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We study the dependence on the control q of the interval of definition of the so-
lution u of the Cauchy problem ıu′ +∆u=−λ|u|2u− ıqu in R2× (0,T), u(x,0)=
ω in R2, and we prove a version of Fibich’s conjecture. Feedback laws for an in-
verse problem of the above equation with experimental data, measured on a
portion of the boundary of an open, bounded subset of R2 are established.

1. Introduction

In this paper, we consider the Cauchy problem

ıu′ +∆u=−λ|u|2u− ıqu in R
2× (τ,T),

u(x,τ)= ω = ω1 + ıω2 in R
2,

q(x)= qj(x) + ıq2(x); qj ∈H2(
R

2), λ > 0.

(1.1)

The existence of a local (in time) solution of (1.1) has been established by
Ginibre and Velo [4], Kato [5], and others.

For positive constant q, (1.1) may be considered as a model equation for the
propagation of an intense laser beam through a medium with Kerr nonlinearity.
The square of the transverse width of the incoming laser beam is proportional
to q. Extensive investigations on the formation of the singularities of (1.1), with
positive constant q, have been made by Fibich [3], Landman et al. [6], Landman
et al. [7], LeMesurier et al. [8, 9], and others.

In this paper, we consider q as a control and we study the following:

(1) the dependence of the interval of definition of u on q. It will be shown
that there exists a threshold value qthres ∈H2(R2) such that
(i) the interval of definition (τ,Tq) increases with ‖q‖H2(R2) for ‖q‖H2(R2)

< ‖qthres‖H2(R2);
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(ii) the interval (τ,Tq) remains constant for all q with ‖q‖H2(R2) ≥
‖qthres‖H2(R2);

(2) an inverse problem for (1.1). We wish to find q and hence u, given the
observed values of u on a portion of the boundary of an open, bounded
subset of R2.

The inverse problem for the linear Schrödinger equation in a bounded do-
main, namely finding the potential q from the given spectra data, was solved by
the celebrated Gelfand, Levitan, and Marchenko method. Recently, Advdonin
et al. [1] introduced a new approach: finding the real-valued q from the ob-
served values of u on a portion of the boundary of an open, bounded set. They
applied the boundary control method and the exact controllability technique.
In [12], the author used feedback control techniques to determine the com-
plex potential from the observed values of u on a portion of the boundary of
an open subset of Rn. It is the purpose of this paper to extend the method
used in [12] to the case of the whole space. It is known that to get feedback
laws, we must solve a nonlinear partial differential, involving the Clarke sub-
gradients of the value function of the associated problem. As there are few in-
formation available on the Clarke subgradients and as there is no compact in-
jection mapping in R2, difficulties arise when we wish to establish the weak
continuity in some appropriate spaces of the Clarke subgradients. In this pa-
per, we circumvent the problem by using an extension operator � of H2(G) into
H2(R2).

Pioneering works on feedback laws for distributed systems of nonlinear par-
abolic equations, were done by Popa [10, 11] using a Trotter-type formula and
the Clarke-Vinter optimization problem. Necessary conditions for the optimal-
ity were derived earlier by Barbu [2]. It turns out that by a suitable modification
of the laws given by Popa, we can treat a wide range of problems with interacting
state and control variables.

In Section 2, we give the notations, some known results, and we prove the
Fibich conjecture. We study the value function in Section 3 and feedback laws
are established in Section 4.

2. Notations Fibich’s conjecture

Throughout the paper, H is the Hilbert space L2(R2) with inner product (·,·),
norm ‖ · ‖, and Hk is the usual Sobolev space Hk(R2). From the Sobolev imbed-
ding theorem, we deduce that H2 is an algebra with respect to pointwise multi-
plication. We may rewrite (1.1) as

u′1 +∆u2 + λ|u|2u2 = q2u2− q1u1 in R
2× (τ,T),

u′2−∆u1− λ|u|2u1 =−
(
q1u2 + q2u1

)
in R

2× (τ,T),

uj(x,τ)= ωj(x) in R
2; j = 1,2.

(2.1)
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Let

� j =
{
qj :

∥∥qj

∥∥
H2 ≤ αj

}
, α2 =

2∑
j=1

α2
J = 1 +‖ω‖4

H2 ; j = 1,2. (2.2)

Then � j is a closed convex subset of H .

Theorem 2.1. Let {ωj,q j ,λ,σ} be in H2×� j ×R+× (0,1). Then there exist

(i) a nonempty interval (τ,Tλ(α)),
(ii) a unique solution u of (2.1) with

{
u,u′

}∈ L∞
(
τ,Tλ(α);H2)×L∞

(
τ,Tλ(α);H

)
(2.3)

for ‖q‖H2(R2) ≤ α. Furthermore, T0(α)= T and there exists a constant C,
independent of λ and q such that

‖u‖2
L∞(τ,Tλ(α);H2) +

∥∥u′∥∥2
L∞(τ,Tλ(α);H)

≤ C‖ω‖2
H2

{
1 +‖q‖2

H2 +‖ω‖4
H2

}
exp

(
Cα2(1− σ)−1Tλ(α)

) (2.4)

for all solutions u of (2.1) with ‖q‖H2 ≤ α.

Proof. The existence of a local (in time) solution of (2.1) is well known. We will
establish the estimates and show the dependence of the solution on the control q.

(1) With (2.1), we have

d

dt

∥∥u(·, t)∥∥2
+ 2λ

∥∥u(·, t)∥∥4
L4(R2) ≤ ‖q‖L∞(R2)

∥∥u(·, t)∥∥2
. (2.5)

It follows from the Gronwall lemma that

∥∥u(·, t)∥∥2
+ λ‖u‖4

L4(τ,t;L4(R2)) ≤ C‖ω‖2 exp
(
CT‖q‖L∞(R2)

)
. (2.6)

(2) We obtain, by differentiating (2.1) with respect to t

u′′1 +∆u′2 + λ|u|2u′2 + 2λ
(
u1u

′
1 +u2u

′
2

)
u2 = q2u

′
2− q1u

′
1,

u′′2 −∆u′1− λ|u|2u′1− 2λ
(
u1u

′
1 +u2u

′
2

)
u1 =−

(
q1u

′
2 + q2u

′
1

)
.

(2.7)

Taking the H-inner product of the first equation with u′1, and the second
equation with u′2, we get

d

dt

∥∥u′∥∥2 ≤ C
{
‖q‖H2

∥∥u′∥∥2
+
∥∥u′∥∥2‖u‖2

H2

}
. (2.8)

(3) Taking the H-inner product of the first equation of (2.1) with ∆u′2, and
the second equation with −∆u′1, we obtain

d

dt

∥∥∆u(·, t)∥∥2 ≤ λC
∥∥u′∥∥3

H2 +C
∥∥u′∥∥‖u‖H2 . (2.9)
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Adding (2.6), (2.8), and (2.9), we get

d

dt

{∥∥u′(·, t)∥∥2
+
∥∥u(·, t)∥∥2

H2

}
≤ C

{
‖q‖H2

∥∥u′(·, t)∥∥2
+
∥∥u(·, t)∥∥2

}
+Cλ2

∥∥u′(·, t)∥∥2
+
∥∥u(·, t)∥∥2

H2 .
(2.10)

We have applied the Hölder inequality in (2.10). It is clear that when λ = 0,
we get

∥∥u′(·, t)∥∥2
+
∥∥u(·, t)∥∥2

H2 ≤ C‖ω‖2
H2

(
1 +‖q‖2

H2

)

+
(

1 +‖q‖2
H2

)∫ t

τ

{∥∥u(·, s)∥∥2
H2 +

∥∥u′(·, s)∥∥2
}
ds.

(2.11)

The Gronwall lemma gives

∥∥u′∥∥2
L∞(τ,T ;H) +‖u‖2

L∞(τ,T ;H2) ≤ C‖ω‖2
H2

(
1 +‖q‖2

H2

)
exp

{
T
(

1 +‖q‖2
H2

)}
.

(2.12)
Now we consider the case when λ > 0. Set

ϕ(t)= ∥∥u(·, t)∥∥2
H2 +

∥∥u′(·, t)∥∥2
, (2.13)

then (2.10) may be rewritten as

d

dt

{
ϕ(t)exp

(−Ct‖q‖H2

)}≤ C
(
1 + λ2)exp

(
Ct‖q‖H2

){
ϕ(t)exp

(−Ct‖q‖H2

)}2
.

(2.14)
It follows that

Cϕ(t)
{‖q‖H2 + λ2ϕ(τ)

[
1− exp

(
C(t− τ)‖q‖H2

)]}
≤ Cϕ(τ)‖q‖H2 exp

[
C(t− τ)‖q‖H2

] (2.15)

for all t ∈ [τ,Tλ(‖q‖H2 )] with

Tλ
(‖q‖H2

)= 1
C‖q‖H2

ln

{
1 +

σ‖q‖H2

Cλ2‖ω‖2
H2

(
1 +‖ω‖4

H2 +‖q‖2
H2

)
}
, σ ∈ (0,1).

(2.16)
We will write Tλ(q) for Tλ(‖q‖H2 ) when there is no possible confusion.
(4) Now we consider Tλ(q), given by (2.16), and wish to find the maximum

interval of definition (τ, Tλ(q)) of u for all q with ‖q‖H2 ≤ α and for a fixed λ > 0.
We are led to the study of the function

f (x)= 1
x

ln
(

1 +
ax

1 + b+ x2

)
, a,b,x > 0. (2.17)
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A calculation gives

f ′(x)=
{

ax
(
1 + b− x2

)
(
1 + b+ ax+ x2

)(
1 + b+ x2

) − ln
(

1 +
ax

1 + b+ x2

)}
x−2 = x−2g(x).

(2.18)
Thus,

f ′(x) < 0 for α < x, f (x) < f (α); α2 = 1 + b = 1 +‖ω‖4
H2 . (2.19)

Since

inf
{
f
(‖q‖H2

)∀‖q‖H2 ≤ α
}

(2.20)

exists, we will take

Tλ(α)= inf
{
T ; inf

{
f
(‖q‖H2

)∀‖q‖+H2 ≤ α
}}
. (2.21)

(5) From (2.15), (2.16), (2.17), and (2.21), we deduce that

∥∥u(·, t)∥∥2
H2 +

∥∥u′(·, t)∥∥2 ≤ C‖ω‖2
H2

(
1 +α2)exp

(
Ctα2) (2.22)

for all t ∈ (τ,Tλ(α)) and for all q with ‖q‖H2 ≤ α.
It is trivial to show that the solution is unique. The theorem is proved. �

Thus for a given q ∈H2, there exists a unique solution of (2.1) on the interval
(τ,Tλ(q)). We wish to find q̃ ∈H2 with

Tλ
(
q̃
)= inf

{
T ; sup

{
Tλ(q)∀q, ‖q‖H2 ≤ ∥∥q̃∥∥H2

}}
. (2.23)

We are led to the study of Fibich’s conjecture. Let (τ,T(δ)) be the interval
of definition of (2.1) corresponding to the constant potential q = δ > 0. Fibich
conjectures that T(δ) increases with δ up to a threshold value δthres and then
T(δ)= T(δthres) for δ ≥ δthres.

Let f (x) be as in (2.17) and let

T(β)= sup
{
f (x) : 0 < x < β

}
. (2.24)

From (2.15), it is clear that (τ,T(β)) is the maximum interval of definition of
the solution u of (2.1) with ‖q‖H2 ≤ β.

Theorem 2.2. Suppose that all the hypotheses of Theorem 2.1 are satisfied. Then
there exists qthres ∈H2 such that

(i) T(β) < T(γ) for β < γ < ‖qthres‖H2 ,
(ii) T(qthres)= sup{ f (x)∀x, x ≥ ‖qthres‖H2}.

Proof. With f as in (2.17), we know that f ′(x) < 0 for x ≥ √1 + b where b =
‖ω‖4

H2 . So the function f is decreasing for x ≥√1 + b.
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Using a maximizing sequence, it is trivial to show that

Tα(x)= sup
{
f (ξ) : 0 < ξ ≤ x ≤ α

}= f (x̃) for some x̃ ∈ (0,x). (2.25)

Set

�= {x̃ : f (x̃)= Tα(x), 0 < x < α
}
. (2.26)

Clearly � is nonempty and sup� exists. Using a maximizing sequence, we
obtain

sup�= x̂; f (x̂)= sup
{
f (ξ) : 0 < ξ ≤ α

}
. (2.27)

Let

T̃α = f (x̂), (2.28)

then

f (y) < f (x̂)= T̃α, ∀y < α. (2.29)

It follows from the definition of Tα(x) that

Tα(x) < Tα(x), ∀x, y with x < y < α. (2.30)

In particular,

Tx̂(x) < Tx̂(y), ∀x, y with x < y < x̂. (2.31)

Since x̂ ≤ α, we have from the definition of x̂,

f (y)≤ f (x̂), ∀y, x̂ < y ≤ α. (2.32)

On the other hand, f is decreasing on [α,∞) and thus

f (y) < f (α)≤ f (x̂). (2.33)

Combining inequalities (2.32) and (2.33), we get

f (y) < f (x̂), ∀y, y > x̂. (2.34)

Therefore,

sup
{
f (y)∀y > x̂

}= f (x̂)= Tx̂. (2.35)

From Theorem 2.1, we know that (τ,Tx̂) is the maximum interval of defini-
tion of the solution u of (2.1) with potential ‖q‖H2 ≤ x̂. Thus x̂ is the threshold
value of the potential, as conjectured by Fibich. �
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Let G be a bounded open subset of R2 with a smooth boundary ∂G. It is
known that there exists an extension mapping � of H2(G) into H2(R2) with

(i) �u(x)= u(x) a.e. in G;
(ii) ‖�u‖H2(R2) ≤ K‖u‖H2(G).

For a given f ∈Hk, there exists a unique v ∈Hk+2 such that

v−∆v = f in R
2. (2.36)

Moreover, ‖v‖H2+k ≤ C‖ f ‖Hk . The linear mapping S of Hk into Hk+2, defined
by S f = v where v as in (2.36), is well defined and is bounded.

Let Γ be a closed nonempty subset of ∂G and let

χ = χ1 + ıχ2; χj ∈ L2(0,Tλ;L2(Γ)
)
, j = 1,2 (2.37)

be a function representing the measurement of the solution u of (2.1) on Γ. With
(2.1) we associate the cost function

J(τ;u;q;ω)=
2∑
j=1

∫ Tλ

τ

∫
Γ

∣∣χj(·, t)−uj(·, t)
∣∣2
dσ dt. (2.38)

The purpose of this paper is to find q̃ ∈� so that the solution ũ of (2.1), with
potential q = q̃, satisfies the relation

V(τ;ω)= J
(
τ; ũ; q̃;ω

)= inf
{
J(τ;u;q;ω)∀q ∈�

}
. (2.39)

We are led to the study of the feedback laws for the optimization problem
(2.39).

Clearly, when χ represents the experimental values of the solution u of (2.1),
corresponding to some potential q ∈H2, then the value functionV(τ;ω) is equal
to zero.

Let k∗j be the mapping of L2(τ,Tλ;H) into R defined by the equation

k∗j
(
vj
)= sup

{(
qj ,v j

)
L2(τ,Tλ;H) ∀qj ∈� j

}
; j = 1,2. (2.40)

Then k∗j is a lower semi-continuous (l.s.c.) convex mapping of L2(τ,Tλ;H)
into R. A trivial argument shows that there exists q∗j ∈� j such that

k∗j
(
vj
)= (q∗j , v j)L2(τ,Tλ;H). (2.41)

Since k∗j are l.s.c. convex mappings of L2(τ,Tλ;H) into R, its subdifferentials
exist and are mappings of L2(τ,Tλ;H) into L2(τ,Tλ;H). We have

k∗j (wj)− k∗j
(
vj
)≥ (pj ,wj

)
L2(τ,Tλ;H)−

(
q∗j , v j

)
L2(τ,Tλ;H)

≥ (q∗j ,wj − vj
)
L2(τ,Tλ;H), ∀pj ∈� j .

(2.42)

Hence q∗j ∈ ∂k∗j (vj).
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3. The value function

In this section, we show that the value function of problem (2.1), (2.38), given by
(2.39), has Clarke subgradients. The main results of this section are the following
two theorems.

Theorem 3.1. Suppose that all the hypotheses of Theorem 2.1 are satisfied. Let χ
be an element of L2(τ,Tλ;L2(Γ)) and let V(τ;ω) be as in (2.39). Then there exists
a positive constant C such that
∣∣V(τ;ω)−V(τ;θ)

∣∣≤ C‖ω− θ‖H2 , ∀ω,θ with ‖ω‖H2 +‖θ‖H2 ≤ 1. (3.1)

The Clarke subgradients ∂1V(τ;ω1;ω2), ∂2V(τ;ω1;ω2) of V with respect to ω1,
ω2, respectively, exist and

∥∥∂1V
∥∥
L2(τ,Tλ;H−2) +

∥∥∂2V
∥∥
L2(τ,Tλ;H−2) ≤ C. (3.2)

The generic constant C is independent of both λ and ω.

The following theorem will be needed.

Theorem 3.2. Suppose that all the hypotheses of Theorem 3.1 are satisfied. Let S
be the bounded linear mapping of Hk into Hk+2, given by (2.36), and let � be the
extension mapping of H2(G) into H2(R2). Then

∣∣V(τ;S�(ω)
)−V

(
τ;S�(θ)

)∣∣≤ C‖ω− θ‖L2(G) (3.3)

for all ω,θ with ‖ω‖+‖θ‖ ≤ 1.
The Clarke subgradients ∂jV(τ;S�(ω)) of V(τ;S�(ω))=�(τ;ω) with respect

to ωj exist and
∥∥∂jV

(·,S�(ω)
)∥∥

L2(τ,Tλ;L2(G)) ≤ C. (3.4)

The constant C is independent of λ and ω.

We have the following lemma.

Lemma 3.3. Suppose that all the hypotheses of Theorem 3.1 are satisfied. Then there
exists

{
ũ, ũ′, q̃

}∈ L∞
(
τ,Tλ;H2)×L2(τ,Tλ;H

)×� (3.5)

with ũ being the unique solution of (2.1), corresponding to the potential q̃ and such
that

V(τ;ω)= J
(
τ; ũ; q̃;ω

)= inf
{
J(τ;u;q;ω)∀q ∈�

}
. (3.6)

Proof. Let {un,qn} be a minimizing sequence with

J
(
τ;un;qn;ω

)− 1
n
≤V(τ;ω). (3.7)
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Since qn ∈�, there exists a subsequence, denoted again by qn, such that qn→
q̃ in H2

weak with q̃ ∈ �. From the estimates of Theorem 2.1, we obtain, by taking
subsequences,

{
un,
(
un
)′}−→ {ũ, ũ′} in

(
L∞
(
τ,Tλ;H2))

weak∗ ×
(
L∞
(
τ,Tλ;H

))
weak∗ . (3.8)

From the l.s.c. of J , we deduce that

J
(
τ; ũ; q̃;ω

)=V(τ;ω). (3.9)

The lemma is proved. �

Proof of Theorem 3.1. (1) Let ω,θ be in H2, then

V(τ;θ)−V(τ;ω)=V(τ;θ)− J
(
τ; ũ; q̃;ω

)
≤ J
(
τ;v; q̃;θ

)− J
(
τ; ũ; q̃;ω

)

≤
2∑
j=1

∥∥vj − ũ j

∥∥2
L2(τ,Tλ:L2(Γ)),

(3.10)

where v is the solution of (2.1) with potential q̃, initial value θ. Thus, we have

ı(ũ− v)′ +∆(ũ− v)=−λ|ũ− v|2(ũ− v)− ıq̃(ũ− v),

ũ(τ;·)− v(τ;·)= ω− θ.
(3.11)

It follows from Theorem 2.1 that

‖ũ− v‖L∞(τ,Tλ;H2) +
∥∥(ũ− v)′

∥∥
L∞(τ,Tλ;H) ≤ C‖θ−ω‖H2 . (3.12)

Therefore,

‖ũ− v‖L2(τ,Tλ;L2(Γ)) ≤ C‖ũ− v‖L2(τ,Tλ;H1(G))

≤ C‖ũ− v‖L2(τ,Tλ;H2)

≤ C‖ω− θ‖H2 .

(3.13)

We obtain

V(τ;θ)−V(τ;ω)≤ C‖ω− θ‖H2 (3.14)

for all ‖ω‖H2 +‖θ‖H2 ≤ 1.
Reversing the role of ω and θ we get

V(τ;ω)−V(τ;θ)≤ C‖ω− θ‖H2 (3.15)

for all ‖ω‖H2 +‖θ‖H2 ≤ 1.



394 An inverse problem for a nonlinear Schrödinger equation

Combining (3.14) and (3.15), we obtain

∣∣V(τ;ω)−V(τ;θ)
∣∣≤ C‖ω− θ‖H2 (3.16)

for all ‖ω‖H2 +‖θ‖H2 ≤ 1.
Taking θ = (θ1,ω2) in the above expression, we obtain

∣∣V(τ;ω1;ω2
)−V

(
τ;θ1;ω2

)∣∣≤ C
∥∥ω1− θ1

∥∥
H2 (3.17)

for all ‖θ1‖H2 +‖ω1‖H2 ≤ 1.
Therefore ∂1V(τ;·;ω2), the Clarke subgradient of V(τ;·;ω2) exists and

∥∥∂1V
∥∥
L2(τ,Tλ;H−2) ≤ C. (3.18)

Similarly for ∂2V(τ;ω1;·). Thus the theorem is proved. �

Proof of Theorem 3.2. As in Theorem 3.1, we have
∣∣V(τ,S�(ω)

)−V
(
τ;S�(θ)

)∣∣≤ C
∥∥S�(ω)− S�(θ)

∥∥
H2

≤ C
∥∥�(ω− θ)

∥∥
H

≤ C‖ω− θ‖L2(G)

(3.19)

for all ‖θ‖L2(G) +‖ω‖L2(G) ≤ 1.
We have made use of the properties of the extension operator � and of S.

Therefore, the Clarke subgradients ∂jV(τ;S�(ω)) of �(τ;ω) = V(τ;S�(ω))
with respect to ωj exist and are, moreover, bounded mappings of L2(τ,Tλ;L2(G))
into the closed convex subsets of L2(τ;Tλ;L2(G)). Furthermore,

‖pj‖L2(τ,Tλ;L2(G)) ≤ C, ∀pj ∈ ∂jV
(
τ;S�(ω)

)
. (3.20)

The theorem is proved. �

4. Feedback laws

Let k∗j be as in (2.40) and let V be the value function associated with (2.1), (2.38)
and defined by (2.39). Consider the initial value problem

ıu′ +∆u=−λ|u|2u− ıq̃u in R
2× (τ,Tλ

)
,

u(x,τ)= ω,

k∗j
(
�
(
pj
))= (�(pj

)
, q̃ j
)
L2(τ,Tλ;H), �

(
pj
)∈ ∂jV

(
t;S�

(
u|G
))
,

q̃ j ∈ ∂k∗j
(
�
[
∂jV

(
t;S�

(
u|G
))])

; j = 1,2.

(4.1)

Nonlinear problems of the type considered in (4.1), arise in the study of feed-
back laws of nonlinear-parabolic-equation distributed systems. Let

�C̃ =
{
v|G : ‖v‖L2(τ,Tλ;H2) +

∥∥v′∥∥L2(τ,Tλ;H) ≤ C̃
}

(4.2)
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with

C̃ = C
(
1 +α+‖ω‖H2

)
exp(CTα) (4.3)

and α is as in Theorem 2.1.
Since G is a bounded open subset of R2, it is clear that �C̃ is a compact convex

subset of L2(τ,Tλ;L2(G)).
Let v ∈�C̃, then ∂jV(t;S�(v|G)) exists and maps L2(τ,Tλ;L2(G)) into the

closed convex subsets of L2(τ,Tλ;L2(G)), with ∂jV(t;S�(v|G)), being closed
convex subsets of L2(τ,Tλ;L2(G)), there exists a unique element pj(v) ∈
∂jV(t;S�(v|G)) of minimal L2(τ,Tλ;L2(G))-norm.

By the same argument, there exists a unique element q̃ j ∈ ∂k∗j (S�(pj)) of the
closed convex set

k∗j
(
�pj

)= (�pj ,q j
)
L2(τ,Tλ;H), q j ∈� j (4.4)

with minimal L2(τ,Tλ;H)-norm.
Consider the initial value problem

ıu′ +∆u+ λ|u|2u=−ıq̃(v)u in R
2× (τ,Tλ

)
,

u(x,τ)= ω in R
2.

(4.5)

For each v ∈ �C̃, there exists a unique solution u of problem (4.5). Let A
be the nonlinear mapping of �C̃, considered as a subset of L2(τ,Tλ;L2(G)) into
L2(τ,Tλ;L2(G)) defined by

A(v)= u|G. (4.6)

With the estimates of Theorem 2.1, we can check that A maps �C̃ into it-
self. Now we show that A satisfies all the hypotheses of the Schauder fixed point
theorem.

Theorem 4.1. Suppose that all the hypotheses of Theorems 2.1 and 3.2 are satisfied.
Then there exists a solution ũ of (4.1) with

{
ũ, ũ′

}∈ L∞
(
τ,Tλ;H2)×L∞

(
τ,Tλ;H

)
. (4.7)

Proof. Let vn be in �C̃, then from Aubin’s theorem there exists a subsequence
such that {vn,(vn)′} → {v,v′} in (L∞(τ,Tλ;H2(G)))weak∗ ∩ C(τ,Tλ;H1(G)) ×
(L∞(τ,Tλ;H))weak∗ and v ∈�C̃. We have

∥∥S�
(
vn
)− S�(v)

∥∥
C(τ,Tλ;H3) ≤ C

∥∥�
(
vn
)−�(v)

∥∥
C(τ,Tλ;H1)

≤ C
∥∥vn− v

∥∥
C(τ,Tλ;H1(G)).

(4.8)

Hence S�(vn)→ �(v) in C(τ,Tλ;H3).
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Let pj(vn) be the unique element of ∂jV(t;S�(vn|G)) with minimal
L2(τ,Tλ;L2(G))-norm. From Theorem 3.2, we get

∥∥pj
(
vn
)∥∥

L2(τ,Tλ;L2(G)) ≤ C. (4.9)

Thus there exists a subsequence such that

pj
(
vn
)−→ p̂ j in

(
L2(τ,Tλ;L2(G)

))
weak. (4.10)

Now we show that p̂ j ∈ ∂jV(t;S�(v|G)) with minimal L2(τ,Tλ;L2(G))-norm.
From the definition of subgradients, we have

∫ Tλ

τ

{
V
(
t;S�

(
w1|G

)
,S�

(
vn2 |G

))−V
(
t;S�

(
vn1 |G

))
,S�

(
vn2 |G

)}
dt

≥
∫ Tλ

τ

(
p1
(
vn
)
,w1− vn1

)
L2(G)dt.

(4.11)

It follows from Theorem 3.2 that

∫ Tλ

τ

{
V
(
t;S�

(
w1|G

)
,S�

(
v2|G

))−V
(
t;S�

(
v1|G

)
,S�

(
v2|G

))}
dt

≥
∫ Tλ

τ

(
p̂1,w1− v1

)
L2(G)dt

(4.12)

for all w1 ∈ L2(τ,Tλ;L2(G)). Thus,

p̂1 ∈ ∂1V
(
t;S�

(
v1|G,S�

(
v2|G

)))
. (4.13)

Similarly for p̂2. Now it remains to show that p̂ j is the unique element of
∂jV(t;S�(v|G)) with minimum L2(τ,Tλ;L2(G))-norm.

Let

Bε(v)=
{
vε : vε ∈�C̃ ,

∥∥vε− v
∥∥
L2(τ,Tλ;H2(G)) +

∥∥(vε)′ − v′
∥∥
L2(τ,Tλ;L2(G)) ≤ ε

}
.

(4.14)
Then

⋂
ε

{
∂jV

(
t;S�

(
vε|G

))
: vε ∈ Bε(v)

}
⊂ ∂jV

(
t;S�(vn|G

))
(4.15)

since vn ∈ Bε(v) for n≥ n0. Hence

∥∥pj
(
vn
)∥∥

L2(τ,Tλ;L2(G)) ≤
∥∥pj(v)

∥∥
L2(τ,Tλ;L2(G)), ∀pj ∈ ∂jV

(
t;S�(v|G

))
. (4.16)

In particular, we have

∥∥ p̂ j

∥∥
L2(τ,Tλ;L2(G)) ≤

∥∥pj(v)
∥∥
L2(τ,Tλ;L2(G)), ∀pj(v)∈ ∂jV

(
t;S�

(
v|G
))
. (4.17)
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Thus, p̂ j is the unique element of the closed convex set ∂jV(t;S�(v|G)) with
minimal L2(τ,Tλ;L2(G))-norm.

By definition, we have

k∗j
(
�
(
pj
(
vn
)))= (�(pj

(
vn
))
,q j
(
vn
))

L2(τ,Tλ;H) (4.18)

for some qj(vn)∈� j . Moreover,

qj
(
vn
)∈ ∂k∗j

(
�
(
pj
(
vn
)))

. (4.19)

Since � is a bounded mapping of L2(G) into H , its adjoint is also a bounded
mapping of H into L2(G). With � j being time-independent, it follows from the
definition of the set � j and from the Sobolev imbedding theorem that

�∗
(
qj
(
vn
))−→�∗

(
qj
)

in L2(τ,Tλ;L2(G)
)
. (4.20)

We have

k∗j
(
�
(
p̂ j
))− k∗j

(
�
(
pj
(
vn
)))≥

∫ Tλ

τ

(
qj
(
vn
)
,�
(
p̂ j
)−�

(
pj
(
vn
)))

dt. (4.21)

It follows that

qj ∈ ∂k∗j
(
�
(
p̂ j
))
. (4.22)

From (4.18) we get

k∗j
(
�
(
pj
(
vn
)))−→ (�( p̂ j

)
,q j
)
L2(τ,Tλ;H) = k∗j

(
�
(
p̂ j
))
. (4.23)

An argument as done for p̂ j shows that qj is the unique element of the closed
convex set

k∗j
(
�
(
p̂ j
))= (�( p̂ j ,q j

))
L2(τ,Tλ;H) (4.24)

with minimal L2(τ,Tλ;H)-norm.
Now we have A(v)= u|G and therefore the nonlinear operator A of the com-

pact convex set �C̃ of L2(τ,Tλ;L2(G)) into �C̃ is continuous. Applying the
Schauder fixed point theorem, we deduce the existence of u, solution of (4.1).

The theorem is proved. �

The main result of the paper is the following theorem.

Theorem 4.2. Suppose that all the hypotheses of Theorem 3.2 are satisfied. Let ũ
be a solution of (4.1) given by Theorem 4.1. Then

V(τ,ω)=
2∑
j=1

∫ Tλ

τ

∫
Γ

∣∣ũ j − χj
∣∣2
dσ dt. (4.25)
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Proof. Let ũ be as in Theorem 4.1 and consider the Cauchy problem

ıu′ +∆u+ λ|u|2u=−ıqu in R
2× (t,Tλ

)
,

u(t)= ũ(·, t) in R
2.

(4.26)

With ũ as in Theorem 4.1, then for a given q ∈ �, there exists a unique solu-
tion u of (4.26). Consider

V
(
t; ũ(t)

)= inf

{ 2∑
j=1

∫ T

t

∫
Γ

∣∣u− χj
∣∣2
dσ dt ∀qj ∈� j

}
. (4.27)

Using a minimizing sequence, we get by a trivial argument

V
(
t; ũ(t)

)= 2∑
j=1

∫ Tλ

t

∫
Γ

∣∣û j − χj
∣∣2
dσ ds (4.28)

for some {û, q̂}, solution of (4.26).
From the dynamic programming principle, we deduce that

V
(
t+h; û(t+h)

)= 2∑
j=1

∫ Tλ

t+h

∫
Γ

∣∣û j − χj
∣∣2
dσ ds. (4.29)

Hence

d

dt
V
(
t; û(t)

)=− 2∑
j=1

∫
Γ

∣∣û j(t,·)− χj
∣∣2
dσ. (4.30)

Since ũ(·, t)= û(·, t) in R2, we get

d

dt
V
(
t; û(t)

)=− 2∑
j=1

∫
Γ

∣∣ũ(·, t)− χj(·, t)
∣∣2
dσ. (4.31)

It follows that

V
(
Tλ; ũ

(
Tλ
))−V(τ;ω)=−V(τ;ω)

=−
2∑
j=1

∫ Tλ

τ

∫
Γ

∣∣ũ j(·, t)− χj(·, t)
∣∣2
dσ ds.

(4.32)

The theorem is proved. �

Remark 4.3. The general case when the cost function depends also on the control
is open.
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