemma 2.2.

Example 3.1. Let A ≥ 0 and B,C > 0 be constants. Consider the differential equation

x′′(t) +Ax(t − 1) + B|x(t − 2)|x(t − 2) + C|x(t − 1)|−1/2x(t − 1) = 0. (3.2)

Let a = j, b = j + 2, and c = j + 1, j ∈ N.
We calculate

Q(t) = A

(
t − j

t − j + 1

)
+

3
3
√
4
(B)1/3(C)2/3

(
t − j

)
(
t − j + 2

)2/3(
t − j + 1

)1/3 (3.3)

and see that (2.61) holds if

4A + 9
(
BC2

)1/3
> 27. (3.4)

Since all conditions of Corollary 2.11 are satisfied, we conclude that (3.2) is oscillatory when
(3.4) holds.

Example 3.2. Let A ≥ 0 and B,C > 0 be constants. Define p0(t) = A, p1(t) = B, and p2(t) = C
for t = 10j + k, k = −3,−2,−1, 0, 1, 2, 3, j ≥ 1; otherwise, the functions are defined arbitrarily.
Consider the difference equation

Δ2x(t) + p0(t)x(t − 1) + p1(t)|x(t − 2)|x(t − 2) + p2(t)|x(t − 1)|−1/2x(t − 1) = 0. (3.5)

Let a = 10j, b = 10j + 3, and c = 10j + 1. We derive

Q(t) = A
t − 10j

t − 10j + 2
+

3
3
√
4

(
BC2

)1/3 t − 10j
(
t − 3j + 3

)2/3(
t − 10j + 4

)1/3 (3.6)

and see that positivity in (2.64) satisfies if

A +
9
(
BC2)1/3

4 3
√
5

>
48
5
. (3.7)

Since all conditions of Corollary 2.12 are satisfied, we conclude that (3.5) is oscillatory if (3.7)
holds.
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Example 3.3. Let A ≥ 0 and B,C > 0 be constants. Define p0(t) = A, p1(t) = B and p2(t) = C
for t = 210j+k, k = −3,−2,−1, 0, 1, 2, 3, j ≥ 1; otherwise, the functions are defined arbitrarily.
Consider the q-difference equation, (q = 2),

Δ2
qx(t) + p0(t)x

(
t

2

)
+ p1(t)

∣∣∣∣x
(
t

4

)∣∣∣∣x
(
t

4

)
+ p2(t)

∣∣∣∣x
(
t

8

)∣∣∣∣
−1/2

x

(
t

8

)
= 0. (3.8)

Let a = 10j, b = 10j + 3, and c = 10j + 1. We have

Q(t) = A
t − 210j

4t − 210j
+

3
3
√
4

(
BC2

)1/3 t − 210j
(
8t − 210j

)2/3(16t − 210j
)1/3 . (3.9)

We see that (2.67) holds for all A ≥ 0 and B,C > 0. Since all conditions of Corollary 2.12 are
satisfied, we conclude that (3.8) is oscillatory if A ≥ 0 and B,C > 0 are positive.
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