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1. Introduction

In [1], Aczél and Chung introduced the following functional equation:

l∑

j=1

fj
(
αjx + βjy

)
=

m∑

k=1

gk(x)hk(y), (1.1)

where fj , gk, hk : R → C and αj , βj ∈ R for j = 1, . . . , l, k = 1, . . . , m. Under the
natural assumptions that {g1, . . . , gm} and {h1, . . . , hm} are linearly independent, and αjβj /= 0,
αiβj /=αjβi for all i /= j, i, j = 1, . . . , l, it was shown that the locally integrable solutions of (1.1)
are exponential polynomials, that is, the functions of the form

q∑

k=1

erkxpk(x), (1.2)

where rk ∈ C and pk’s are polynomials for all k = 1, 2, . . . , q.
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In this paper, we introduce the following n-dimensional version of the functional
equation (1.1) in generalized functions:

l∑

j=1

uj ◦ Tj =
m∑

k=1

vk ⊗wk, (1.3)

where uj , vk,wk ∈ D′(Rn) (resp., S′1/2
1/2(R

n)), and ◦ denotes the pullback, ⊗ denotes the
tensor product of generalized functions, and Tj(x, y) = αjx + βjy, αj = (αj,1, . . . , αj,n),
βj = (βj,1, . . . , βj,n), x = (x1, . . . , xn), y = (y1, . . . , yn), αjx = (αj,1x1, . . . , αj,nxn), βjy =
(βj,1y1, . . . , βj,nyn), j = 1, . . . , l. As in [1], we assume that αj,pβj,p /= 0 and αi,pβj,p /=αj,pβi,p for
all p = 1, . . . , n, i /= j, i, j = 1, . . . , l.

In [2], Baker previously treated (1.3). By making use of differentiation of distributions
which is one of the most powerful advantages of the Schwartz theory, and reducing (1.3) to
a system of differential equations, he showed that, for the dimension n = 1, the solutions
of (1.3) are exponential polynomials. We refer the reader to [2–6] for more results using this
method of reducing given functional equations to differential equations.

In this paper, by employing tensor products of regularizing functions as in [7, 8], we
consider the regularity of the solutions of (1.3) and prove in an elementary way that (1.3) can
be reduced to the classical equation (1.1) of smooth functions. This method can be applied
to prove the Hyers-Ulam stability problem for functional equation in Schwartz distribution
[7, 8]. In the last section, we consider the Hyers-Ulam stability of some related functional
equations. For some elegant results on the classical Hyers-Ulam stability of functional
equations, we refer the reader to [6, 9–21].

2. Generalized functions

In this section, we briefly introduce the spaces of generalized functions such as the Schwartz
distributions, Fourier hyperfunctions, and Gelfand generalized functions. Here we use the

following notations: |x| =
√
x2
1 + · · · + x2

n, |α| = α1 + · · · + αn, α! = α1!, . . . , αn!, xα = xα11 , . . . , x
αn
n ,

and ∂α = ∂α11 , . . . , ∂
αn
n , for x = (x1, . . . , xn) ∈ R

n, α = (α1, . . . , αn) ∈ N
n
0 , where N0 is the set of

nonnegative integers and ∂j = ∂/∂xj .

Definition 2.1. A distribution u is a linear functional on C∞
c (R

n) of infinitely differentiable
functions on R

n with compact supports such that for every compact set K ⊂ R
n there exist

constants C and k satisfying

|〈u, ϕ〉| ≤ C
∑

|α|≤k
sup

∣∣∂αϕ
∣∣ (2.1)

for all ϕ ∈ C∞
c (R

n) with supports contained in K. One denotes by D′(Rn) the space of the
Schwartz distributions on R

n.

Definition 2.2. For given r, s ≥ 0, one denotes by Ss
r or Ss

r (R
n) the space of all infinitely

differentiable functions ϕ(x) on R
n such that there exist positive constants h and k satisfying

‖ϕ‖h,k := sup
x∈Rn, α,β∈N

n
0

∣∣xα∂βϕ(x)
∣∣

h|α|k|β|α!rβ!s
<∞. (2.2)
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The topology on the space Ss
r is defined by the seminorms ‖·‖h,k in the left-hand side of (2.2),

and the elements of the dual space S′s
r of Ss

r are called Gelfand-Shilov generalized functions. In
particular, one denotes S′1

1 by F′ and calls its elements Fourier hyperfunctions.

It is known that if r > 0 and 0 ≤ s < 1, the space Ss
r (R

n) consists of all infinitely
differentiable functions ϕ(x) onR

n that can be continued to an entire function onC
n satisfying

|ϕ(x + iy)| ≤ C exp
( − a|x|1/r + b|y|1/(1−s)) (2.3)

for some a, b > 0.
It is well known that the following topological inclusions hold:

S1/2
1/2 ↪→ F, F′

↪→ S′1/2
1/2. (2.4)

We briefly introduce some basic operations on the spaces of the generalized functions.

Definition 2.3. Let u ∈ D′(Rn). Then, the kth partial derivative ∂ku of u is defined by

〈
∂ku, ϕ

〉
= −〈u, ∂kϕ

〉
(2.5)

for k = 1, . . . , n. Let f ∈ C∞(Rn). Then the multiplication fu is defined by

〈fu, ϕ〉 = 〈u, fϕ〉. (2.6)

Definition 2.4. Let uj ∈ D′(Rnj ), j = 1, 2. Then, the tensor product u1⊗u2 of u1 and u2 is defined
by

〈
u1 ⊗ u2, ϕ

(
x1, x2

)〉
=
〈
u1,

〈
u2, ϕ

(
x1, x2

)〉〉
, ϕ

(
x1, x2

) ∈ C∞
c

(
R
n1 × R

n2
)
. (2.7)

The tensor product u1 ⊗ u2 belongs to D′(Rn1 × R
n2).

Definition 2.5. Let uj ∈ D′(Rnj ), j = 1, 2, and let f : R
n1 → R

n2 be a smooth function such
that for each x ∈ R

n1 the derivative f ′(x) is surjective. Then there exists a unique continuous
linear map f∗ : D′(Rn2) → D′(Rn1) such that f∗u = u ◦ f , when u is a continuous function.
One calls f∗u the pullback of u by f and simply is denoted by u ◦ f .

The differentiations, pullbacks, and tensor products of Fourier hyperfunctions and
Gelfand generalized functions are defined in the same way as distributions. For more details
of tensor product and pullback of generalized functions, we refer the reader to [9, 22].
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3. Main result

We employ a function ψ ∈ C∞(Rn) such that

ψ(x) ≥ 0 ∀x ∈ R
n,

supp ψ ⊂ {
x ∈ R

n : |x| ≤ 1
}
,

∫

Rn

ψ(x)dx = 1.

(3.1)

Let u ∈ D′(Rn) and ψt(x) := t−nψ(x/t), t > 0. Then, for each t > 0, (u ∗ ψt)(x) :=
〈uy, ψt(x−y)〉 is well defined. We call (u∗ψt)(x) a regularizing function of the distribution u,
since (u ∗ ψt)(x) is a smooth function of x satisfying (u ∗ ψt)(x) → u as t → 0+ in the sense
of distributions, that is, for every ϕ ∈ C∞

c (R
n),

〈u, ϕ〉 = lim
t→ 0+

∫(
u ∗ ψt

)
(x)ϕ(x)dx. (3.2)

Theorem 3.1. Let uj, vk,wk ∈ D′(Rn), j = 1, . . . , l, k = 1, . . . , m, be a solution of (1.3), and
both {v1, . . . , vm} and {w1, . . . , wm} are linearly independent. Then, uj = fj , vk = gk, wk = hk,
j = 1, . . . , l, k = 1, . . . , m, where fj , gk, hk : R

n → C, j = 1, . . . , l, k = 1, . . . , m, a smooth solution of
(1.1).

Proof. By convolving the tensor product ψt(x)ψs(y) in each side of (1.3), we have, for j =
1, . . . , l,

[(
uj ◦ Tj

) ∗ (ψt(x)ψs(y)
)]
(ξ, η) =

〈
uj ◦ Tj , ψt(ξ − x)ψs(η − y)〉

=
〈
uj,

∫∣∣αj
∣∣−1ψt

(
α−1j

(
αjξ−x+y

))∣∣βj
∣∣−1ψs

(
β−1j

(
βjη−y

))
dy

〉

=
〈
uj,

∫
ψt,αj

(
αjξ − x + y

)
ψs,βj

(
βjη − y)dy

〉

=
〈
uj,

(
ψt,αj ∗ ψs,βj

)(
αjξ + βjη − x)〉

=
(
uj ∗ ψt,αj ∗ ψs,βj

)(
αjξ + βjη

)
,

(3.3)

where |αj | = αj,1, . . . , αj,n, α−1j = (α−1j,1, . . . , α
−1
j,n), ψt,αj (x) = |αj |−1ψt(α−1j x). Similarly we have for

k = 1, . . . , m,

[(
vk ⊗wk

) ∗ (ψt(x)ψs(y)
)]
(ξ, η) =

(
vk ∗ ψt

)
(ξ)

(
wk ∗ ψs

)
(η). (3.4)

Thus (1.3) is converted to the following functional equation:

l∑

j=1

Fj(x, y, t, s) =
m∑

k=1

Gk(x, t)Hk(y, s), (3.5)
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where

Fj(x, y, t, s) =
(
uj ∗ ψt,αj ∗ ψs,βj

)(
αjx + βjy

)
,

Gk(x, t) =
(
vk ∗ ψt

)
(x), Hk(y, s) =

(
wk ∗ ψs

)
(y),

(3.6)

for j = 1, . . . , l, k = 1, . . . , m. We first prove that limt→ 0+Gk(x, t) are smooth functions and
equal to vk for all k = 1, . . . , m. Let

F(x, y, t, s) =
l∑

j=1

Fj(x, y, t, s). (3.7)

Then,

lim
t→ 0+

F(x, y, t, s) =
l∑

j=1

(
uj ∗ ψs,βj

)(
αjx + βjy

)
(3.8)

is a smooth function of x for each y ∈ R
n, s > 0, and {H1, . . . ,Hm} is linearly independent.

We may choose ym ∈ R
n, sm > 0 such that Hm(ym, sm) := b

(0)
m /= 0. Then, it follows from (3.5)

that

Gm(x, t) = b
(0)
m

−1
(
F
(
x, ym, t, sm

) −
m−1∑

k=1

b
(0)
k
Gk(x, t)

)
, (3.9)

where b(0)
k

= Hk(ym, sm), k = 1, . . . , m − 1. Putting (3.9) in (3.5), we have

F(1)(x, y, t, s) =
m−1∑

k=1

Gk(x, t)H
(1)
k

(y, s), (3.10)

where

F(1)(x, y, t, s) = F(x, y, t, s) − b(0)m

−1
F
(
x, ym, t, sm

)
Hm(y, s), (3.11)

H
(1)
k

(y, s) = Hk(y, s) − b(0)m

−1
b
(0)
k
Hm(y, s), k = 1, . . . , m − 1. (3.12)

Since limt→ 0+F(x, y, t, s) is a smooth function of x for each y ∈ R
n, s > 0, it follows from (3.11)

that

lim
t→ 0+

F(1)(x, y, t, s) (3.13)

is a smooth function of x for each y ∈ R
n, s > 0. Also, since {H1, . . . ,Hm} is linearly

independent, it follows from (3.12) that

{
H

(1)
1 , . . . ,H

(1)
m−1

}
(3.14)
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is linearly independent. Thuswe can choose ym−1 ∈ R
n, sm−1 > 0 such thatH(1)

m−1(ym−1, sm−1) :=
b
(1)
m−1 /= 0. Then, it follows from (3.10) that

Gm−1(x, t) = b
(1)
m−1

−1
(
F(1)(x, ym−1, t, sm−1

) −
m−2∑

k=1

b
(1)
k Gk(x, t)

)
, (3.15)

where b(1)k = H(1)
k (ym−1, sm−1), k = 1, . . . , m − 2. Putting (3.15) in (3.10), we have

F(2)(x, y, t, s) =
m−2∑

k=1

Gk(x, t)H
(2)
k

(y, s), (3.16)

where

F(2)(x, y, t, s) = F(1)(x, y, t, s) − b(1)m−1
−1
F(1)(x, ym−1, t, sm−1

)
H

(1)
m−1(y, s),

H
(2)
k

(y, s) = H(1)
k

(y, s) − b(1)m−1
−1
b
(1)
k
H

(1)
m−1(y, s), k = 1, . . . , m − 2.

(3.17)

By continuing this process, we obtain the following equations:

F(p)(x, y, t, s) =
m−p∑

k=1

Gk(x, t)H
(p)
k

(y, s), (3.18)

for all p = 0, 1, . . . , m − 1, where F(0) = F,H(0)
k

= Hk, k = 1, . . . , m,

Gm−p(x, t) = b
(p)
m−p

−1
(
F(p)(x, ym−p, t, sm−p

) −
m−p−1∑

k=1

b
(p)
k
Gk(x, t)

)
, (3.19)

for all p = 0, 1, . . . , m − 2, and

G1(x, t) =
(
b
(m−1)
1

)−1
F(m−1)(x, y1, t, s1

)
. (3.20)

By the induction argument, we have for each p = 0, 1, . . . , m − 1,

lim
t→ 0+

F(p)(x, y, t, s) (3.21)

is a smooth function of x for each y ∈ R
n, s > 0. Thus, in view of (3.20),

g1(x) := lim
t→ 0+

G1(x, t) (3.22)
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is a smooth function. Furthermore, G1(x, t) converges to g1(x) locally uniformly, which
implies that v1 = g1 in the sense of distributions, that is, for every ϕ(x) ∈ C∞

c (R
n),

〈
v1, ϕ

〉
= lim

t→ 0+

∫
G1(x, t)ϕ(x)dx

=
∫
g1(x)ϕ(x)dx.

(3.23)

In view of (3.19) and the induction argument, for each k = 2, . . . , m, we have

gk(x) := lim
t→ 0+

Gk(x, t) (3.24)

is a smooth function and vk = gk for all k = 2, 3, . . . , m. Changing the roles of Gk and Hk for
k = 1, 2, . . . , m, we obtain, for each k = 1, 2, . . . , m,

hk(x) := lim
t→ 0+

Hk(x, t) (3.25)

is a smooth function andwk = hk. Finally, we show that for each j = 1, 2, . . . , l, uj is equal to a
smooth function. Letting s → 0+ in (3.5), we have

l∑

j=1

(
uj ∗ ψt,αj

)(
αjx + βjy

)
=

m∑

k=1

Gk(x, t)hk(y). (3.26)

For each fixed i, 1 ≤ i ≤ l, replacing x by α−1i (x − βiy), multiplying ψs(y) and integrating with
respect to y, we have

(
ui ∗ ψt,αi

)
(x) = −

∑

j /= i

(
uj ∗ ψt,αj ∗ ψs,γj

)
(x) +

m∑

k=1

∫
Gk

(
α−1i x − α−1i βiy, t

)
hk(y)ψs(y)dy, (3.27)

where γj = α−1i (βiαj − αiβj) for all 1 ≤ j ≤ l, j /= i. Letting t → 0+ in (3.27), we have

ui = −
∑

j /= i

(
uj ∗ ψs,γj

)
(x) +

m∑

k=1

∫
gk

(
α−1i x − α−1i βiy

)
hk(y)ψs(y)dy := fi(x). (3.28)

It is obvious that fi is a smooth function. Also it follows from (3.27) that each (ui ∗
ψt)(x), i = 1, . . . , l, converges locally and uniformly to the function fi(x) as t → 0+, which
implies that the equality (3.28) holds in the sense of distributions. Finally, letting s → 0+ and
t → 0+ in (3.5) we see that fj , gk, hk, j = 1, . . . , l, k = 1, . . . , m are smooth solutions of (1.1).
This completes the proof.

Combined with the result of Aczél and Chung [1], we have the following corollary as
a consequence of the above result.
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Corollary 3.2. Every solution uj, vk,wk ∈ D′(R), j = 1, . . . , l, k = 1, . . . , m, of (1.3) for the
dimension n = 1 has the form of exponential polynomials.

The result of Theorem 3.1 holds for uj, vk,wk ∈ S′1/2
1/2(R

n), j = 1, . . . , l, k = 1, . . . , m.
Using the following n-dimensional heat kernel,

Et(x) = (4πt)−n/2 exp
(−|x|2

4t

)
, t > 0. (3.29)

Applying the proof of Theorem 3.1, we get the result for the space of Gelfand generalized
functions.

4. Hyers-Ulam stability of related functional equations

The well-known Cauchy equation, Pexider equation, Jensen equation, quadratic functional
equation, and d’Alembert functional equation are typical examples of the form (1.1). For the
distributional version of these equations and their stabilities, we refer the reader to [7, 8].
In this section, as well-known examples of (1.1), we introduce the following trigonometric
differences:

T1(f, g) := f(x + y) − f(x)g(y) − g(x)f(y),
T2(f, g) := g(x + y) − g(x)g(y) + f(x)f(y),
T3(f, g) := f(x − y) − f(x)g(y) + g(x)f(y),
T4(f, g) := g(x − y) − g(x)g(y) − f(x)f(y),

(4.1)

where f, g : R
n → C. In 1990, Székelyhidi [23] has developed his idea of using invariant

subspaces of functions defined on a group or semigroup in connection with stability
questions for the sine and cosine functional equations. As the results, he proved that if
Tj(f, g), j = 1, 2, 3, 4, is a bounded function on R

2n, then either there exist λ, μ ∈ C, not
both zero, such that λf − μg is a bounded function on R

n, or else Tj(f, g) = 0, j = 1, 2, 3, 4,
respectively. For some other elegant Hyers-Ulam stability theorems, we refer the reader to
[6, 9–21].

By generalizing the differences (4.1), we consider the differences

G1(u, v) := u ◦A − u ⊗ v − v ⊗ u,
G2(u, v) := v ◦A − v ⊗ v + u ⊗ u,
G3(u, v) := u ◦ S − u ⊗ v + v ⊗ u,
G4(u, v) := v ◦ S − v ⊗ v − u ⊗ u,

(4.2)

and investigate the behavior of u, v ∈ S′1/2
1/2(R

n) satisfying the inequality ‖Gj(u, v)‖ ≤ M for
each j = 1, 2, 3, 4, where A(x, y) = x + y, S(x, y) = x − y, x, y ∈ R

n, ◦ denotes the pullback,
⊗ denotes the tensor product of generalized functions as in Theorem 3.1, and ‖Gj(u, v)‖ ≤M
means that |〈Gj(u, v), ϕ〉| ≤ ‖ϕ‖L1 for all ϕ ∈ S1/2

1/2(R
n).
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As a result, we obtain the following theorems.

Theorem 4.1. Let u, v ∈ S′1/2
1/2 satisfy ‖G1(u, v)‖ ≤ M. Then, u and v satisfy one of the following

items:

(i) u = 0, v: arbitrary,

(ii) u and v are bounded measurable functions,

(iii) u = c ·xeia ·x + B(x), v = eia ·x,

(iv) u = λ(ec ·x − B(x)), v = (1/2)(ec ·x + B(x)),

(v) u = λ(eb ·x − ec ·x), v = (1/2)(eb ·x + ec ·x),

(vi) u = b ·xec ·x, v = ec ·x,

where a ∈ R
n, b, c ∈ C

n, λ ∈ C, and B is a bounded measurable function.

Theorem 4.2. Let u, v ∈ S′1/2
1/2 satisfy ‖G2(u, v)‖ ≤ M. Then, u and v satisfy one of the following

items:

(i) u and v are bounded measurable functions,

(ii) v = ec ·x and u is a bounded measurable function,

(iii) v = c ·xeia ·x + B(x), u = ±[(1 − c ·x)eia ·x − B(x)],
(iv) v = (ec ·x + λB(x))/(1 − λ2), u = (λec ·x + B(x))/(1 − λ2),
(v) v = (1 − b ·x)ec ·x, u = ±b ·xec ·x,
(vi) v = eb ·x[cos(c ·x) + λ sin(c ·x)], u =

√
λ2 + 1 eb ·x sin(c ·x),

where a ∈ R
n, b, c ∈ C

n, λ ∈ C, and B is a bounded measurable function.

Theorem 4.3. Let u, v ∈ S′1/2
1/2 satisfy ‖G3(u, v)‖ ≤ M. Then, u and v satisfy one of the following

items:

(i) u ≡ 0 and v is arbitrary,

(ii) u and v are bounded measurable functions,

(iii) u = c ·x + r(x), v = λ(c ·x + r(x)) + 1,

(iv) u = λ sin(c ·x), v = cos(c ·x) + λ sin(c ·x),
for some c ∈ C

n, λ ∈ C and a bounded measurable function r(x).

Theorem 4.4. Let u, v ∈ S′1/2
1/2 satisfy ‖G4(u, v)‖ ≤ M. Then, u and v satisfy one of the following

items:

(i) u and v are bounded measurable functions,

(ii) u = cos(c ·x), v = sin(c ·x), c ∈ C
n.

For the proof of the theorems, we employ the n-dimensional heat kernel

Et(x) = (4πt)−n/2 exp
(−|x|2

4t

)
, t > 0. (4.3)
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In view of (2.3), it is easy to see that for each t > 0, Et belongs to the Gelfand-Shilov space
S1/2
1/2(R

n). Thus the convolution (u ∗ Et)(x) := 〈uy, Et(x − y)〉 is well defined and is a smooth
solution of the heat equation (∂/∂t − Δ)U = 0 in {(x, t) : x ∈ R

n, t > 0} and (u ∗ Et)(x) →
u as t → 0+ in the sense of generalized functions for all u ∈ S′1/2

1/2.
Similarly as in the proof of Theorem 3.1, convolving the tensor product Et(x)Es(y) of

heat kernels and using the semigroup property

(
Et ∗ Es

)
(x) = Et+s(x) (4.4)

of the heat kernels, we can convert the inequalities ‖Gj(u, v)‖ ≤M, j = 1, 2, 3, 4, to the classical
Hyers-Ulam stability problems, respectively,

∣∣U(x + y, t + s) −U(x, t)V (y, s) − V (x, t)U(y, s)
∣∣ ≤M,

∣∣V (x + y, t + s) − V (x, t)V (y, s) +U(x, t)U(y, s)
∣∣ ≤M,

∣∣U(x − y, t + s) −U(x, t)V (y, s) + V (x, t)U(y, s)
∣∣ ≤M,

∣∣V (x − y, t + s) − V (x, t)V (y, s) −U(x, t)U(y, s)
∣∣ ≤M,

(4.5)

for the smooth functions U(x, t) = (u ∗ Et)(x), V (x, t) = (v ∗ Et)(x). Proving the Hyers-Ulam
stability problems for the inequalities (4.5) and taking the initial values ofU and V as t → 0+,
we get the results. For the complete proofs of the result, we refer the reader to [24].

Remark 4.5. The referee of the paper has recommended the author to consider the Hyers-
Ulam stability of the equations, which will be one of the most interesting problems in this
field. However, the author has no idea of solving this question yet. Instead, Baker [25] proved
the Hyers-Ulam stability of the equation

l∑

j=1

fj
(
αjx + βjy

)
= 0. (4.6)
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