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We study quasilinear hemivariational inequalities involving the p-Laplacian. We
prove two existence theorems. In the first, we allow “crossing” of the princi-
pal eigenvalue by the generalized potential, while in the second, we incorporate
problems at resonance. Our approach is based on the nonsmooth critical point
theory for locally Lipschitz energy functionals.

1. Introduction

Let Z ⊆ R
N be a bounded domain with C1 boundary Γ. In this paper, we study

the following quasilinear hemivariational inequality:

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
∈ ∂ j(z,x(z)

)
a.e. on Z, x|Γ = 0. (1.1)

Here, 2 ≤ p <∞, j : Z × R → R is a function which is measurable in z ∈ Z
and locally Lipschitz in x ∈ R and ∂ j(z,x) is the Clarke subdifferential of j(z, ·).
If f : Z × R → R is a measurable function which is in general discontinuous
in the x ∈ R variable, for almost all z ∈ Z, all M > 0, and all |x| ≤M, we have
| f (z,x)| ≤ aM(z) with aM ∈ L1(Z) and we set j(z,x) =

∫x
0 f (z, r)dr, then j(z,x) is

measurable in z ∈ Z, locally Lipschitz in x ∈ R and ∂ j(z,x) ⊆ [ f1(z,x), f2(z,x)]
where f1(z,x) = liminfx′→x f (z,x′) and f2(z,x) = limsupx′→x f (z,x′) (see Chang
[5] and Clarke [6]). So problem (1.1) incorporates as a special case quasilinear
elliptic problems with a discontinuous right-hand side which were studied by
Chang [5]. Hemivariational inequalities are new type of inequality problems,
which arise in mechanics and engineering when we wish to consider more real-
istic laws of nonmonotone and multivalued nature. This leads to energy func-
tionals which are nonsmooth and nonconvex, and so the tools of differential
calculus and convex analysis (which are used in the study of variational inequal-
ities) are no longer suitable and new techniques based on the nonconvex and the
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nonsmooth analysis have to be developed. Concrete applications of hemivari-
ational inequalities in mechanics and engineering can be found in the books
of Naniewicz and Panagiotopoulos [15] and Panagiotopoulos [16]. Recently,
semilinear (i.e., p = 2) hemivariational inequalities were studied by Goeleven
et al. [10] and Gasiński and Papageorgiou [9]. Quasilinear problems with the
p-Laplacian and a C1 potential function were studied by Arcoya and Orsina [2],
Boccardo et al. [3], Costa and Magalhães [7], and Hachimi and Gossez [8].

We prove two existence theorems for problem (1.1), which extend in different
ways the above-mentioned smooth quasilinear works. Our approach is based on
the nonsmooth critical point theory as developed by Chang [5] and extended
by Kourogenis and Papageorgiou [13]. For the convenience of the reader in the
next section, we recall the basics from the nonsmooth critical point theory.

2. Preliminaries

Let X be a Banach space and X∗ its topological dual. A function f → X → R is
said to be “locally Lipschitz,” if for every x ∈ X there exists a neighbourhoodU of
x and a constant kU > 0 such that | f (y)− f (x)| ≤ kU‖y − x‖ for all z, y ∈ U . It is
well known from the convex analysis that a proper, convex, and lower semicon-
tinuous function g : x→ R̄ = R ∪ {+∞} is locally Lipschitz in the interior of its
effective domain domg = {x ∈ X : g(x) <∞}. In analogy with the directional de-
rivative of a convex function, we define the “generalized directional derivative”
of a locally Lipschitz function f at x ∈ X in the direction h ∈ X , by

f 0(x;h) = lim
x′→x
λ↓0

f
(
x′ + λh

)− f
(
x′
)

λ
. (2.1)

It is easy to check that h→ f 0(x;h) is sublinear, continuous and | f 0(x;h)| ≤
kU‖h‖. Therefore, by the Hahn-Banach theorem, f 0(x; ·) is the support of a non-
empty, convex, and w∗-compact set

∂ f (x) =
{
x∗ ∈ X∗ :

(
x∗,h

) ≤ f 0(x;h) ∀h ∈ X}. (2.2)

The set ∂ f (x) is usually called the “generalized subdifferential” of f at x.
Clearly for every x∗ ∈ ∂ f (x), we have ‖x∗‖∗ ≤ kU . Also if f , g : x→ R are locally
Lipschitz functions, then ∂( f + g)(x) ⊆ ∂ f (x) + ∂g(x) and ∂(λ f )(x) = λ∂ f (x) for
all λ ∈ R. Moreover, if in addition f is convex, then as we already said it is locally
Lipschitz and the generalized subdifferential and the subdifferential in the sense
of convex analysis coincide. Furthermore, if f is continuously differentiable (i.e.,
f ∈ C1(X)), then we know that it is locally Lipschitz and ∂ f (x) = { f ′(x)}. For
further details, we refer to Clarke [6].

Given a locally Lipschitz function f : X → R, a point x ∈ X is said to be a
“critical point” of f , if 0 ∈ ∂ f (x). The value c = f (x) is called “critical value.” In
the smooth critical point theory a compactness-type condition, known as the
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“Palais-Smale condition” (PS-condition for short) plays a central role. In the
present nonsmooth setting, this condition takes the following form: “A locally
Lipschitz function f : X → R satisfies the “nonsmooth PS-condition,” if any se-
quence {xn}n≥1 ⊆ X along which { f (xn)}n≥1 is bounded and m(xn) = inf[‖x∗‖∗ :
x∗ ∈ ∂ f (xn)] → 0 as n → ∞, has a strongly convergent subsequence.” If f ∈
C1(X), then ∂ f (xn) = { f ′(xn)} and so the nonsmooth PS-condition coincides
with the classical (smooth) PS-condition (see Rabinowitz [18]). In the smooth
case, a generalization of the PS-condition was introduced by Cerami [4] and Bar-
tolo et al. [3] showed that this more general condition suffices to prove a defor-
mation theorem and then using it to prove minimax theorems locating critical
points ofC1-energy functionals. In the context of the nonsmooth theory this was
done by Kourogenis and Papageorgiou [13] who introduced the so-called “non-
smooth C-condition” which says the following: “A locally Lipschitz function
f : X → R satisfies the “nonsmooth C-condition,” if any sequence {xn}n≥1 ⊆ X
along which { f (xn)}n≥1 is bounded and (1 + ‖xn‖)m(xn) → 0 as n→ ∞ (here
m(xn) is as before), has a strongly convergent subsequence.” Using this condi-
tion, Kourogenis and Papageorgiou [13] proved the following generalization of
the classical “Mountain-Pass theorem” (see Rabinowitz [17]).

Theorem 2.1. If X is a reflexive Banach space, φ : X → R is a locally Lipschitz
function which satisfies the nonsmooth C-condition, and for some r > 0 and y ∈ X
with ‖y‖ > r,

max
{
φ(0),φ(y)

} ≤ inf
[
φ(x) : ‖x‖ = r], (2.3)

then φ has a nontrivial critical point x ∈ X such that the critical value c = f (x) is
characterized by the following minimax principle

c = inf
γ∈Γ0

max
0≤t≤1

φ
(
γ(t)
)
, (2.4)

where Γ0 = {γ ∈ C([0,1],X) : γ(0) = 0, γ(1) = y}.

Given θ ∈ LN/p(Z)+ (for N > p) and θ ∈ L1(Z)+ (for N ≤ p) with θ(z) > 0
on a set of positive Lebesgue measure, we consider the following eigenvalue
problem:

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
= λθ(z)

∣∣x(z)
∣∣p−2

x(z) a.e. on Z, x|Γ = 0. (2.5)

From Allegretto and Huang [1], we know that (2.5) has a first eigenvalue
λ1(θ) which is positive, isolated, simple (it is a principal eigenvalue) and admits
the following variational characterization (Rayleigh quotient):

λ1(θ) = inf

[ ‖Dx‖pp∫
Z θ(z)

∣∣x(z)
∣∣p dz : x ∈W1,p

0 (Z), x = 0

]
. (2.6)
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Note that from (2.6) it follows easily that λ1(θ) > 0. Indeed, using Hölder’s
inequality we have for N > p,

∫
Z θ(z)|x(z)|p dz ≤ ‖θ‖N/p‖x‖pp∗ ≤ γ1‖θ‖N/p‖Dx‖pp

for some γ1 > 0 (to obtain the second inequality, we used Poincaré’s inequality).
Hence, we have

λ1(θ) =
‖Dx‖pp∫

Z
θ(z)
∣∣x(z)

∣∣p dz ≥
‖Dx‖pp

γ1‖θ‖N/p‖Dx‖pp

=
1

γ1‖θ‖N/p
> 0 ∀x ∈W1,p

0 (Z), x = 0.

(2.7)

Similarly if N ≤ p, in which case p∗ = +∞. Recall that

p∗ =




Np

N − p , if p < N

+∞, if p ≥N
(critical Sobolev exponent). (2.8)

Note that if θ = 1 (in which case we write λ1(θ) = λ1), then we recover the
properties of the principal eigenvalue of the negative p-Laplacian with Dirichlet
boundary conditions (see Lindqvist [14]).

3. Existence theorems

In this section, we prove two existence theorems for problem (1.1). For the first
existence theorem we need the following hypotheses on the generalized potential
j(z,x):

H( j)1: j : Z ×R → R is a function such that

(i) for all x ∈ R, z→ j(z,x) is measurable;
(ii) for almost all z ∈ Z, x→ j(z,x) locally Lipschitz;

(iii) for almost all z ∈ Z, all z ∈ R, and all u ∈ ∂ j(z,x), |u| ≤ a1(z) + c1|x|r−1,
1 ≤ r < p∗, a1 ∈ L∞(Z), c1 > 0, j(·,0) ∈ L∞(Z), and

∫
Z j(z,0)dz ≥ 0;

(iv) there exists a function a ∈ L∞(Z) with a(z) > 0 a.e. on Z and 0 < µ < p∗

such that

liminf
|x|→∞

ux − p j(z,x)
|x|µ = a(z) (3.1)

uniformly for almost all z ∈ Z and all u ∈ ∂ j(z,x) and also there exists s >
0 such that max{p,µ} < s< p(max(N, p)+µ)/max(N, p) and limsup|x|→∞
(p j(z,x)/a(z)|x|s) ≤ γ < +∞ uniformly for almost all z ∈ Z;

(v) there exists a function β ∈ LN/p(Z)+ if N > p and β ∈ L1(Z)+ if N ≤ p
with β(z) > 0 for all z on a subset of positive Lebesgue measure such that
λ1(β) > 1 and

limsup
x→0

p j(z,x)
|x|p ≤ β(z) uniformly for almost all z ∈ Z; (3.2)
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(vi) there exists a function ξ ∈ LN/p(Z)+ if N > p and ξ ∈ L1(Z)+ if N ≤ p
with ξ(z) > 0 for all z on a subset of positive Lebesgue measure such that
λ1(ξ) < 1 and

liminf
|x|→∞

p j(z,x)
|x|p ≥ ξ(z) uniformly for almost all z ∈ Z. (3.3)

Remark 3.1. A more restrictive version of hypothesis H( j)1(iv) was first em-
ployed by Costa and Magalhães [7] for a smooth potential function. In their
formulation, they assumed that a(z) > a0 > 0 a.e. on Z and there are additional
restrictions on the variation of µ. This hypothesis is a generalization of the well-
known Ambrosetti-Rabinowitz condition for smooth potential functions (cf.
Rabinowitz [17, Hypothesis p4, page 9]). If β(z) = β > λ1 > ξ(z) = ξ > 0 for all z ∈
Z where λ1 is the principal eigenvalue of the negative p-Laplacian with Dirich-
let boundary conditions (i.e., of (−∆p,W

1,p
0 (Z))), then hypotheses H( j)1(v) and

(vi) imply that the potential j “crosses” the principal eigenvalue λ1. An example
of a nonsmooth potential function j(z,x) which satisfies hypotheses H( j)1 is the
following:

j(z,x) =



β(z)
p

|x|p − x ln |x|, if |x| ≤ 1,

ξ1

p
|x|p − a(z)|x|+ β(z)

p
, if |x| > 1,

(3.4)

with a,β ∈ L∞(Z)+, a(z) > 0 a.e. on Z, β(z) > 0 for all z on a subset of positive
Lebesgue measure, λ1(β) > 1, and 0 < λ1 ≤ ξ1. Also if a ∈ L∞(Z) with a(z) ≥ a0 >
0 a.e. on Z and j(z,x) = (a(z)/p)|x|p ln |x| − |x|, then we can check that it sat-
isfies hypotheses H( j)1 with µ = p, γ = 0, limsup|x|→0(p j(z,x)/|x|p) = −∞, and
liminf |x|→∞(p j(z,x)/|x|p)=+∞. In this case, the classical Ambrosetti-Rabinowitz
condition does not hold. Note that in this occasion ∂ j(z,x) = a(z)|x|p−2x ln |x|+
(a(z)/p)|x|p(sgnx/|x|)− sgnx where

sgnx =




1, if x > 0,

[−1,1], if x = 0,

−1, if x < 0.

(3.5)

So x∂ j(z,x) = a(z)|x|p ln |x|+ (a(z)/p)|x|p − |x|.
Let φ : W1,p

0 (Z) → R be defined by

φ(x) =
1
p
‖Dx‖pp −

∫
Z
j
(
z,x(z)

)
dz. (3.6)
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By virtue of hypothesis H( j)1(iii) and the Lebourg mean value theorem (see
Clarke [6, page 41]), for almost all z ∈ Z and all z ∈ R, we have

∣∣ j(z,x)
∣∣ ≤ a′1(z) + c′1|x|r (3.7)

with a′1 ∈ L∞(Z) and c′1 > 0. Then the integral functional J : Lp(Z) → R defined
by J(x) =

∫
Z j(z,x(z))dz is locally Lipschitz (see Hu and Papageorgiou [12, page

313]). In particular then, since W1,p
0 (Z) is embedded continuously (in fact com-

pactly) in Lr(Z) (recall that r < p∗), it follows that Ĵ = J |W1,p
0 (Z) is locally Lipschitz

too. Therefore, φ is a locally Lipschitz functional and we can use the nonsmooth
critical point theory.

Proposition 3.2. If hypotheses H( j)1 hold then φ satisfies the nonsmooth C-con-
dition.

Proof. Let {xn}n≥1 ⊆W1,p
0 (Z) be a sequence such that

∣∣φ(xn)∣∣ ≤M1 ∀n ≥ 1 and some M1 > 0,(
1 +
∥∥xn∥∥)m(xn) −→ 0 as n −→∞.

(3.8)

Choose x∗n ∈ ∂φ(xn) such that m(xn) = ‖xn‖, n ≥ 1. That such elements ex-
ist follows from the weak compactness of ∂φ(xn), n ≥ 1, and the weak lower
semicontinuity of the norm in a Banach space (Weierstrass theorem). Let A :
W

1,p
0 (Z) →W−1,q(Z) be the nonlinear operator defined by

〈
A(x), y

〉
=
∫
Z

∥∥Dx(z)
∥∥p−2(

Dx(z),Dy(z)
)

RN dz ∀x, y ∈W1,p
0 (Z). (3.9)

Here and in what follows, we denote by 〈·, ·〉 the duality brackets for the pair
(W1,p

0 (Z),W−1,q(Z)) (where 1/p + 1/q = 1). It is easy to check (see also Hu and
Papageorgiou [12, page 323]) that A is continuous monotone, hence maximal
monotone (see Hu and Papageorgiou [11, page 309]). Moreover, because Ĵ =
J |W1,p

0 (Z) is locally Lipschitz on the Sobolev space W1,p
0 (Z) which is embedded

continuously and densely in Lr(Z), from [5, Theorem 2.2] and from Clarke [6,
page 83], it follows that ∂Ĵ (x) ⊆ Lr ′(Z) and if u ∈ ∂Ĵ (x), then u(z) ∈ ∂ j(z,x(z))
a.e. on Z. For every n ≥ 1, we have

x∗n = A
(
xn
)−un, with un ∈ ∂Ĵ

(
xn
)
, n ≥ 1. (3.10)

From the choice of the sequence {xn}n≥1 ⊆W1,p
0 (Z), we have

pφ
(
xn
)
=
∥∥Dxn∥∥pp −

∫
Z
p j
(
z,xn(z)

)
dz ≤ pM1,

−εn ≤ −〈A(xn),xn〉+
∫
Z
un(z)xn(z)dz ≤ εn with εn ↓ 0.

(3.11)
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We add the two inequalities above. Because 〈A(xn),xn〉 = ‖Dxn‖pp, we obtain

∫
Z

(
un(z)xn(z)− p j(z,xn(z)

))
dz ≤M2 ∀n ≥ 1 and some M2 > 0. (3.12)

By virtue of hypothesis H( j)1(iv), we can find k1 > 0 such that for almost all
z ∈ Z, all |x| ≥ k1, and all u ∈ ∂ j(z,x), we have

a(z)
2

|x|µ ≤ ux − p j(z,x). (3.13)

Recalling that | j(z,x)| ≤ a′1(z) + c′1|x|r a.e. on Z and using hypothesis H( j)1

(iii) we infer that there exists a2 ∈ L1(Z)+ such that for almost all z ∈ Z, all |x| <
k1, and all u ∈ ∂ j(z,x), we have

−a2(z) ≤ ux − p j(z,x). (3.14)

From (3.13) and (3.14) and with a3(z) = ‖a‖∞/2 − a2(z), a3 ∈ L1(Z), for al-
most all z ∈ Z and all x ∈ R, we have

a(z)
2

|x|µ − a3(z) ≤ ux − p j(z,x). (3.15)

Using this estimate in (3.12), we obtain

1
2

∫
Z
a(z)
∣∣x(z)

∣∣µ dz ≤M2 +
∥∥a3
∥∥

1 =M3. (3.16)

From this we deduce that {xn}n≥∞ is bounded in the weighted Lebesgue space
L
µ
a(Z), that is, L

µ
a(Z) is the Banach space of all equivalent classes (for the equiva-

lence relation of a.e. equality on Z) of measurable functions y : Z → R such that∫
Z a(z)|y(z)|µ dz = ‖y‖µ

L
µ
a(Z)

<∞.

We set η = min{p∗, p(max(N, p) + µ)/max(N, p)}. If N ≤ p, then p∗ = Np/
N − p = p((N + p∗)/N) > p((N + µ)/N) and so η = p((N + µ)/N) > p. In addi-
tion since µ < p∗ = Np/(N − p), we have µ < p((N + µ)/N). Therefore, in both
cases we have

max{p,µ} < η = max(N, p) + µ
max(N, p)

. (3.17)

If s > 0 is as in the second part of hypothesis H( j)1(iv), we choose t > 0 such
that max{p,µ, s} < t < η ≤ p∗ and for some a4 ∈ Lr ′(Z), a5 > 0 and for almost all
z ∈ Z and all z ∈ R, we have

j(z,x) ≤ a4(z) + a5|x|t . (3.18)
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Let

θ =




p∗(t − µ)

t
(
p∗ − µ) , if N > p,

1− µ
t
, if N ≤ p.

(3.19)

We have 0 < θ < 1 and 1/p = (1− θ)/µ+ θ/p∗. From the interpolation inequality
(see Showalter [18, page 45]) we have

∥∥xn∥∥Lta ≤ ∥∥xn∥∥1−θ
L
µ
a

∥∥xn∥∥θLp∗a ≤M4
∥∥xn∥∥θLp∗a

≤M5
∥∥Dxn∥∥θp for some M4,M5 > 0.

(3.20)

In (3.20) above, the last inequality follows from the Sobolev embedding the-
orem and the Poincaré inequality.

By virtue of hypothesis H( j)1(v), given ε > 0 we can find 0 < δ ≤ 1 such that
for almost all z ∈ Z and all |x| ≤ δ, we have

p j(z,x) ≤ (β(z) + ε
)|x|p. (3.21)

Also because of hypothesis H( j)1(iv) we can find k2 ≥ 1 such that for almost
all z ∈ Z and all |x| ≥ k2, we have

p j(z,x) ≤ (γ+ 1)a(z)|x|t recall that s < t. (3.22)

From (3.18), (3.21), and (3.22) we deduce that for almost all z ∈ Z and all
x ∈ R, we have

p j(z,x) ≤ (β(z) + ε
)|x|p + (γ+ 1)a(z)|x|t + a6(z) with a6 ∈ L1(Z). (3.23)

From the choice of the sequence {xn}n≥1 ⊆W1,p
0 (Z) we have

∥∥Dxn∥∥pp −
∫
Z
p j
(
z,xn(z)

)
dz ≤ pM1

=⇒ ∥∥Dxn∥∥pp ≤ pM1 +
∫
Z

(
β(z) + ε

)∣∣xn(z)
∣∣p dz

+ (γ+ 1)
∫
Z
a(z)
∣∣xn(z)

∣∣t dz+
∥∥a6
∥∥

1 (using (3.23))

=⇒ ∥∥Dxn∥∥pp −
∫
Z
β(z)

∣∣xn(z)
∣∣p dz − ε∥∥xn∥∥pp ≤ (γ+ 1)

∥∥xn∥∥tLta +
∥∥a6
∥∥

1

=⇒
(

1− 1
λ1(β)

− ε

λ1

)∥∥Dxn∥∥pp ≤M7
∥∥Dxn∥∥θtp +M8

for some M7,M8 > 0 (see (2.6) and (3.20)).
(3.24)
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Since λ1(β) > 1, we can choose ε > 0 small so that (1 − (1/λ1(β)) − ε/λ1) =
ξ0 > 0. Moreover, by a simple calculation we can check that θt < p. Therefore
from (3.24) and Poincaré’s inequality it follows that {xn}n≥1 ⊆W1,p

0 (Z) is bound-
ed. Hence by passing to a subsequence if necessary, we may assume that

xn
w−−→ x in W1,p

0 (Z), xn −→ x in Lp(Z), xn(z) −→ x(z) a.e. on Z,∣∣xn(z)
∣∣ ≤ k(z) a.e. on Z ∀n ≥ 1, with k ∈ Lp(Z).

(3.25)

From the choice of the sequence {xn}n≥1 ⊆W1,p
0 (Z) we have

〈
x∗n,xn − x

〉
=
〈
A
(
xn
)
,xn − x

〉− 〈un,xn − x〉 ≤ εn∥∥xn − x∥∥
=⇒ 〈A(xn),xn − x〉 ≤ εn∥∥xn − x∥∥+

∫
Z
un(z)

(
xn − x

)
(z)dz

=⇒ limsup
n→∞

〈
A
(
xn
)
,xn − x

〉 ≤ 0.

(3.26)

But recall that A is maximal monotone, hence generalized pseudomonotone
(see Hu and Papageorgiou [11, page 365]). So we have 〈A(xn),xn〉 → 〈A(x),x〉 ⇒
‖Dxn‖p → ‖Dx‖p. Because Dxn

w−→ Dx in Lp(Z,RN ) and the latter space has the
Kadec-Klee property (because it is uniformly convex, see Hu and Papageorgiou
[11, page 28]), we infer that Dxn → Dx in Lp(Z,RN ) and so xn → x in W

1,p
0 (Z).

This proves that φ exhibits the nonsmooth PS-condition. �

Proposition 3.3. If hypotheses H( j)1 hold, then there exists ρ > 0 such that for all

x ∈W1,p
0 (Z) with ‖x‖ = ρ we have φ(x) ≥ ξ1 > 0.

Proof. From hypothesis H( j)1(v), we know that given ε > 0 we can find 0 < δ ≤ 1
such that for almost all z ∈ Z and all |x| ≤ δ we have

j(z,x) ≤ 1
p

(
β(z) + ε

)|x|p. (3.27)

On the other hand, recall that | j(z,x)| ≤ a′1(z) + c′1|x|r with a′1 ∈ L∞(Z), c′1 > 0.
So for γ1 > 0 large enough we can write that for almost all z ∈ Z and all x ∈ R

we have

j(z,x) ≤ 1
p

(
β(z) + ε

)|x|p + γ1|x|p∗ . (3.28)

Hence, we have

φ(x) =
1
p
‖Dx‖pp −

∫
Z
j
(
z,x(z)

)
dz

≥ 1
p
‖Dx‖pp −

1
p

∫
Z
β(z)

∣∣x(z)
∣∣p dz − ε

p
‖x‖pp − γ1‖x‖p

∗

p∗

≥ 1
p

(
1− 1

λ1(β)
− ε
)
‖Dx‖pp − γ2‖Dx‖p

∗
p for some γ2 > 0.

(3.29)
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Because λ1(β) > 1, we can choose ε > 0 small, so that σ = 1 − 1/λ1(β) − ε > 0.
Therefore,

φ(x) ≥ σ

p
‖Dx‖pp − γ2‖Dx‖p

∗
p . (3.30)

Since p < p∗ we can find ρ1 > 0 small so that inf[φ(x) : ‖Dx‖p = ρ1] = ξ1 > 0

which completes the proof since ‖Dx‖p is an equivalent norm in W1,p
0 (Z). �

Proposition 3.4. If hypotheses H( j)1 hold then there exists η ∈ C∞
0 (Z) such that

lim|τ|→∞φ(τη) = −∞.

Proof. From the definition of λ1(ξ) (see (2.6)) and the density of C∞
0 (Z) in the

Sobolev space W1,p
0 (Z), we see that given ε > 0 we can find η ∈ C∞

0 (Z) such that

‖Dη‖pp ≤
(
λ1(ξ) + ε

)∫
Z
ξ(z)
∣∣η(z)

∣∣p dz. (3.31)

Also from hypothesis H( j)1(vi), we can find M9 > 0 such that for almost all
z ∈ Z and all |x| ≥M9, we have

1
p

(
ξ(z)− ε)|x|p ≤ j(z,x). (3.32)

Thus for τ ∈ R, we can write that∫
Z
j
(
z,τη(z)

)
dz =

∫
{|τη|≥M9}∩suppη

j
(
z,τη(z)

)
dz

+
∫
{|τη|<M9}∩suppη

j
(
z,τη(z)

)
dz

≥ τ p

p

∫
{|τη|≥M9}∩suppη

(
ξ(z)− ε)∣∣η(z)

∣∣p dz −M10

for some M10 > 0.

(3.33)

Using this estimate in the definition of φ, we obtain

φ(τη) ≤ |τ|p
p

‖Dη‖pp −
|τ|p
p

∫
{|τη|≥M9}∩suppη

(
ξ(z)− ε)∣∣η(z)

∣∣p dz+M10

=
|τ|p
p

‖Dη‖pp −
|τ|p
p

∫
Z

(
ξ(z)− ε)∣∣η(z)

∣∣p dz
+
|τ|p
p

∫
{|τη|<M9}∩suppη

(
ξ(z)− ε)∣∣η(z)

∣∣p dz+M10

≤ |τ|p
p

(
1− 1

λ1(ξ)
+
ε

λ1

)
‖Dη‖pp

+
|τ|p
p

∫
{|τη|<M9}∩suppη

(
ξ(z)− ε)∣∣η(z)

∣∣p dz+M10.

(3.34)
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Recall that λ1(ξ) < 1. So we can choose ε > 0 small such that σ1 = 1− 1/λ1(ξ) +
ε/λ1 < 0. Also note that

∫
{|τη|<M9}∩suppη(ξ(z) − ε)|η(z)|p dz→ 0 as |τ| → ∞. Thus

we can find ρ1 > 0 such that for |τ| > ρ1 we have

σ2(τ) = σ1‖Dη‖pp +
∫
{|τη|<M9}∩suppη

(
ξ(z)− ε)∣∣η(z)

∣∣p dz < 0. (3.35)

Therefore, it follows that

φ(τη) ≤ |τ|p
p
σ2(τ) −→ −∞ as |τ| −→∞. (3.36)

�

Propositions 3.2, 3.3, and 3.4 lead to the first existence theorem for prob-
lem (1.1).

Theorem 3.5. If hypotheses H( j)1 hold, then problem (1.1) has a nontrivial solu-

tion x ∈W1,p
0 (Z).

Proof. Propositions 3.2, 3.3, 3.4 and since
∫
Z j(z,0)dz ≥ 0 (hypothesis H( j1)(iii))

permit the use of Theorem 2.1. So we obtain x ∈W1,p
0 (Z) such that

φ(z) ≥ ξ1 > 0 ≥ φ(0), 0 ∈ ∂φ(x). (3.37)

So x = 0. Moreover, the inclusion 0 ∈ ∂φ(x) implies that

A(x) = u for some u ∈ Lq(Z)
(

1
p

+
1
q
= 1
)
,

u ∈ ∂J(x)
(
hence u(z) ∈ ∂ j(z,x(z)

)
a.e.
)

=⇒ 〈A(x),ψ
〉
= 〈u,ψ〉 = (u,ψ)pq =

∫
Z
u(z)ψ(z)dz ∀ψ ∈ C∞

0 (Z)

=⇒
∫
Z

∥∥Dx(z)
∥∥p−2(

Dx(z),Dψ(z)
)

RN dz =
∫
Z
u(z)ψ(z)dz.

(3.38)

From Green’s identity and since −div(‖Dx‖p−2Dx) ∈ W−1,q(Z) = W1,p
0 (Z)∗

(cf. Hu and Papageorgiou [12, page 866]), we obtain

〈−div
(‖Dx‖p−2Dx

)
,ψ
〉
= 〈u,ψ〉. (3.39)

Because ψ ∈ C∞
0 (Z) is arbitrary and since C∞

0 (Z) is dense in W1,p
0 (Z), we ob-

tain
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−div
(‖Dx‖p−2Dx

)
= u ∈ Lq(Z)

=⇒
{
−div

(‖Dx(z)‖p−2Dx(z)
)
= u(z) a.e. on Z,

x|Γ = 0

=⇒ x ∈W1,p
0 (Z) is a nontrivial solution of (1.1).

(3.40)

�

In the second existence theorem, we allow at ±∞ interaction with the first
eigenvalue (problems at resonance) but we strengthen the growth condition on
j and restrict the variation of µ. Moreover, the nonresonance condition at the
origin (hypothesis H( j)2(v) is removed). Smooth problems at resonance were
investigated by Arcoya and Orsina [2], Costa and Magalhães [7, Theorem 2], and
Hachimi and Gossez [8]. Our hypotheses on the generalized potential j(z,x) are
now the following:

H( j)2: j : Z ×R → R is a function such that

(i) for all x ∈ R, z→ j(z,x) is measurable;
(ii) for almost all z ∈ Z, x→ j(z,x) is locally Lipschitz;

(iii) for almost all z ∈ Z, all x ∈ R, and all u ∈ ∂ j(z,x), we have |u| ≤ a1(z) +
c1|x|p−1 with a1 ∈ Lq(Z), c1 > 0, j(·,0) ∈ L1(Z),

∫
Z j(z,0)dz = 0 and there

exists ε > 0 such that j(z,x) ≥ c|x|r for µ-almost all z ∈ Z, all 0 < x < ε,
1 ≤ r < p, and c > λ1/p if r = p;

(iv) there exists a ∈ L∞(Z) with a(z) ≥ η > 0 a.e. on Z and 0 < µ < p such that

liminf
|x|→∞

ux − p j(z,x)
|x|µ = a(z) (3.41)

uniformly for almost all z ∈ Z and all u ∈ ∂ j(z,x);
(v) there exists ξ ∈ LN/p(Z)+ with ξ(z) > 0 for all z on a subset of positive

Lebesgue measure such that λ1(ξ) ≥ 1 and

limsup
|x|→∞

p j(z,x)
|x|p ≤ ξ(z) (3.42)

uniformly for almost all z ∈ Z.

Remark 3.6. If a ∈ L∞(Z) and ξ ∈ LN/p(Z)+ are as above, 0 < k < λ1 it is easy to
see that the nonsmooth potential function

j(z,x) =




k

p
|x|p−1, if |x| ≤ 1,

ξ(z)
p

|x|p − a(z)|x|+
(
a(z)− ξ(z)

p
+ 1
)
, if |x| > 1

(3.43)

satisfies hypotheses H( j)2.
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As before, we consider the locally Lipschitz energy functional defined by

φ(x) =
1
p
‖Dx‖pp −

∫
Z
j
(
z,x(z)

)
dz. (3.44)

Proposition 3.7. If hypotheses H( j)2 hold, then φ satisfies the nonsmooth C-
condition.

Proof. Let {xn}n≥1 ⊆W1,p
0 (Z) be a sequence such that

∣∣φ(xn)∣∣ ≤M11,
(
1 +
∥∥xn∥∥)m(xn) −→ 0 as n −→∞ (M11 > 0

)
. (3.45)

Since the function x → |x|r (0 < r <∞) is locally Lipschitz and |x|r = 0 for
x = 0, using Clarke [6, Proposition 2.3.14, page 48], for x = 0 we have

∂
(
j(z,x)
|x|p

)
⊆ |x|p∂ j(z,x)− p j(z,x)|x|p−2x

|x|2p

=



x∂ j(z,x)− p j(z,x)

xp+1
, if x > 0,

−x∂ j(z,x) + p j(z,x)

|x|p+1
, if x < 0.

(3.46)

By virtue of hypothesis H( j)2(iv), given ε > 0 we can find M12 > 0 such that
for almost all z ∈ Z, all x ≥M12, and all u ∈ ∂ j(z,x) we have

ux − p j(z,x)
xµ

≥ a(z)− ε =⇒ ux − p j(z,x)

xp+1
≥ (a(z)− ε)xµ−p−1. (3.47)

Therefore for almost all z ∈ Z, all x ≥M12, and all θ(z,x) ∈ ∂( j(z,x)/xp) we
can write

θ(z,x) ≥ (a(z)− ε)xµ−p−1. (3.48)

For x ≥M12 > 0 the function x→ ( j(z,x)/xp) is locally Lipschitz and so for all
z ∈ R \D1(z), |D1(z)| = 0 (here by | · | we denote the Lebesgue measure on R) is
differentiable. Thus we may choose

θ(z,x) =




d

dx

j(z,x)
xp

, if x ∈ R \D1(z),

0, if x ∈D1(z).
(3.49)
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With this choice of θ we integrate (3.48) on the interval [y,x], M12 ≤ y < x. We
obtain

j(z,x)
xp

− j(z, y)
yp

≥
∫x
y

(
a(z)− ε)rµ−p−1 dr =

a(z)− ε
µ− p

(
xµ−p − yµ−p)

=⇒ limsup
x→+∞

j(z,x)
xp

− j(z, y)
yp

≥ −a(z)− ε
µ− p yµ−p (recall µ < p)

=⇒ 1
p
ξ(z)− j(z, y)

yp

≥ −a(z)− ε
µ− p yµ−p

(
see hypothesis H( j)2(v)

)

=⇒ j(z, y)
yp

≤ a(z)− ε
µ− p yµ−p +

1
p
ξ(z) =

1
p
ξ(z)− a(z)− ε

p − µ yµ−p

=⇒ j(z, y) ≤ 1
p
ξ(z)yp − a(z)− ε

p − µ yµ

a.e. on Z ∀y ≥M12 > 0.
(3.50)

In a similar fashion, we show that

j(z, y) ≤ 1
p
ξ(z)|y|p − a(z)− ε

p − µ |y|µ a.e. on Z, ∀y ≤ −M12 < 0. (3.51)

From (3.50) and (3.51), we infer that for almost all z ∈ Z and all |x| ≥M12

we have

j(z,x) ≤ 1
p
ξ(z)|x|p − a(z)− ε

p − µ |x|µ. (3.52)

We will show that {xn}≥1 ⊆W1,p
0 (Z) is bounded. Suppose not. Then by pass-

ing to a subsequence if necessary, we may assume that ‖xn‖ → ∞. Set yn = xn/
‖xn‖, n ≥ 1. We may assume (at least for a subsequence) that

yn
w−−→ y in W1,p

0 (Z), yn −→ y in Lp(Z), yn(z)−→ y(z) a.e. on Z,∣∣yn(z)
∣∣≤k(z) a.e. on Z ∀n≥1, with k∈Lp(Z).

(3.53)

From the choice of the sequence {xn}n≥1, we have that

〈
A
(
xn
)
, yn − y

〉− 〈un, yn − y〉 ≤ εn∥∥yn − y∥∥. (3.54)

Divide by ‖xn‖p−1. We obtain

〈
A
(
yn
)
, yn − y

〉−
〈

un∥∥xn∥∥p−1
, yn − y

〉
≤ εn∥∥xn∥∥p−1

∥∥yn − y∥∥. (3.55)
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Note that since un ∈ Lq(Z) and yn − y ∈ Lp(Z), we have

〈
un∥∥xn∥∥p−1

, yn − y
〉

=
∫
Z

un∥∥xn∥∥p−1

(
yn − y

)
(z)dz

≤
∫
Z

(
a1(z)∥∥xn∥∥p−1

+ c1
∣∣yn(z)

∣∣p−1

)(
yn − y

)
(z)dz −→ 0

as n −→∞.
(3.56)

Therefore passing to the limit in (3.55), we obtain

lim
n→∞

sup
〈
A
(
yn
)
, yn − y

〉 ≤ 0. (3.57)

Because A is maximal, it is generalized pseudomonotone and so the above
inequality implies that 〈A(yn), yn〉 → 〈A(y), y〉, hence ‖Dyn‖p → ‖Dy‖p. As in
the proof of Proposition 3.2, via Kadec-Klee property, we obtain that yn → y in

W
1,p
0 (Z) and since ‖yn‖ = 1, n ≥ 1, we have that ‖y‖ = 1 and so y = 0.

Recall that from the choice of the sequence {xn}n≥1 ⊆W1,p
0 (Z), we have that

∣∣φ(xn)∣∣ ≤M11 ∀n ≥ 1

=⇒ 1
p

∥∥Dxn∥∥p −
∫
Z
j
(
z,xn(z)

)
dz ≤M11

=⇒ 1
p

∥∥Dyn∥∥pp −
∫
Z

j
(
z,xn(z)

)
∥∥xn∥∥p dz ≤ M11∥∥xn∥∥p .

(3.58)

Note that

∫
Z

j
(
z,xn(z)

)
∥∥xn∥∥p dz =

∫
{|xn|≥M12}

j
(
z,xn(z)

)
∣∣xn(z)

∣∣p
∣∣yn(z)

∣∣p dz
+
∫
{|xn|<M12}

j
(
z,xn(z)

)
∣∣xn(z)

∣∣p
∣∣yn(z)

∣∣p dz
≤
∫
Z

1
p
ξ(z)
∣∣yn(z)

∣∣p dz
− 1∥∥xn∥∥p

∫
{|xn|≥M12}

a(z)− ε
p − µ

∣∣xn(z)
∣∣µ dz+

M13∥∥xn∥∥p

(3.59)

with M13 > 0 (see (3.52)).
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Arguing as in the proof of Proposition 3.2, we can check that {xn}n≥1 ⊆ Lµa(Z)
is bounded. So we have

1∥∥xn∥∥p
∣∣∣∣
∫
{|xn|≥M12}

a(z)− ε
p − µ

∣∣xn(z)
∣∣µ dz∣∣∣∣

≤ 1∥∥xn∥∥p
∫
Z

a(z)
p − µ

∣∣xn(z)
∣∣µ dz

=
1∥∥xn∥∥p

‖x‖µ
L
µ
a

p − µ −→ 0 as n −→∞.

(3.60)

Therefore returning to (3.58), we can write that

1
p

∥∥Dyn∥∥pp − 1
p

∫
Z
ξ(z)
∣∣yn(z)

∣∣p dz − δn ≤ M11∥∥xn∥∥p , with δn ↓ 0. (3.61)

Passing to the limit and since Dyn →Dy in Lp(Z), we obtain

1
p
‖Dy‖pp ≤

1
p

∫
Z
ξ(z)
∣∣y(z)

∣∣p dz =⇒ λ1(ξ)
p

∫
Z
ξ(z)
∣∣y(z)

∣∣p dz
≤ 1
p

∫
Z
ξ(z)
∣∣y(z)

∣∣p dz since y = 0 (see (2.6)).
(3.62)

If λ1(ξ) > 1, then we have a contradiction. If λ1(ξ) = 1, then from (3.62) it fol-
lows that y = ±u1(ξ) the eigenfunction corresponding to the principal eigenvalue
λ1(ξ) (recall that λ1(ξ) > 0 is simple). From Allegretto and Huang [1], we know
that u1(ξ)(z) > 0 for all z ∈ {z ∈ Z : ξ(z) > 0}. Also from the L

µ
a(Z)-boundedness

of the sequence {xn}n≥1, we have that

∥∥xn∥∥µLµa ≤M14 for some M14 > 0 and all n ≥ 1

=⇒
∫
Z
a(z)
∣∣xn(z)

∣∣µ dz ≤M14

=⇒
∫
Z
a(z)
∣∣yn(z)

∣∣µ dz ≤ M14∥∥xn∥∥µ .
(3.63)

Passing to the limit as n→∞ we obtain∫
Z
a(z)
∣∣u1(ξ)(z)

∣∣µ dz ≤ 0, (3.64)

a contradiction. So {xn}n≥1 ⊆W1,p
0 (Z) is bounded and then arguing as in the last

part of the proof of Proposition 3.2, we can show (at least for a subsequence)
that xn → x in W1,p

0 (Z). Therefore, φ satisfies the nonsmooth C-condition. �

Using this proposition we can prove a second existence theorem for prob-
lem (1.1).
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Theorem 3.8. If hypotheses H( j)2 hold, then problem (1.1) has a nontrivial solu-

tion x ∈W1,p
0 (Z).

Proof. From the proof of Proposition 3.7, we know that for all x ∈W1,p
0 (Z), x =

0, we have

φ(x) =
1
p

∥∥Dx∥∥pp −
∫
Z
j
(
z,x(z)

)
dz

≥ 1
p
‖Dx‖pp −

1
p

∫
Z
ξ(z)
∣∣x(z)

∣∣p dz
+
∫
{|x(z)|≥M12}

a(z)− ε
p − µ

∣∣x(z)
∣∣µ dz −M13

≥ 1
p

(
1− ε

λ1(ξ)

)
‖Dx‖pp +M14‖x‖µLµa −M13

(3.65)

with M14 = (η − ε)/(p − µ) > 0 if we choose ε < η. We infer that φ is bounded
below. We can apply Zhong’s [20] variational principle and obtain a sequence
{xn}n≥1 ⊆W1,p

0 (Z) such that φ(xn) ↓m0 = inf φ and

φ
(
xn
) ≤ φ(u) +

εn
1 +
∥∥xn∥∥

∥∥xn −u∥∥ ∀u ∈W1,p
0 (Z) with εn ↓ 0

=⇒− εn
1 +
∥∥xn∥∥

∥∥xn −u∥∥ ≤ φ(u)−φ(xn). (3.66)

Let u = xn + tw with t > 0 and w ∈W1,p
0 (Z). We obtain

− εn
1 +
∥∥xn∥∥‖w‖ ≤

φ
(
xn + tw

)−φ(xn)
t

=⇒− εn
1 +
∥∥xn∥∥‖w‖ ≤ φ0(xn;w

)
. (3.67)

Let ψn(w) = ((1 + ‖xn‖)/εn)φ0(xn;w). Evidently ψn(0) = 0 and −‖w‖ ≤ ψn(w).
So we can apply [19, Lemma 1.3] and obtain y∗n ∈ W−1,q(Z), ‖y∗n‖∗ ≤ 1 such

that 〈y∗n,w〉 ≤ ψn(w) for all w ∈W1,p
0 (Z). Setting x∗n = (εn/(1 + ‖xn‖))y∗n we have

〈x∗n,w〉 ≤ φ0(xn;w) for all w ∈ W1,p
0 (Z). Moreover, (1 + ‖xn‖)‖x∗n‖∗ ≤ εn → 0,

hence (1 + ‖xn‖)m(xn) → 0. So by virtue of Proposition 3.7 and by passing to
a subsequence if necessary, we may assume that xn → x in W1,p

0 (Z). Then φ(x) =
m0 = inf φ and 0 ∈ ∂φ(x). Arguing as in the proof of Theorem 3.5, we check that

x ∈W1,p
0 (Z) solves (1.1).

Let now u1(·) be the principal eigenfunction of problem (2.5) with θ = 1.
Then from the Rayleigh quotient we have that ‖Du1‖p = λ1‖u1‖p. Moreover,
from hypothesis H( j)2(iii) and as u1 ∈ C1(Z) we can find 0 < s < 1 so small that
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0 < su1(z) < ε for every z ∈ Z. Thus, if r = p

φ
(
su1
)
=

1
p
λ1
∥∥su1

∥∥p
p −
∫
Z
j
(
z, su1(z)

)
dz

≤ sp
(
λ1

p
− c
)∥∥u1

∥∥p
p < 0 = φ(0).

(3.68)

If r < p, then for some c1 > 0

φ
(
su1
)
=
λ1sp

p

∥∥u1
∥∥p
p − c1s

r
∥∥u1
∥∥r
p. (3.69)

Since r < p, if 0 < s < 1 is small enough we have φ(su1) < 0 = φ(0). Therefore,
x = 0. �
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