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We study perturbations and continuity of the Drazin inverse of a closed linear
operator A and obtain explicit error estimates in terms of the gap between closed
operators and the gap between ranges and nullspaces of operators. The results
are used to derive a theorem on the continuity of the Drazin inverse for closed
operators and to describe the asymptotic behavior of operator semigroups.

1. Introduction

In this paper, we investigate a perturbation of the Drazin inverse AD of a closed
linear operator A; the main tool for obtaining the estimates is the gap between
subspaces and operators.

By �(X) we denote the set of all closed linear operators acting on a linear
subspace of X to X , where X is a complex Banach space. We write �(A), �(A),
�(A), ρ(A), σ(A), and R(λ,A) for the domain, nullspace, range, resolvent set,
spectrum, and the resolvent of an operator A ∈ �(X). All relevant concepts
from the theory of closed linear operators can be found in [3, 14]. The set of
all operators T ∈�(X) with �(T)= X will be denoted by �(X); we recall that
operators in �(X) are bounded, and the operator norm of T ∈�(X) will be
denoted by ‖T‖. An operator A ∈ �(X) is called quasi-polar if 0 is a resolvent
point or an isolated spectral point of A. The spectral projection of a quasi-polar
operator A ∈ �(X) is the unique idempotent operator Aπ ∈ �(X) such that
AAπx = AπAx for all x ∈ �(A), AAπ is quasi-nilpotent, and A + Aπ is invert-
ible in �(X).

With an eye to further development in this paper, we choose the following
definition of the (generalized) Drazin inverse among the equivalent formula-
tions given in [8].
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Definition 1.1. An operator A∈�(X) is Drazin invertible if A is quasi-polar. The
Drazin inverse of A is defined by

AD = (A+Aπ
)−1(

I −Aπ
)
, (1.1)

where Aπ is the spectral projection of A corresponding to 0 (see [14, Theorem
V.9.2]); note that AD,Aπ ∈�(X), and that

Aπ = I −AAD. (1.2)

The Drazin index i(A) of a Drazin invertible operator A∈�(X) is equal to 0 if
A is invertible, to the nilpotency index of the operator AAπ if A is singular and
AAπ nilpotent, and to∞ if AAπ is quasi-nilpotent but not nilpotent.

This definition further generalizes the concept of the Drazin inverse intro-
duced in [4], which in turn is a generalization of the original definition of pseu-
doinverse given by Drazin [1].

We need another characterization of the Drazin inverse for future use. A proof
of the formula is given for completeness.

Lemma 1.2. If A∈�(X) is Drazin invertible, then

AD = f (A), (1.3)

where f (λ) = 0 in Ω0 and f (λ) = λ−1 in Ω, where Ω0 and Ω are disjoint open
neighbourhoods of 0 and σ(A) \ {0}, respectively.

Proof. Since A is quasi-polar, we can choose open neighbourhoods Ω0 and Ω of
0 and σ(A) \ {0}, respectively, such that the complement Ωc of Ω is compact and
Ω0 ⊂Ωc. Let γ be a cycle in Ω \ σ(A) such that ind(γ,λ)= 0 if λ∈ σ(A) \ {0} and
ind(γ,λ)= 1 if λ∈Ωc. Using the holomorphic calculus for A with f given in the
statement of the lemma, we get

A f (A)=− 1
2πi

∫
γ
λ−1AR(λ,A)dλ

=
(

1
2πi

∫
γ

dλ

λ

)
I − 1

2πi

∫
γ
R(λ,A)dλ= I −Aπ.

(1.4)

Since Aπ = g(A), where g(λ) = 1 in Ω0 and g(λ) = 0 in Ω, we have Aπ f (A) =
g(A) f (A)= (g f )(A)= 0, and (A+Aπ) f (A)= I −Aπ . Hence

f (A)= (A+Aπ
)−1(

I −Aπ
)= AD. (1.5)

�
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From the last paragraph of the preceding proof we see that the Drazin inverse
can also be given by the formula AD = (A + ξAπ)−1(I −Aπ) for any ξ �= 0; in
particular, we have

AD = (A−Aπ
)−1(

I −Aπ
)
. (1.6)

2. Some results on the gap between subspaces

First, we quantify results of [7] by obtaining explicit error bounds for the norm
distance ‖P−Q‖ between two idempotent operators P,Q ∈�(X) in terms of
the gap between their null spaces and ranges.

Let �(X) be the set of all closed subspaces of the Banach space X . The gap
between subspaces M,N ∈�(X) is defined in [2] and [3, Section IV.2.1]:

gap(M,N)=max
{
∆(M,N),∆(N,M)

}
, (2.1)

where ∆(M,N) = sup{dist(x,N) : x ∈M, ‖x‖ = 1}. We summarize the proper-
ties of the gap function relevant to our investigation in the following lemma;
these results can be found in [2, 3].

Lemma 2.1. The following are true for any M,N,K ∈�(X):

(i) 0≤ gap(M,N)≤ 1;
(ii) gap(M,N)= 0 implies that M =N ;

(iii) gap(M,N)= gap(N,M);
(iv) gap(M,N)≤ 2(gap(M,K) + gap(K,N));
(v) gap(M⊥,N⊥) = gap(M,N), where M⊥, N⊥ are the annihilators of M, N

in X∗;
(vi) if gap(M,N) < 1, then M and N have the same dimension.

The sets U(M,ε)= {N ∈�(X) : gap(M,N) < ε}, where M ∈�(X) and ε > 0,
form a base for the so-called gap topology on �(X); this is a complete metriz-
able topology on �(X) [3, Section IV.2.1]. For a detailed discussion of the gap
topology see [10]. We write Mn

�−→M for gap(Mn,M)→ 0 in �(X).

Proposition 2.2. Let P,Q∈�(X) be idempotent operators and let

ν(P,Q)= gap
(
�(P),�(Q)

)
, ρ(P,Q)= gap

(
�(P),�(Q)

)
. (2.2)

Then

max
{
ν(P,Q),ρ(P,Q)

}≤ ‖P−Q‖

≤ ‖P‖‖I −P‖(ν(P,Q) + ρ(P,Q)
)

1−‖P‖ν(P,Q)−‖I −P‖ρ(P,Q)
,

(2.3)

where the second inequality holds if

‖P‖ν(P,Q) +‖I −P‖ρ(P,Q) < 1. (2.4)
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Proof. The first inequality in (2.3) is well known, see [2, equation (1.4)].
To prove the second inequality in (2.3), we apply [7, Lemma 3.1] to obtain

the following string of inequalities:

‖P−Q‖ ≤ ∥∥(I −P)Q
∥∥+

∥∥P(I −Q)
∥∥

≤ ‖I −P‖‖Q‖ρ(P,Q) +‖P‖‖I −Q‖ν(P,Q)

≤ ‖I −P‖(‖P‖+‖P−Q‖)ρ(P,Q)

+‖P‖(‖I −P‖+‖P−Q‖)ν(P,Q)

= ‖I −P‖‖P‖(ν(P,Q) + ρ(P,Q)
)

+
(‖I −P‖ρ(P,Q) +‖P‖ν(P,Q)

)‖P−Q‖.

(2.5)

Then (
1−‖I −P‖ρ(P,Q)−‖P‖ν(P,Q)

)‖P−Q‖
≤ ‖I −P‖‖P‖(ν(P,Q) + ρ(P,Q)

)
,

(2.6)

and the second inequality in (2.3) is proved provided that (2.4) holds. �

From Proposition 2.2, we recover [7, Lemma 3.3].

Corollary 2.3. Let Pn,P ∈�(X) be idempotent operators. Then

∥∥Pn−P
∥∥−→ 0⇐⇒�

(
Pn
) �−−→�(P), �

(
Pn
) �−−→�(P). (2.7)

Let H be a Hilbert space. Then the gap between closed subspaces M, N is
equal to

gap(M,N)= ∥∥PM −PN
∥∥, (2.8)

with PM , PN as the orthogonal projections onto M, N , respectively, [3, Theo-
rem I.6.34]. Rakočević recently proved [13] that, for an idempotent operator P,
gap(�(P)⊥,�(P))= (1−‖P‖−2)1/2, that is,

‖P‖ = (1− gap2 (�(P)⊥,�(P)
))−1/2

. (2.9)

This yields a simple proof of the well-known equality

‖I −P‖ = ‖P‖. (2.10)

3. Perturbations of the Drazin inverse

Let A and B be closed linear operators on X . In the case that both operators are
Drazin invertible, we want to derive an error bound for the norm ‖BD−AD‖.
From [7, 12] we recall that for Drazin invertible bounded linear operators satis-
fying An→ A (in the operator norm), we have

AD
n −→ AD ⇐⇒Aπ

n −→ Aπ. (3.1)
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This suggests that we should consider perturbations B of A with B close to A in
some sense and also with ‖Bπ −Aπ‖ small.

If A ∈ �(X), we write G(A) = {(u,Au) ∈ X ×X : u ∈ �(A)} for the graph
of the operator A. For any A ∈ �(X), the set G(A) is a closed subspace of the
product space X ×Y equipped with the norm ‖(x, y)‖ = (‖x‖2 + ‖y‖2)1/2. We
can then define the gap between the operators A,B ∈�(X) [3, Section IV.4.4] by

gap(A,B)= gap
(
G(A),G(B)

)
. (3.2)

The sets �(A,ε)= {B ∈�(X) : gap(A,B) < ε}, where A∈�(X) and ε > 0, form
a base for the so-called operator gap topology in �(X); this is (in general an in-
complete) metrizable topology on �(X). For a detailed discussion of this topol-
ogy see [11]. We write An

�−→ A for gap(An,A)→ 0 in �(X).
In the sequel, we need the following result on holomorphic calculus for closed

operators that follows from [3, Theorem IV.3.15].

Lemma 3.1. Let A,An ∈�(X) (n= 1,2, . . .). Let G be an open set containing σ(A)
and σ(An) (n= 1,2, . . .) and Ω an open neighborhood of Ḡ with Ωc compact. If f
is a function holomorphic on Ω∪{∞}, then

An
�−−→ A=⇒ ∥∥ f (An

)− f (A)
∥∥−→ 0. (3.3)

For the rest of the section we assume that A,B ∈�(X) are Drazin invertible.
Then

BD−AD = (B+Bπ
)−1(

I −Bπ
)− (A+Aπ

)−1(
I −Bπ

)
+
(
A+Aπ

)−1(
I −Bπ

)− (A+Aπ
)−1(

I −Aπ
)

=
[(
B+Bπ

)−1− (A+Aπ
)−1

](
I −Bπ

)
+
(
A+Aπ

)−1(
Aπ −Bπ

)
.

(3.4)

In order to obtain an error bound for ‖BD−AD‖ we estimate ‖(B +Bπ)−1−
(A+Aπ)−1‖, ‖I −Bπ‖ in terms of the quantities gap(A,B) and ‖Bπ −Aπ‖.

First we derive an upper estimate for ‖(B+Bπ)−1− (A+Aπ)−1‖ writing

α= 1 +
∥∥∥(A+Aπ

)−1
∥∥∥2
, β = 1 +

∥∥Aπ
∥∥2

(3.5)

and assuming that

gap
(
A+Aπ,B+Bπ

)
< α−1/2. (3.6)
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By [3, Theorem IV.2.20],

gap
((
A+Aπ

)−1
,
(
B+Bπ

)−1
)
= gap

(
A+Aπ,B+Bπ

)
. (3.7)

When we apply [3, Theorem IV.4.13], we obtain the inequality

∥∥∥(B+Bπ
)−1− (A+Aπ

)−1
∥∥∥≤ αgap

(
A+Aπ,B+Bπ

)
1−α1/2 gap

(
A+Aπ,B+Bπ

) . (3.8)

We estimate gap(A+Aπ,B+Bπ) with the help of [3, Theorem IV.2.17]:

gap
(
A+Aπ,B+Bπ

)= gap
(
A+Aπ,

(
B+Bπ −Aπ

)
+Aπ

)
≤ 2

(
1 +

∥∥Aπ
∥∥2
)

gap
(
A,B+Bπ −Aπ

)
.

(3.9)

To estimate gap(A,B+Bπ −Aπ) we use Lemma 2.1(iv) and [3, Theorem IV.2.14]:

gap
(
A,B+Bπ −Aπ

)≤ 2
(

gap(A,B) + gap
(
B,B+Bπ −Aπ

))
≤ 2

(
gap(A,B) +

∥∥Bπ −Aπ
∥∥). (3.10)

Then

gap
(
A+Aπ,B+Bπ

)≤ 4
(

1 +
∥∥Aπ

∥∥2
)(

gap(A,B) +
∥∥Bπ −Aπ

∥∥). (3.11)

If, in addition, we assume that

gap(A,B) +
∥∥Bπ −Aπ

∥∥ < (4α1/2β
)−1

, (3.12)

then inequality (3.6) is satisfied, and

∥∥∥(B+Bπ
)−1− (A+Aπ

)−1
∥∥∥≤ 4αβ

(
gap(A,B) +

∥∥Bπ −Aπ
∥∥)

1− 4α1/2β
(

gap(A,B) +
∥∥Bπ −Aπ

∥∥) (3.13)

since the function ϕ(t)= αt/(1−α1/2t) is increasing for 0≤ t < α−1/2.
The estimate for ‖BD−AD‖ based on (3.4) is obtained when we observe that

∥∥I −Bπ
∥∥≤ ∥∥I −Aπ

∥∥+
∥∥Bπ −Aπ

∥∥. (3.14)

We can then summarize our results in the following theorem.

Theorem 3.2. Let A,B ∈�(X) be Drazin invertible. If

gap(A,B) +
∥∥Bπ −Aπ

∥∥ < (4α1/2β
)−1

, (3.15)



N. Castro González et al. 341

where α and β are defined by (3.5), then

∥∥BD−AD
∥∥≤ 4αβ

(
gap(A,B) +

∥∥Bπ −Aπ
∥∥)

1− 4α1/2β
(

gap(A,B) +
∥∥Bπ −Aπ

∥∥)
× (∥∥I −Aπ

∥∥+
∥∥Bπ −Aπ

∥∥)+
∥∥∥(A+Aπ

)−1
∥∥∥∥∥Bπ −Aπ

∥∥.
(3.16)

4. The continuity of the Drazin inverse

Theorem 3.2 will enable us to obtain the following result on the continuity of
the Drazin inverse of closed linear operators.

Theorem 4.1. Let A,An ∈�(X) be Drazin invertible operators (n= 1,2, . . .) such
that An

�−→ A. Then the following conditions are equivalent:

(i) ‖AD
n −AD‖→ 0;

(ii) supn‖AD
n ‖ <∞;

(iii) there exists r > 0 such that 0 < |λ| < r implies that λ∈ ρ(An) for all n;
(iv) ‖AnAD

n −AAD‖→ 0;
(v) ‖Aπ

n −Aπ‖→ 0.

Proof. The implication (i)⇒(ii) is clear.
(ii)⇒(iii). Suppose that ‖AD

n ‖ ≤M for all n and some M > 0, and let r =
M−1. In accordance with Lemma 1.2 we write AD

n = fn(An), where fn(λ) = 0 in
a neighborhood ∆n of 0 and f (λ) = λ−1 in a neighborhood Ωn of σ(An) \ {0},
where ∆n∩Ωn =∅. If λ∈ σ(An) \ {0}, then

∣∣λ−1
∣∣= ∣∣ fn(λ)

∣∣≤ ∥∥ fn(An
)∥∥= ∥∥AD

n

∥∥≤M, (4.1)

which gives |λ| ≥ r. This implies (iii).
(iii)⇒(v). Condition (iii) and the quasi-polarity ofA imply that we can choose

disjoint open sets ∆ and Ω such that 0 ∈ ∆, Ω contains the nonzero spectrum
of A and of all the An, and Ωc is compact. Let f be defined on ∆∪Ω by setting
f (λ)=1 on ∆ and f (λ)=0 on Ω. According to Lemma 3.1, ‖ f (An)− f (A)‖→ 0,
that is,

∥∥Aπ
n −Aπ

∥∥−→ 0. (4.2)

(iv) and (v) are equivalent since Tπ = I −TTD for any Drazin invertible op-
erator T ∈�(X).

Finally, the implication (v)⇒(i) follows from Theorem 3.2. �
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5. An error bound for ‖BD−AD‖ using an upper estimate
for ‖Bπ −Aπ‖ and ‖(A+Aπ)−1‖

If ∆ is an upper estimate for ‖Bπ −Aπ‖ and if gap(A,B) +∆ < (4
√
αβ)−1, where

α, β are defined by (3.5), then according to Theorem 3.2,

∥∥BD−AD
∥∥≤ 4αβ

(
gap(A,B) +∆

)
1− 4

√
αβ
(

gap(A,B) +∆
)(∥∥I −Aπ

∥∥+∆
)

+
∥∥∥(A+Aπ

)−1
∥∥∥∆.

(5.1)

In this section, we find a value of ∆ satisfying (5.1) that can be calculated from
the gaps between spaces associated with the operators A, B.

The spectral projection Aπ of a Drazin invertible operator A ∈ �(X) is the
bounded linear operator with �(Aπ) = 	(A) and �(Aπ) = 
(A), where the
spaces 	(A) and 
(A) are defined by

	(A)=
{
x ∈�∞(A) : limsup

n→∞

∥∥Anx
∥∥1/n = 0

}
,


(A)=
{
x ∈ X : ∃xn ∈�n(A) such that

Ax1 = x, Axn+1 = xn for n= 1,2, . . .

and limsup
n→∞

∥∥xn∥∥1/n
<∞

}
(5.2)

(see Mbekhta [9]). It is known [6] that A is Drazin invertible if and only if X
is the direct sum X =	(A)⊕
(A) with at least one of the component spaces
closed. If 0 is a pole of A of order p, then


(A)=�
(
Ap
)
, 	(A)=�

(
Ap
)
. (5.3)

Theorem 5.1. Let A,B ∈�(X) be Drazin invertible operators and let

∆H = gap
(
	(A),	(B)

)
, ∆K = gap

(

(A),
(B)

)
. (5.4)

If ‖I −Aπ‖∆H +‖Aπ‖∆K < 1, then (5.1) holds with ∆ defined by

∆=
∥∥I −Aπ

∥∥∥∥Aπ
∥∥(∆H +∆K

)
1−∥∥I −Aπ

∥∥∆H −
∥∥Aπ

∥∥∆K
(5.5)

provided gap(A,B) +∆ < (4
√
αβ)−1.

Proof. The proof follows from Theorem 3.2 and Proposition 2.2. �

Next we find an upper estimate for the quantity ‖(A+Aπ)−1‖. We observe
that from (A+Aπ)Aπ =Aπ(I +AAπ), it follows that

(
A+Aπ

)−1
Aπ = (I +AAπ

)−1
Aπ. (5.6)
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Since the operator AAπ is bounded and quasi-nilpotent, we have

(
A+Aπ

)−1
Aπ = (I +AAπ

)−1
Aπ

=
( ∞∑

i=0

(−1)i
(
AAπ

)i)
Aπ

=
(
I +

∞∑
i=1

(−1)iAiAπ

)
Aπ.

(5.7)

Consequently,
∥∥∥(A+Aπ

)−1
∥∥∥≤ ∥∥∥(A+Aπ

)−1(
I −Aπ

)∥∥∥+
∥∥∥(A+Aπ

)−1
Aπ
∥∥∥

≤ ∥∥AD
∥∥+

∥∥Aπ
∥∥(1 +

∥∥∥∥∥
∞∑
i=1

(−1)iAiAπ

∥∥∥∥∥
)
,

(5.8)

which gives

∥∥∥(A+Aπ
)−1

∥∥∥≤ ∥∥AD
∥∥+

∥∥Aπ
∥∥(1 +

∥∥∥∥∥
∞∑
i=1

(−1)iAiAπ

∥∥∥∥∥
)
=: Θ. (5.9)

Theorem 5.2. Let A,B ∈ �(X) be Drazin invertible operators and let ∆ be an
upper estimate for ‖Bπ −Aπ‖ such that gap(A,B) +∆ < (4

√
αβ)−1, where α, β are

defined by (3.5). Then

∥∥BD−AD
∥∥≤ 4αβ

(
gap(A,B) +∆

)
1− 4

√
αβ
(

gap(A,B) +∆
)(∥∥I −Aπ

∥∥+∆
)

+Θ∆, (5.10)

where Θ is given by (5.9).

6. The case of bounded operators

We assume that the operators in question are in �(X). In this case we are able
to use the operator norm rather than the operator gap to deduce the following
explicit error estimate. Specializing the theorems of this section to matrices, we
recover recent results of Koliha [5].

Theorem 6.1. Let A,B ∈�(X) be Drazin invertible operators. If

(‖B−A‖+
∥∥Bπ −Aπ

∥∥)∥∥∥(A+Aπ
)−1

∥∥∥ < 1, (6.1)

then

∥∥BD−AD
∥∥≤

∥∥∥(A+Aπ
)−1

∥∥∥2(‖B−A‖+
∥∥Bπ −Aπ

∥∥)
1−

∥∥∥(A+Aπ
)−1

∥∥∥(‖B−A‖+
∥∥Bπ −Aπ

∥∥)
× (∥∥I −Aπ

∥∥+
∥∥Bπ −Aπ

∥∥)+
∥∥∥(A+Aπ

)−1
∥∥∥∥∥Bπ −Aπ

∥∥.
(6.2)
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If ‖I −Aπ‖∆H +‖Aπ‖∆K < 1 and Θ(‖B−A‖+∆) < 1, then

∥∥BD−AD
∥∥≤ Θ2

(‖B−A‖+∆
)

1−Θ
(‖B−A‖+∆

)(∥∥I −Aπ
∥∥+∆

)
+Θ∆, (6.3)

where ∆ and Θ are defined by (5.5) and (5.9).

Proof. According to (3.4),

BD−AD =
[(
B+Bπ

)−1− (A+Aπ
)−1

](
I −Bπ

)
+
(
A+Aπ

)−1(
Aπ −Bπ

)
. (6.4)

The standard error estimate for the perturbation of the ordinary inverse of op-
erators T,S∈�(X) gives

∥∥S−1−T−1
∥∥≤

∥∥T−1
∥∥2‖S−T‖

1−∥∥T−1
∥∥‖S−T‖ (6.5)

under the assumption that ‖T−1‖‖S−T‖ < 1. Setting T = A+Aπ , S = B + Bπ ,
we obtain (6.2). �

Finally, we apply the results obtained in this section to operators on Hilbert
spaces. If A∈�(H), then

∥∥Aπ
∥∥= ∥∥I −Aπ

∥∥≤ κD(A), (6.6)

where κD(A) = ‖A‖‖AD‖ is the Drazin condition number. The estimate (5.9)
yields that

∥∥∥(A+Aπ
)−1

∥∥∥≤ ∥∥AD
∥∥+ κD(A)

(
1 +

∥∥∥∥∥
∞∑
i=1

(−1)iAiAπ

∥∥∥∥∥
)
=: Θ1. (6.7)

Suppose that κD(A)(∆H +∆K ) < 1. By (2.3),

∥∥Bπ −Aπ
∥∥≤ κD(A)2

(
∆H +∆K

)
1− κD(A)

(
∆H +∆K

) =: ∆1. (6.8)

Then (6.2) combined with Theorem 3.2 yields the following result.

Theorem 6.2. Let Θ1 and ∆1 be defined by (6.7) and (6.8), and let A,B ∈�(H)
be operators such that Θ1(‖B−A‖+∆1) < 1 and κD(A)(∆H +∆K ) < 1. Then

∥∥BD−AD
∥∥≤ Θ2

1

(‖B−A‖+∆1
)

1−Θ1
(‖B−A‖+∆1

)(κD(A) +∆1
)

+Θ1∆1. (6.9)

7. Applications to operator semigroups

We give a representation of the Drazin inverse of the infinitesimal generator of a
C0-semigroup with a special asymptotic behavior.
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Theorem 7.1. Let T(t) be a bounded C0-semigroup with the infinitesimal genera-
tor A and let P ∈�(X) be a nonzero idempotent operator such that

(a) T(t)P = PT(t) for all t ≥ 0;
(b) �(P)⊂�(A);
(c) ‖T(t)(I −P)‖→ 0 as t→∞;
(d) σ(AP)= {0}.

Then A is Drazin invertible with Aπ = P, there are positive constants M, µ such
that

∥∥T(t)(I −P)
∥∥≤Me−µt ∀t ≥ 0, (7.1)

AD =−
∫∞

0
T(t)(I −P)dt. (7.2)

Proof. We observe that APx = PAx for all x ∈�(A). Write

S(t)= T(t)exp(−tP), t ≥ 0. (7.3)

A direct verification shows that S(t) is a C0-semigroup whose generator C is
calculated from

d+

dt

∣∣∣∣
0
S(t)x = d+

dt

∣∣∣∣
0
T(t)exp(0P)x+T(0)

d+

dt

∣∣∣∣
0

exp(−tP)x =Ax−Px (7.4)

for all x ∈�(A); hence, C = A−P. Observing that exp(−tP)= I −P + e−tP, we
obtain that

∥∥S(t)
∥∥≤ ∥∥T(t)(I −P)

∥∥+
∥∥T(t)

∥∥‖P‖e−t −→ 0 as t −→∞. (7.5)

Applying results from [15, Chapter 3], we conclude that there exist positive con-
stants K , µ such that

∥∥S(t)
∥∥≤ Ke−µt, t ≥ 0. (7.6)

In addition, the spectrum of the generator C of S(t) is contained in the open
left-half plane, which means that C is invertible.

To prove that A is Drazin invertible with the spectral projection P, we need
to show that 0 is an isolated singularity of the resolvent R(λ,A) with P as the
residue of the resolvent at 0. For each x ∈�(A),

(λI −A)x = (λI −AP)Px+ (λI −C)(I −P)x. (7.7)

There exists ρ > 0 such that λI −C is invertible if |λ| < ρ. Then, for each λ satis-
fying 0 < |λ| < ρ,

R(λ,A)= (λI −AP)−1P + (λI −C)−1(I −P). (7.8)
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Integrating the resolvent along a sufficiently small circular loop ω centred at 0,
we get

Aπ = 1
2πi

∫
ω
R(λ,A)dλ

= 1
2πi

∫
ω

∞∑
n=0

λ−n−1AnPdλ+
1

2πi

∫
ω
R(λ,C)(I −P)dλ

=
(

1
2πi

∫
ω

dλ

λ

)
P = P,

(7.9)

which completes the argument.
SinceC is an invertible generator of aC0-semigroup satisfying ‖S(t)‖ ≤ Ke−µt,

we have(∫∞
0
S(t)dt

)
Cx = C

(∫∞
0
S(t)dt

)
x =

∫∞
0

d

dt
S(t)xdt =−x (7.10)

for all x ∈�(A); hence

C−1 =−
∫∞

0
S(t)dt. (7.11)

Inequality (7.1) holds with M = K‖I −P‖ if we use the equation T(t) (I −P)=
S(T)(I −P). Hence T(t)(I −P) is integrable over [0,∞) with

∫∞
0
T(t)(I −P)dt =

∫∞
0
S(t)(I −P)dt =−(A−P)−1(I −P)=−AD. (7.12)

This completes the proof. �

A special case of Theorem 7.1 occurs when T(t) converges in the operator
norm as t→∞; in this case P is the limit of T(t).
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