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Using the critical point theory of Chang (1981) for locally Lipschitz functionals,
we prove an existence theorem for some elliptic problems at resonance with no
Carathéodory forcing term.

1. Introduction

In this paper, we consider elliptic problems with discontinuities at resonance.
Recently, Bouchala and Drábek [2] using an extended type of Landesman-Lazer
conditions proved existence theorems for both coercive and noncoercive cases.
They assumed that the nonlinear right-hand side is of Carathéodory type. Here,
we are interested in this problem but we do not assume that the right-hand side
is Carathéodory and moreover we seek for nontrivial solutions.

For the noncoercive case we obtain a nontrivial solution using the mountain-
pass theorem for locally Lipschitz functionals due to Chang [3]. The problem
is an elliptic problem at resonance. Let Z ⊆ RN be a bounded domain with a
C1-boundary Γ,

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
− λ1

∣∣x(z)
∣∣p−2

x(z)= f
(
z,x(z)

)
a.e. on Z,

x|Γ = 0.
(1.1)

In Section 2, we recall some facts and definitions from the critical point the-
ory for locally Lipschitz functionals and the subdifferential of Clarke.

2. Preliminaries

Let Y be a subset of X . A function f : Y →R is said to satisfy a Lipschitz condi-
tion (on Y) provided that, for some nonnegative scalar K , we have

∣∣ f (y)− f (x)
∣∣≤ K‖y− x‖ (2.1)
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for all points x, y ∈ Y . Let f be Lipschitz near a given point x, and let v be any
other vector in X . The generalized directional derivative of f at x in the direc-
tion v, denoted by f o(x;v), is defined as follows:

f o(x;v)= limsup
y→x
t↓0

f (y + tv)− f (y)
t

, (2.2)

where y is a vector in X and t is a positive scalar. If f is Lipschitz of rank K near x,
then the function v → f o(x;v) is finite, positively homogeneous, subadditive,
and satisfies | f o(x;v)| ≤ K‖v‖. In addition, f o satisfies f o(x;−v)= (− f )o(x;v).
Now we are ready to introduce the generalized gradient denoted by ∂ f (x),

∂ f (x)= {w ∈ X∗ : f o(x;v)≥ 〈w,v〉 ∀v ∈ X
}
. (2.3)

Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) ∂ f (x) is a nonempty, convex, weakly compact subset of X∗ and ‖w‖∗ ≤
K for every w in ∂ f (x);

(b) for every v in X , we have

f o(x;v)=max
{〈w,v〉 : w ∈ ∂ f (x)

}
. (2.4)

If f1, f2 are locally Lipschitz functions, then

∂
(
f1 + f2

)⊆ ∂ f1 + ∂ f2. (2.5)

We recall the Palais-Smale (PS) condition introduced by Chang [3].

Definition 2.1. A Lipschitz function f satisfies the Palais-Smale condition if any
sequence {xn}, along which | f (xn)| is bounded and

λ
(
xn
)= min

w∈∂ f (xn)
‖w‖X∗ −→ 0, (2.6)

possesses a convergent subsequence.

The PS-condition can also be formulated as follows (see Costa and Gonçalves
[5]):

(PS)∗c,+: whenever (xn)⊆ X , (εn),(δn)⊆R+ are sequences with εn→ 0, δn→ 0,
and such that

f
(
xn
)−→ c, f

(
xn
)≤ f (x) + εn

∥∥x− xn
∥∥ if

∥∥x− xn
∥∥≤ δn, (2.7)

then (xn) possesses a convergent subsequence, xn′ → x̂.
Similarly, we define the (PS)∗c condition from below, (PS)∗c,−, by interchang-

ing x and xn in (2.7). And finally, we say that f satisfies (PS)∗c provided that it
satisfies (PS)∗c,+ and (PS)∗c,−.
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Note that these two definitions are equivalent when f is locally Lipschitz
functional.

We mention some facts about the first eigenvalue of the p-Laplacian. Con-

sider the first eigenvalue λ1 of (−∆p,W
1,p
o (Z)). From Lindqvist [6] we know that

λ1 > 0 is isolated and simple, that is, any two solutions u, v of

−∆pu=−div
(‖Du‖p−2Du

)= λ1|u|p−2u a.e. on Z,

u|Γ = 0, 2≤ p <∞ (2.8)

satisfy u= cv for some c ∈R. In addition, the λ1-eigenfunctions do not change
sign in Z. Finally, we have the following variational characterization of λ1

(Rayleigh quotient):

λ1 = inf

[‖Dx‖pp
‖x‖pp

: x ∈W
1,p
o (Z), x �= 0

]
. (2.9)

We are going to use the mountain-pass theorem of Chang [3].

Theorem 2.2. If a locally Lipschitz functional f : X → R on the reflexive Banach
space X satisfies the PS-condition and the hypotheses,

(i) there exist positive constants ρ and a such that

f (u)≥ a ∀x ∈ X with ‖x‖ = ρ; (2.10)

(ii) f (0)= 0 and there is a point e ∈ X such that

‖e‖ > ρ, f (e)≤ 0, (2.11)

then there exists a critical value c ≥ a of f determined by

c = inf
g∈G

max
t∈[0,1]

f
(
g(t)

)
, (2.12)

where

G= {g ∈ C
(
[0,1],X

)
: g(0)= 0, g(1)= e

}
. (2.13)

Motreanu and Panagiotopoulos [7, Theorem 1 and Corollary 1] provide a
proof for the generalized mountain-pass theorem for locally Lipschitz func
tionals.

3. Existence theorems

Here, we give the hypotheses that we need for our existence theorem.
Let

f1(z,x)= liminf
x′→x

f
(
z,x′

)
, f2(z,x)= limsup

x′→x
f
(
z,x′

)
. (3.1)
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Hypothesis 3.1. The function f : Z×R→R is an N measurable function (i.e., if
x(z) is measurable so is f1(x(z)), f2(x(z))), and moreover,

(i) for almost all z ∈ Z and all x ∈ R, | f (z,x)| ≤ c1|x|p−1 + c|x|p∗−1, with
p∗ =Np/(N − p),

(ii) there exist θ > p and ro > 0 such that for all |x| ≥ ro, and all v ∈ [ f1(z,x),
f2(z,x)] we have 0 < θF(z,x) ≤ vx, and moreover there exists some a1 ∈
L1(Z) such that F(z,x) ≥ c3|x|θ − a1(z) for every x ∈ R, with F(z,x) =∫ r
o f (z,r)dr,

(iii) uniformly, for all z ∈ Z we have limsupx→0(pF(z,x)/|x|p)≤ θ(z)≤ 0 with
θ(z)∈ L∞(Z) and θ(z) < 0 on a set of positive measure.

Remark 3.2. Hypothesis (iii) is the crucial one in order to have a nontrivial so-
lution. Many authors have used such kind of hypothesis but this form is more
general, so to our knowledge Theorem 3.5 below is new even when the right-
hand side is Carathéodory.

Definition 3.3. We say that x ∈W
1,p
o (Z) is a solution of type I if there exists some

w ∈ Lq
∗
(Z) with w(z)∈ [ f1(z,x(z)), f2(z,x(z))] such that

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
− λ1

∣∣x(z)
∣∣p−2

x(z)=w(z) a.e. on Z. (3.2)

Definition 3.4. We say that x ∈W
1,p
o (Z) is a solution of type II if x satisfies

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
− λ1

∣∣x(z)
∣∣p−2

x(z)= f
(
z,x(z)

)
a.e. on Z. (3.3)

It is well known that the existence of a solution of type I does not imply the
existence of type II.

First, we derive an existence result of type I and then, using a stronger set of
hypotheses, we obtain an existence result of type II.

Theorem 3.5. If Hypothesis 3.1 holds, then problem (1.1) has a nontrivial solution
of type I.

Proof. Let R1 : W
1,p
o (Z)→R such that R1(x)= (1/p)‖Dxn‖pp− (λ1/p)‖xn‖pp, and

R2 : W
1,p
o (Z)→R such that R2(x)=−∫Z F(z,x(z))dz with F(z,x)= ∫ xo f (z,r)dr.

So our energy functional is R = R1 +R2. It is well known that R is locally Lips-
chitz (see Chang [3]).

Claim 3.6. The functional R(·) satisfies the (PS)c,+-condition in the sense of Costa
and Gonçalves [5].

Indeed, let {xn}n≥1 ⊆W
1,p
o (Z) such that R(xn)→ c and

R
(
xn
)≤ R(x) + εn

∥∥x− xn
∥∥, ∥∥x− xn

∥∥≤ δn, (3.4)

with εn,δn→ 0.
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Let x = xn + δxn with δ‖xn‖ ≤ δn. Divide with δ.
It is easy to see that

lim
δ↓0

R1
(
xn + δxn

)−R1
(
xn
)

δ
= ∥∥Dxn∥∥pp− λ1

∥∥xn∥∥pp. (3.5)

Moreover, we have

lim
δ↓0

R2
(
xn + δxn

)−R2
(
xn
)

δ
≤ Ro

2

(
xn;xn

)
. (3.6)

Thus,

Ro
2

(
xn;xn

)
+
∥∥Dxn∥∥pp− λ1

∥∥xn∥∥pp ≥−εn∥∥xn∥∥. (3.7)

On the other hand, for the (PS)c,− we have

R(x)≤R
(
xn
)

+ εn
∥∥x− xn

∥∥, ∥∥x− xn
∥∥≤ δn, (3.8)

with εn,δn→ 0. Equation (3.8) is equivalent to

(−R)(x)− (−R)
(
xn
)≥−εn∥∥x− xn

∥∥, ∥∥x− xn
∥∥≤ δn, (3.9)

with εn,δn→ 0. Note that (−R) is locally Lipschitz too.
Choose here x = xn− δxn. Then as before we have that

lim
δ↓0

(−R1
)(
xn− δxn

)− (−R1
)(
xn
)

δ
= ∥∥Dxn∥∥pp− λ1

∥∥xn∥∥pp,
lim
δ↓0

(−R2
)(
xn− δxn

)− (−R2
)(
xn
)

δ
≤ (−R2

)o(
xn;−xn

)= Ro
2

(
xn;xn

)
.

(3.10)

Thus, finally we obtain again (3.7).
Note that there exists some w′n ∈ ∂(R2(xn)) such that 〈w′n,xn〉 = Ro

2(xn;xn).
This means that

〈
wn,xn

〉−∥∥Dxn∥∥pp + λ1
∥∥xn∥∥pp ≤ εn

∥∥xn∥∥, (3.11)

for some wn ∈ ∂(−R2(xn)). Note that wn(z)∈ [ f1(z,xn(z)), f2(z,xn(z))].
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From the choice of the sequence {xn} ⊆W
1,p
o (Z), we have

θR
(
xn
)≤M1 for some M1 > 0. (3.12)

Adding (3.11) and (3.12), we have

(
θ

p
− 1
)∥∥Dxn∥∥pp + λ1

(
1− θ

p

)∥∥xn∥∥pp +
∫
Z

(
wn(z)xn(z)− θF

(
z,xn(z)

))
dz

≤ εn
∥∥xn∥∥+M1.

(3.13)

From Hypothesis 3.1(ii) we know that for almost all z ∈ Z and all x ∈R, we have
vx− θF(z,x) + a(z)≥ 0 for some a∈ Lq

∗
(Z) and for every v ∈ ∂(F(z,x)).

Suppose now that ‖xn‖→∞. Inequality (3.13) becomes then

(
θ

p
− 1
)∥∥Dxn∥∥pp + λ1

(
1− θ

p

)∥∥xn∥∥pp
+
∫
Z

(
wn(z)xn(z)− θF

(
z,xn(z)

))
dz+

∫
Z
a(z)dz

≤ εn
∥∥xn∥∥+

∫
Z
a(z)dz+M1.

(3.14)

Divide this inequality with ‖Dxn‖pp, then we have in the limit

θ

p
− 1≤ 0, (3.15)

recall that ‖Dxn‖ is an equivalent norm in W
1,p
o (Z) and

−λ1

(
1− θ

p

)∥∥xn∥∥pp ≥−
(
θ

p
− 1
)∥∥Dxn∥∥pp. (3.16)

Since θ > p, we have a contradiction. So ‖xn‖ is bounded.
From the properties of the subdifferential of Clarke, we have

∂R
(
xn
)⊆ ∂

(
R1
(
xn
))

+ ∂
(
R2
(
xn
))

⊆ ∂
(
R2
(
xn
))

+ ∂
(

1
p

∥∥Dxn∥∥pp− λ1

p

∥∥xn∥∥pp
) (3.17)

(see Clarke [4, page 83]). So, we have

〈
wn, y

〉= 〈Axn, y〉−
∫
Z
vn(z)y(z)dz, (3.18)
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with wn the element with minimal norm of the subdifferential of R (recall that
‖wn‖∗ → 0), vn ∈ [ f1(z,xn(z)), f2(z,xn(z))], and A : W

1,p
o (Z)→W−1,q(Z) such

that

〈Ax, y〉 =
∫
Z

∥∥Dx(z)
∥∥p−2(

Dx(z),Dy(z)
)
RN dz− λ1

∫
Z

∥∥xn∥∥p−2
p xnyn dz, (3.19)

for all y ∈W
1,p
o (Z). But xn

w−→ x in W
1,p
o (Z), so xn→ x in Lp(Z) and xn(z)→ x(z)

a.e. on Z by virtue of the compact embedding W
1,p
o (Z)⊆ Lp(Z). Note that vn is

bounded. Choose y = xn − x. Then in the limit we have that limsup〈Axn,xn −
x〉 = 0. Recall the following inequality:

N∑
j=1

(
aj(η)− aj

(
η′
))(

ηj −η′j
)≥ C

∣∣η−η′
∣∣p, (3.20)

for η,η′ ∈ RN , with aj(η)= |η|p−2ηj .
By virtue of this inequality we have that Dxn → Dx in Lp(Z). So we have

xn→ x in W
1,p
o (Z). The claim is proved. Thus R satisfies (PS)c.

We will show now that there exists ρ > 0 such that R(x)≥ η > 0 with ‖x‖ = ρ.

To this end, we show that for every sequence {xn}n≥1 ⊆W
1,p
o (Z) with ‖xn‖ =

ρn → 0, we have R(xn) ↓ 0. Suppose that it is not true. Then there exists a se-
quence as above such that R(xn)≤ 0. Since ‖xn‖→ 0 we have xn(z)→ 0 a.e. on Z.

So we have

∥∥Dxn∥∥pp− λ1
∥∥xn∥∥pp ≤

∫
Z
pF
(
z,xn(z)

)
dz. (3.21)

Let yn(z) = xn(z)/‖xn‖1,p. Also, from Hypothesis 3.1(iii) we have uniformly,
for all z ∈ Z, that for all ε > 0 we can find δ > 0 such that for |x| ≤ δ we have

pF
(
z,x(z)

)≤ θ(z)
∣∣x(z)

∣∣p + ε
∣∣x(z)

∣∣p. (3.22)

On the other hand, from hypothesis (i) we have that there exist some c1, c2

such that pF(z,x) ≤ c1|x|p + c2|x|p∗ + p|x| for almost all z ∈ Z and all x ∈ R.
Thus we can always find some γ > 0 such that pF(z,x)≤ (θ(z) + ε)|x|p + γ|x|p∗ .
Indeed, choose γ ≥ |c1− θ(z)− ε||δ|p−p∗ + c2 + p|δ|1−p∗ .

Then we obtain,

∥∥Dxn∥∥pp− λ1
∥∥xn∥∥pp ≤

∫
Z

(
θ(z) + ε

)∣∣xn(z)
∣∣p dz+ γ

∫
Z

∣∣xn(z)
∣∣p∗ dz. (3.23)
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Dividing the last inequality, by ‖xn‖p1,p, we have

∥∥Dyn
∥∥p− λ1

∥∥yn∥∥pp ≤
∫
Z

(
θ(z) + ε

)∣∣yn(z)
∣∣p dz+ γ

∫
Z

∣∣xn(z)
∣∣p∗ dz∥∥xn∥∥p1,p

≤ ε
∥∥yn∥∥pp + γ1

∥∥xn∥∥p∗−p1,p ,

(3.24)

recall that W
1,p
o (Z) is continuously embedded on Lp∗(Z).

Using the variational characterization of the first eigenvalue we have that 0≤
‖Dyn‖pp− λ1‖yn‖pp ≤ ε‖yn‖pp + γ1‖xn‖p

∗−p
1,p .

Recall that ‖yn‖ = 1 so yn → y weakly in W
1,p
o (Z), yn(z) → y(z) a.e. on Z.

Thus, from (3.24) we have that ‖Dyn‖ → λ1‖y‖. Also, from the weak lower
semicontinuity of the norm we have that ‖Dy‖ ≤ liminf ‖Dyn‖ → λ1‖y‖. Us-
ing the Rayleigh quotient we have that ‖Dy‖ = λ1‖y‖. Recall that yn→ y weakly

in W
1,p
o (Z) and ‖Dyn‖ → ‖Dy‖. So, from a well-known argument we obtain

yn → y in W
1,p
o (Z), and since ‖yn‖ = 1 we have that ‖y‖ = 1. That is, y �= 0

and from the equality ‖Dy‖ = λ1‖y‖ we have that y(z)=±u1(z). Suppose that
y(z)= u1(z).

Dividing now (3.23) by ‖xn‖p1,p and using the variational characterization of
the first eigenvalue, there exists for every ε > 0 some no such that for n≥ no we
have

0≤
∫
Z

(
θ(z) + ε

)∣∣yn(z)
∣∣p dz+ γ1

∥∥xn∥∥p∗−p1,p . (3.25)

So in the limit we obtain

0≤
∫
Z

(
θ(z) + ε

)
u
p
1 (z)dz ≤ ε

∥∥u1
∥∥p
p ∀ε > 0. (3.26)

Thus,
∫
Z θ(z)u

p
1 (z)dz = 0. Recall that u1(z) > 0 a.e. on Z. This is a contradiction.

So there exists ρ > 0 such that R(x)≥ η > 0 for all x ∈W
1,p
o (Z) with ‖x‖ = ρ.

Next, it is easy to see that

R
(
su1
)=−

∫
Z
F
(
z, su1(z)

)
dz, (3.27)

(here we used again the Rayleigh quotient).
But from hypothesis (ii) we have that−F(z, su1(z))≤−c3|su1(z)|θ + a1(z) a.e.

on Z. So for s large enough, we obtain that R(su1)≤ 0. Then we can use Theorem

2.2 to obtain x ∈W
1,p
o (Z) such that x �= 0 and 0∈ ∂R(x). It follows that

Ax = λ1|x|p−2x+ v, (3.28)
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with v ∈ ∂(
∫
Z F(z,x(z))dz). So for every φ ∈ C∞o (Z) we have

〈Ax,φ〉 = λ1
〈|x|p−2x,φ

〉
pq + (v,φ)pq. (3.29)

By (·,·)pq we denote the duality brackets for the pair (Lp(Z),Lq(Z)). Thus,

∫
Z

∥∥Dx(z)
∥∥p−2(

Dx(z),Dφ(z)
)
RN dz =

∫
Z

(
λ1
∣∣x(z)

∣∣p−2
x(z) + v(z)

)
φ(z)dz.

(3.30)

From the definition of the distributional derivative,

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
− λ1

∣∣x(z)
∣∣p−2

x(z)= v(z) a.e. on Z. (3.31)

So x ∈W
1,p
o (Z) is a nontrivial solution of type I. �

In order to have an existence result of type II, we have to impose stronger
hypotheses on f . Our hypotheses are the following.

Hypothesis 3.7. The function f : Z ×R→ R satisfies Hypothesis 3.1. Moreover,
we suppose that f1(z,a)dz+ λ1|a|p−2a > 0 or that f2(z,a) + λ1|a|p−2a < 0 a.e. on
Z, for any a ∈ D( f ) = {x ∈ R : f1(z,x) �= f2(z,x) a.e. on Sx ⊆ Z} (i.e., the set of
the discontinuity points of f ). Finally, we suppose that f (z,·) has countable
number of discontinuities.

Theorem 3.8. If Hypothesis 3.7 holds, then problem (1.1) has a nontrivial solution
of type II.

Proof. From Theorem 3.5 we know that there exists a nontrivial solution of
type I. That is, there exists some w ∈ Lq(Z) with w(z)∈ [ f1(z,x(z)), f2(z,x(z))]
such that

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
− λ1

∣∣x(z)
∣∣p−2

x(z)=w(z) a.e. on Z,

x|Γ = 0.
(3.32)

We suppose that there exists some A ⊆ Z with |A| > 0 such that x(z) = a1 ∈
D( f ) a.e. on A, and that |A∩ Sa1| �= 0. Take now the closure of that set, that is,
A∩ Sa1 . It is clear that the interior of that set is nonempty (recall that A∩ Sa1 =
(A∩ Sa1 )o ∪ ∂(A∩ Sa1 )) because we have supposed that |A∩ Sa1| �= 0. So, there
exist some z ∈ (A∩ Sa1 )o and some r > 0 such that B(z,r) ⊆ A∩ Sa1 . Take now
r′ = r/2, then it is clear that B(z,r′)⊆ B(z,r)⊆A∩ Sa1 (here by B(z,r) we denote
the open ball centered at z with radius r).

We know that there exists a test function which is equal to 1 on B(z,r′), equal
to 0 outside B(z,r), and assumes values in [0,1] in B(z,r) \ B(z,r′). Multiply
(3.32) with this function and then integrate over B(z,r). Using the definition of
the distributional derivative and finally the well-known theorem of Stampacchia,
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which states that if x(z) ∈W1,p(Z) and x(z) = a a.e. on A then Dkx(z) = 0 a.e.
on A, we have∫

B(z,r)
w(z)φ(z)dz =

∫
B(z,r)

(
− λ1

∣∣a1
∣∣p−2

a1

)
φ(z)dz. (3.33)

But we know that w(z)∈ [ f1(z,x(z)), f2(z,x(z))] a.e. on Z.
If f1(z,a1) + λ1|a1|p−2a1 > 0 a.e. on Z, we obtain

0 <
∫
B(z,r)

(
f1
(
z,a1

)
+ λ1

∣∣a1
∣∣p−2

a1

)
φ(z)dz

≤
∫
B(z,r)

(
w(z) + λ1

∣∣a1
∣∣p−2

a1

)
φ(z)dz = 0.

(3.34)

Thus we have a contradiction. The same holds if f2(z,a1)dz + λ1|a1|p−2a1 < 0
a.e. on Z. So |A∩ Sa1| = 0. Set now B ⊆ Z such that

B =
∞⋃
n=1

Bn, (3.35)

where Bn = An∩ San ⊆ Z is such that x(z)= an on An with an ∈D( f ) (recall that
f has countable number of discontinuities). Then from the above arguments we
have that |B| = 0. That is, x is a solution of type II. �

Remark 3.9. As far as we know, this is the first existence result of type II for the
p-Laplacian with nonmonotone discontinuities and without using the method
of upper and lower solution. All the known results need the solution to be in

W
2,p
o (Z) (cf. [1]), but here we do not have such a regularity result, so the argu-

ments that we have used are more complicated.
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