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The basic higher order commutator theorem is formulated for the real interpo-
lation methods associated with the quasi-power parameters, that is, the function
spaces on which Hardy inequalities are valid. This theorem unifies and extends
various results given by Cwikel, Jawerth, Milman, Rochberg, and others, and in-
corporates some results of Kalton to the context of commutator estimates for the
real interpolation methods.

1. Introduction

A current topic in interpolation theory is to estimate the nonlinear commuta-
tors in different situations. In the eighties, Rochberg, Weiss, and Jawerth ini-
tiated the study of the second order and abstract commutator theorems for
scales of the classical complex and real interpolation spaces. The applications in
many important differential and integral expressions were found ever since (see
[6, 7, 10, 17] for details). The higher order commutator theorem was proved
by Rochberg for the complex interpolation [16], and by Milman for the real
interpolation [14]. Recently, these results were extended to the real interpola-
tion with the Calderón weights [1]. In addition, Milman and Rochberg pre-
sented a comparison between the commutator results of the real and complex
interpolation methods, and emphasized the role of internal cancellation in these
results [15].

In the present paper, we formulate the basic higher order commutator theo-
rem for a wide family of the real interpolation methods, the K- and J-methods
due to Brudnyı̆ and Krugljak associated with the quasi-power parameters. This is
motivated, in a large part, by the observation that the Hardy inequalities
for the Lp-spaces (1 < p < ∞) play an important role in the proof of the
commutator theorem for the classical interpolation methods. Furthermore, the
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quasilogarithmic operators in our commutator theorem is more general than
the original ones. These operators, which are inspired by Kalton’s work [12, 13],
are determined by a much wide choice of Lipschitz functions. It therefore seems
natural to us to carry over the commutator theorem to the real interpolation
methods associated with the function spaces on which Hardy inequalities are
valid. This unifies and extends various results given by Cwikel, Jawerth, Milman,
Rochberg, and others, and incorporates some results of Kalton to the general
theory of commutator estimates for the real interpolation methods.

This paper is organized as follows: in Section 2, we review the real interpola-
tion methods with quasi-power parameters. In Section 3, we give definitions and
results about quasilogarithmic operators corresponding to the above mentioned
real interpolation methods. In Section 4, the main results about cancellation and
commutators are formulated. Some useful remarks are included in Section 5.

Conventions. The notations ⊆ and = between Banach spaces stand for continu-
ous inclusion and isomorphic equivalence, respectively. The notation �(X,Y),
respectively, �(X̄, Ȳ), stands for the Banach space of all bounded linear opera-
tors from Banach space X to Banach space Y , respectively, from Banach couple
X̄ to Banach couple Ȳ . We simply write �(X) = �(X,X) and �(X̄) = �(X̄, X̄).

2. Real interpolation with quasi-power parameters

We suppose that the reader is familiar with the basic notations and definitions of
interpolation theory, and we refer to [3, 4] for background information. We start
by giving a brief review of the real interpolation methods with the quasi-power
parameters.

Assume that X̄ = (X0,X1) is a Banach couple with ∆X̄ = X0 ∩ X1 and ΣX̄ =
X0 +X1. For t > 0, recall that the J- and K-functionals on ∆X̄ and ΣX̄ , respec-
tively, are given by

J
(
t,x; X̄

)
= ‖x‖0 ∨

(
t‖x‖1

)
if x ∈ ∆X̄,

K
(
t,x; X̄

)
= inf

{∥∥x0
∥∥

0 + t
∥∥x1
∥∥

1 | x = x0 + x1, x j ∈ Xj

}
if x ∈ ΣX̄.

(2.1)

In particular, J(1,x; X̄) = ‖x‖∆X̄ andK(1,x; X̄) = ‖x‖ΣX̄ . For simplicity, we usually
write J(t,x) = J(t,x; X̄) and K(t,x) = K(t,x; X̄) when it does not lead to ambigu-
ity. We now introduce Brudnyı̆-Krugljak’s K- and J-methods as follows.

Definition 2.1. Let Φ be a Banach function space over (R+,dt/t) such that 1∧ t ∈
Φ and

∫∞
0 1∧ (1/t) | f (t)|dt/t <∞ for all f ∈Φ. We define

KΦ(X̄) :=
{
x ∈ ΣX̄ | ‖x‖KΦ =

∥∥K(t,x)
∥∥
Φ <∞

}
[4, (3.3.1)], (2.2)

and define JΦ(X̄) as the space of all x ∈ ΣX̄ , which permits a canonical repre-
sentation x =

∫∞
0 u(t)dt/t for a strongly measurable function u : R

+ → ∆X̄ , with
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the norm

‖x‖JΦ = inf
u

∥∥J(t,u(t)
)∥∥

Φ <∞ [4, (3.4.3)]. (2.3)

Let (Ω,µ) be a completely σ-finite measurable space and let w be a weight on
(Ω,µ). We denote by L0(Ω,dµ) the space of all measurable functions on (Ω,µ)
with ‖ f ‖L0 = µ(supp f ) <∞, and denote by

Lp(wdµ) =

{
f | ‖ f ‖Lp(wdµ) =

(∫
Ω
| f |pwdµ

)1/p

<∞
}
, (2.4)

the weighted Lp-space for 1 ≤ p <∞, with the usual change for p =∞. For the
measurable function ϕ : R

+ → R
+, we write

L
p
ϕ =
{
f

∣∣∣∣ fϕ ∈ Lp
(

R
+,
dt

t

)}
. (2.5)

In particular, we write Lpθ = Lpϕθ for the power function ϕθ(t) = tθ . Now let us
define the Hardy operators P, Q and the Calderón operator S on L0(R+,dt/t) by

(P f )(t) =
∫ t

0
f (s)

ds

s
,

(Q f )(t) = t
∫∞
t
f (s)

ds

s2
,

(S f )(t) = (P f +Q f )(t) =
∫∞

0
1∧
(
t

s

)
f (s)

ds

s
.

(2.6)

The Banach function space Φ is said to be a quasi-power parameter for the real
interpolation if S ∈ �(Φ). Observe that S ∈ �(Φ) if and only if P,Q ∈ �(Φ). In
this case, we have the equivalence JΦ(X̄) = KΦ(X̄) with the norm estimate

‖x‖KΦ(X̄) ≤ ‖S‖�(Φ)‖x‖JΦ(X̄) (2.7)

for all Banach couples X̄ [4, Corollary 3.5.35]. A function ϕ : R
+ → R

+ is said to
be quasi-power if Sϕ is equivalent to ϕ. The function space Lpϕ is a quasi-power
parameter for the real interpolation if ϕ is a quasi-power function. We simply
write J pϕ (X̄) = JLpϕ(X̄) and Kp

ϕ (X̄) = KLpϕ(X̄).

The following examples show that several interpolation methods in the liter-
ature can be formulated in terms of Brudnyı̆-Krugljak’s K- and J-methods with
the quasi-power parameters for the real interpolation.
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Example 2.2 (real methods associated with Calderón weights [1]). A weight w
on (R+,dt) is said to be a Calderón weight if the Calderón type operator S̃ ∈
�(Lp(wdt)), where

(
S̃ f
)
(t) =

∫∞
0

(
1
t
∧ 1
s

)
f (s)ds. (2.8)

For a Banach couple X̄ , we define X̄p,w,K to be the space of all those x ∈ ΣX̄ , for
which K(t,x)/t ∈ Lp(wdt), with the norm ‖x‖X̄p,w,K

= ‖K(t,x)/t‖Lp(wdt), and de-

fine X̄p,w,J to be the space of all those x ∈ ΣX̄ , for which there exists a strongly
measurable function u : R

+ → ∆X̄ satisfying x =
∫∞

0 u(t)dt/t and J(t,u(t))/t ∈
Lp(wdt), with the norm ‖x‖X̄p,w,J

= infu{‖J(t,u(t))/t‖Lp(wdt)}. If we set ϕ(t) =

t1−1/pw(t)−1/p, then the space Lpϕ is a quasi-power parameter for the real inter-

polation. By substituting Φ with Lpϕ in (2.7), we obtain that

X̄p,w,J = J
p
ϕ

(
X̄
)
= Kp

ϕ

(
X̄
)
= X̄p,w,K . (2.9)

Example 2.3 (E- and Eα-methods [4, 10]). Let r > 0 and let x ∈ ΣX̄ . We first
consider the E-functional which is given by

E(r,x) = inf
{∥∥x0
∥∥

0 | x = x0 + x1, x j ∈ Xj,
∥∥x1
∥∥

1 ≤ r
}
. (2.10)

For a quasi-power parameter Φ for the real interpolation, we set

Ψ = KΦ

(
L∞
(
dr

r

)
, L0
(
dr

r

))
, (2.11)

and define the space EΨ(X̄) consisting of all x ∈ ΣX̄ such that

‖x‖EΨ(X̄) = inf
{
λ > 0 | ∥∥λ−1E(λr,x)

∥∥
Ψ ≤ 1

}
<∞. (2.12)

It is known that EΨ(X̄) = KΦ(X̄) by [4, Theorem 4.2.25 and (4.2.38)]. Next, con-
sider the Eα-functional, α ≥ 1, which is given by

E1(r,x) = inf

{∥∥x0
∥∥

0

r

∣∣∣∣∣x = x0 + x1, x j ∈ Xj,
∥∥x1
∥∥

1 ≤ r
}
, (2.13)

Eα(r,x) = inf



(∥∥x0

∥∥
0

r

)1/α

∨
(∥∥x1

∥∥
1

r

)1/(α−1) ∣∣∣∣∣x = x0 + x1, x j ∈ Xj


 (2.14)

for α > 1. It is clear that E(r,x) = rE1(r,x). According to [10, Lemma 2.1], for
each x ∈ ΣX̄ , the right continuous inverse of the function Eα(r,x) is K(t,x)/tα.
For p ≥ 1 and 0 < θ < 1, we choose η = 1/(θ − α), q = p(α − θ) and define the
space X̄θ,p,Eα consisting of all x ∈ ΣX̄ for which

‖x‖X̄θ,p,Eα =
∥∥Eα(r,x)

∥∥α−θ
L
q
η
<∞. (2.15)
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By the change of variable r = K(t,x)/tα and integrating by parts, we have

X̄θ,p,Eα = K
p
θ

(
X̄
)
. (2.16)

3. Quasilogarithmic operators

Now consider the relevant definitions and results about quasilogarithmic oper-
ators in the real interpolation, which came originally from [10]. In this section,
however, those operators will be considered in a more general sense. The main
result here is to present the connection between the quasilogarithmic operators
in different versions of the real interpolation methods. In this and the next sec-
tion, we always assume that Φ is a quasi-power parameter for the real interpola-
tion.

Let X̄ be a Banach couple, and let c > 1 be a constant which is fixed during the
discussion in this section. For x ∈ ΣX̄ , the decomposition x = x0(t) + x1(t), t > 0,
is (c-)almost optimal for the K-methods if

K(t,x) ≤ ∥∥x0(t)
∥∥

0 + t
∥∥x1(t)

∥∥
1 ≤ cK(t,x). (3.1)

A (c-)almost optimal projection for the K-methods is a (usually nonlinear) oper-
ator DK (t) : ΣX̄ → X0 defined by

DK (t)x =DK
(
t, X̄
)
x = x0(t) (3.2)

for some almost optimal decomposition. It is always possible to choose xj(t)
( j = 0,1) to be continuous. Now we consider the JΦ methods. Given x ∈ ΣX̄ , we
say that

DJ(t)x =DJ,Φ
(
t, X̄
)
x = u(t) (3.3)

defines a (c-)almost optimal decomposition for the JΦ method if u : R
+ → ∆X̄

satisfies x =
∫∞

0 u(t)dt/t in ΣX̄ and ‖J(t,u(t))‖Φ ≤ c‖x‖JΦ for t > 0.
Here and throughout, we assume that ψ : R → R is a Lipschitz function satis-

fying ∣∣ψ(t)−ψ(s)
∣∣ ≤ γψ |t − s|, (3.4)

where γψ is a constant depending on ψ. For n = 1,2, . . . , we introduce the follow-
ing concept.

Definition 3.1. The quasilogarithmic operators ΩJ
ψ,n and ΩK

ψ,n of order n are de-

fined on ΣX̄ in the following way

ΩJ
ψ,n(x) =

1
n!

∫∞
0
ψ(log t)nDJ(t)x

dt

t
,

ΩK
ψ,n(x) =

1
n!

∫∞
0

(
I · χ(1,∞)(t)−DK (t)

)
xdψ(log t)n +

1
n!
ψ(0)nx.

(3.5)
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In particular, if ψ(t) = t, then ΩJ
ψ,n =Ωn,J and ΩK

ψ,n = −Ωn,K as given in [15].

Remark 3.2. For the Eα-methods, respectively, E-methods, we can also intro-
duce the almost optimal decomposition x = x0(r) + x1(r), r > 0, and the almost
optimal projection DEα(r)x = x0(r), respectively, DE(r)x = x0(r), where

Eα(r,x) ≤
(∥∥x0(r)

∥∥
0

r

)1/α

∨
(∥∥x1(r)

∥∥
1

r

)1/(α−1)

≤ Eα
(
r

c
,x
)

(3.6)

for α > 1, and

E1(r,x) ≤
∥∥x0(r)

∥∥
0

r
≤ E1

(
r

c
,x
)
,

∥∥x1(r)
∥∥

1 ≤ r, (3.7)

respectively,

E(r,x) ≤ ∥∥x0(r)
∥∥

0 ≤ E
(
r

c
,x
)
,

∥∥x1(r)
∥∥

1 ≤ r. (3.8)

The corresponding quasilogarithmic operator Ωα
ψ,n = ΩEα

ψ,n, respectively, ΩE
ψ,n,

can be similarly defined by

Ωα
ψ,n(x) =

1
n!

∫∞
0

(
I · χ(1,∞)(r)−DEα(r)

)
xdψ(logr)n +

1
n!
ψ
(

log‖x‖ΣX̄
)n
x, (3.9)

ΩE
ψ,n(x) =

1
n!

∫∞
0

(
I · χ(1,∞)(r)−DE(r)

)
xdψ(logr)n +

1
n!
ψ
(

log‖x‖ΣX̄
)n
x.

(3.10)

Before proceeding, recall some basic facts about rearrangement invariant
function spaces, which can be found in [2]. Let (Ω,µ) be a completely σ-finite
measurable space as before. For f ∈ L0(Ω,dµ), we denote the rank function of f
by

r f (ω) = µ
({
η ∈Ω | ∣∣ f (η)

∣∣ > ∣∣ f (ω)
∣∣}) for ω ∈Ω, (3.11)

the distribution function of f by

λ f (s) = µ
({
ω ∈Ω | ∣∣ f (ω)

∣∣ > s}) for s > 0 (3.12)

and the measure-preserving rearrangement of | f | by

f ∗(t) = inf
{
s | λ f (s) ≤ t

}
for t > 0. (3.13)

Two functions in L0(Ω,dµ) are said to be equimeasurable if they have the same
distribution function. A Banach function space X over (Ω,dµ) is said to be re-
arrangement invariant (r.i. in short) if ‖ f ‖X = ‖g‖X for every pair of equimea-
surable functions f and g in L0(Ω,dµ). We refer to [2, Definitions III.5.10 and
III.5.12] for the Boyd indices of r.i. spaces.



Ming Fan 245

Lemma 3.3. Assume that Φ is a Banach function space over (R+,dt/t) such that
the Calderón operator S is bounded on Φ. Let

Φ∗ =
{
f ∈ L0(

R
+,dt
) | t f ∗(t) ∈Φ

}
(3.14)

with the norm ‖ f ‖Φ∗ = ‖t f ∗(t)‖Φ. Then Φ∗ is an r.i. space over (R+,dt) with the
Boyd indices α, β satisfying 0 < α ≤ β < 1.

Proof. First we introduce the Banach function space Φ̃ over (R+,dt) by

Φ̃ =
{
f ∈ L0(

R
+,dt
) | t f (t) ∈Φ

}
(3.15)

with the norm ‖ f ‖Φ̃ = ‖t f (t)‖Φ. Observe that the operator S̃ given by (2.8) is
bounded on Φ̃ with ‖S̃‖�(Φ̃) = ‖S‖�(Φ). In fact, for f ∈ L0(R+,dt), we have

∥∥S̃ f ∥∥Φ̃ =
∥∥∥∥t
∫∞

0

(
1
t
∧ 1
s

)
f (s)ds

∥∥∥∥
Φ
=
∥∥∥∥
∫∞

0

(
1∧ t

s

)
s f (s)

ds

s

∥∥∥∥
Φ

≤ ‖S‖�(Φ)
∥∥s f (s)

∥∥
Φ = ‖S‖�(Φ)‖ f ‖Φ̃,

(3.16)

and similarly ‖S f ‖Φ ≤ ‖S̃‖�(Φ̃)‖ f ‖Φ. The space Φ∗ is an r.i. space over (R+,dt)
due to the equalities

∥∥ f ∗∥∥Φ∗ =
∥∥∥( f ∗)∗∥∥∥

Φ̃
=
∥∥ f ∗∥∥Φ̃ = ‖ f ‖Φ∗ . (3.17)

These observations, together with [2, III. (5.7)], imply that

∥∥S̃ f ∥∥Φ∗ =
∥∥∥(S̃ f )∗∥∥∥

Φ̃
≤ ∥∥S̃ f ∗∥∥Φ̃ ≤ ∥∥S̃∥∥�(Φ̃)

∥∥ f ∗∥∥Φ̃ =
∥∥S̃∥∥�(Φ̃)‖ f ‖Φ∗ . (3.18)

That is, the operator S̃ is also bounded on Φ∗. Following [2, Theorem III. 5.14],
the Boyd indices α and β of Φ∗ satisfying 0 < α ≤ β < 1. �

The main tools to be used in the course of the proof for the main theorems in
this and the next section are integrating by parts and internal cancellation. The
following lemma is crucial for this reason. We refer to [5, Lemma 3.2] for the
classical case.

Lemma 3.4. Let Φ be a quasi-power parameter for the real interpolation, let ψ be a
Lipschitz function satisfying (3.4), and let u : R

+ → ∆X̄ , for which
∫∞

0 u(t)dt/t = 0
and ‖J(t,u(t))‖Φ <∞. Then, for n ≥ 1,

ψ(log t)n
∫ t

0
u(s)

ds

s
−→ 0 in ΣX̄ (3.19)

as t→ 0 or ∞.

Proof. We begin with the special case ψ(t) = t. Let Φ∗ and Φ̃ be given as in (3.14)
and (3.15). Then the Boyd indices α, β of Φ∗ satisfy 0 < α ≤ β < 1 by Lemma 3.3.
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If we choose p0 and p1 such that 1 < p0 < 1/β ≤ 1/α < p1 <∞, then, by the Boyd
interpolation theorem [2, Theorem III.5.16], Φ∗ is an interpolation space for
Banach couple (Lp0 ,Lp1 ), where Lpj = Lpj (R+,dt) ( j = 0,1). Thus, Φ∗ ⊆ Lp0 +Lp1 .
By [9, Theorem 4.1], there is a constant C > 0,

(∫1

0
f ∗(s)p0 ds

)1/p0

+
(∫∞

1
f ∗(s)p1 ds

)1/p

≤ C‖ f ‖Lp0 +Lp1 (3.20)

for all f ∈ Lp0 + Lp1 . For x ∈Φ, let K(t) = K(t,x). Then (K(t)/t)∗ = K(t)/t since
K(t)/t is decreasing on R

+ by [3, Lemma 3.1.1]. Moreover,

∥∥K(t)
∥∥
Φ =
∥∥∥∥K(t)

t

∥∥∥∥
Φ̃
=
∥∥∥∥
(
K(t)
t

)∗∥∥∥∥
Φ̃
=
∥∥∥∥K(t)

t

∥∥∥∥
Φ∗
. (3.21)

Now let u be given by the assumption. For fixed t > 0, let

ut(s) = u(s) · χ(0,t](s), xt =
∫ t

0
u(s)

ds

s
=
∫∞

0
ut(s)

ds

s
. (3.22)

Then J(s,ut(s)) ≤ J(s,u(s)), and J(s,ut(s)) ≤ 2K(s,xt) by the fundamental
inequality for the real interpolation [11]. This implies that

∥∥xt∥∥ΣX̄ ≤
∫ t

0

∥∥u(s)
∥∥

0

ds

s
≤
∫ t

0
J
(
s,ut(s)

)ds
s
≤ 2
∫ t

0
K
(
s,xt
)ds
s
. (3.23)

Now we set Kt(s) = K(s,xt) and θj = 1/p′j ( j = 0,1), and assume that t < 1. Ac-
cording to the Hölder inequality, (2.7), (3.20), and (3.21), we obtain

∫ t
0
Kt(s)

ds

s
=
∫ t

0

Kt(s)

sθ0
sθ0
ds

s

≤
(∫ t

0
sθ0p′0

ds

s

)1/p′0
·
(∫ t

0

(
Kt(s)

sθ0

)p0 ds

s

)1/p0

≤ tθ0

(∫1

0

(
Kt(s)
s

)p0

ds
)1/p0

≤ Ctθ0

∥∥∥∥Kt(s)s

∥∥∥∥
Lp0 +Lp1

≤ Ctθ0

∥∥∥∥Kt(s)s

∥∥∥∥
Φ∗

= Ctθ0
∥∥Kt(s)∥∥Φ

≤ Ctθ0‖S‖�(Φ)
∥∥J(s,u(s)

)∥∥
Φ.

(3.24)

Consequently, (log t)n
∫ t

0u(s)ds/s→ 0 in ΣX̄ as t → 0 by a simple estimate. On
the other hand, the cancellation assumption yields

xt =
∫ t

0
u(s)

ds

s
= −
∫∞
t
u(s)

ds

s
. (3.25)



Ming Fan 247

For t > 1, a similar estimate leads to

∥∥xt∥∥ΣX̄ ≤
∫∞
t

∥∥u(s)
∥∥

1

ds

s
≤
∫∞
t

J
(
s,u(s)

)
s

ds

s
≤ 2
∫∞
t

Kt(s)
s

ds

s

≤ 2
(∫∞

1
s(θ1−1)p′1

ds

s

)1/p′1
·
(∫∞

t

(
Kt(s)

sθ1

)p1 ds

s

)1/p1

≤ 2C

t1−θ1
‖S‖�(Φ)

∥∥J(s,u(s)
)∥∥

Φ.

(3.26)

Thus, the convergence (log t)n
∫ t

0u(s)ds/s→ 0 holds in ΣX̄ as t→∞.
Generally, for an arbitrary Lipschitz function ψ satisfying (3.4), we have

|ψ(log t)−ψ(0)| ≤ γψ | log t|, and

∣∣ψ(log t)n −ψ(0)n
∣∣ = ∣∣ψ(log t)−ψ(0)

∣∣ ·
∣∣∣∣∣
n−1∑
k=0

ψ(log t)kψ(0)n−1−k
∣∣∣∣∣ . (3.27)

Therefore, we obtain

ψ(log t)n
∫ t

0
u(s)

ds

s
−→ 0 in ΣX̄ as t −→ 0 or ∞ (3.28)

by a simple estimate for n = 1 and by induction for n > 1. �

It is reasonable to extend [6, Theorem 2.8] as follows:

Theorem 3.5. Let x ∈ ΣX̄0, the closure of ∆X̄ in ΣX̄ . Then there is a decomposition
x =
∫∞

0 u(t)dt/t for the JΦ methods, which is almost optimal simultaneously for all
choices of quasi-power parameters Φ for the real interpolation. Furthermore, there
exists an almost optimal projection of x for the KΦ methods such that

ΩJ
ψ,n(x) =ΩK

ψ,n(x). (3.29)

Proof. Let x ∈ ΣX̄0. As in the proof of [6, Theorem 2.8], we can find a decompo-
sition

x =
∫∞

0
u(s)

ds

s
= x0(t) + x1(t) for t > 0, (3.30)

where x0(t) =
∫ t

0u(s)ds/s ∈ X0 and x1(t) =
∫∞

1 u(s)ds/s ∈ X1 such that

∥∥x0(t)
∥∥

0 + t
∥∥x1(t)

∥∥
1 ≤ cK(t,x). (3.31)

That is, DK (t)x = x0(t) is an almost optimal projection for the K-method. By
the fundamental inequality for the real interpolation [11] and by the estimate in
(2.7), we have

∥∥J(t,u(t)
)∥∥

Φ ≤ 2
∥∥K(t,x)

∥∥
Φ = 2‖x‖KΦ ≤ 2‖S‖�(Φ)‖x‖JΦ . (3.32)
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This implies that DJ(t)x = u(t) is an almost optimal decomposition for the JΦ
methods for all choices of quasi-power parameters Φ.

Further calculation gives that

ΩK
ψ,n(x) =

1
n!

∫∞
0

(
I · χ(1,∞)(t)−DK (t)

)
xdψ(log t)n +

1
n!
ψ(0)nx

=
1
n!

(
−
∫1

0

∫ t
0
u(s)

ds

s
dψ(log t)n

+
∫∞

1

∫∞
t
u(s)

ds

s
dψ(log t)n +ψ(0)nx

)

=
1
n!

(∫1

0
ψ(log t)nu(t)

dt

t
+
∫∞

1
ψ(log t)nu(t)

dt

t

)

=
1
n!

∫∞
0
ψ(log t)nDJ(t)x

dt

t
=ΩK

ψ,n(x).

(3.33)

Here we use Lemma 3.4 for integration by parts. �

Remark 3.6. For the operator Ωα
ψ,n with α ≥ 1, as in Remark 3.2, we consider Φ =

L
p
θ . Let K(t) = K(t,x) and Eα(r) = Eα(t,x). If we use the change of variable r =
K(t)/tα, then Eα(r) = t for each x ∈ ΣX̄ [10, (2.7)], and hence DK (t)x =DEα(r)x.
Moreover, 1∧ t ≤ K(t) ≤ 1∨ t, and hence

α− 1 ≤ α− logK(t)
log t

≤ α. (3.34)

This gives that

α− 1 ≤
∣∣∣∣ log
(
K(t)/tα

)
log t

∣∣∣∣ ≤ α. (3.35)

By using Lemma 3.4 again, we obtain

ψ
(

log
K(t)
tα

)n∫ t
0
u(s)

ds

s
−→ 0 as t −→ 0 or ∞. (3.36)

It turns out

Ωα
ψ,n(x)=

1
n!

∫∞
0

(
I · χ(1,∞)(t)−DK (t)

)
xdψ
(

log
K(t)
tα

)n
+

1
n!
ψ
(

log‖x‖ΣX̄
)n
x

=
1
n!

∫∞
0
ψ
(

log
K(t)
tα

)n
DJ(t)x

dt

t
(3.37)

by Remark 3.2 and a similar argument as in Theorem 3.5.
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In the following examples, we consider some Banach couples of function
spaces, with weights w0, w1 sometimes, over the completely σ-finite measurable
space (Ω,µ), and determine the corresponding quasilogarithmic operators.

Example 3.7 (On (Lp(w0dµ),Lp(w1dµ)) with 1 ≤ p <∞). For f ∈ Lp(w0dµ) +
Lp(w1dµ), we set

f0(t) = f · χ{w0≤tpw1}, f1(t) = f · χ{w0>tpw1}. (3.38)

Then f = f0(t) + f1(t) and DK (t) f = f0(t) by [10, Section 4.1]. It implies that

ΩK
ψ,n(x) =

1
n!

(
−
∫1

0
f0(t)dψ(log t)n +

∫∞
1
f1(t)dψ(log t)n +ψ(0)n f

)

=
f

n!

(
−
∫1

0
χ{w0≤tpw1} dψ(log t)n

+
∫∞

1
χ{w0>tpw1} dψ(log t)n +ψ(0)n

)
.

(3.39)

By dealing with two different cases, w0 ≤ w1 and w0 > w1, we obtain that

ΩK
ψ,n( f ) =

1
n!
f ·ψ
(

1
p

log
(
w0

w1

))n
. (3.40)

For the operator ΩEα
ψ,n, by Remark 3.6 and a similar calculation, we obtain

ΩEα
ψ,n( f ) =

1
n!
f ·ψ


 1

p
log

K
((
w0/w1

)1/p
)

(w0/w1)α/p




n

. (3.41)

Example 3.8 (on (Lp0 (w0dµ),Lp1 (w1dµ)) with 1≤ p0< p1≤∞). For f ∈Lp0 (w0 dµ)
+Lp1 (w1 dµ), we set

f0(t) = f · χ{| f |(w1/w0)1/(p1−p0)>t}, f1(t) = f · χ{| f |(w1/w0)1/(p1−p0)≤t}. (3.42)

Then f = f0(t) + f1(t) and DEα(t) f = f0(t) by [10, Section 4.2]. Let α = p1/(p1 −
p0). A direct computation gives that

ΩEα
ψ,n( f ) =

1
n!
f ·ψ
(

log

(
| f |
(
w0

w1

)1/(p1−p0)
))n

. (3.43)

Example 3.9 (On (Lp0 ,Lp1 ), where Lpj = Lpj (Ω,dµ) with 1 ≤ p0 < p1 ≤ ∞). For
f ∈ Lp0 + Lp1 , let r f , λ f , and f ∗ be given as before. It is known that λ f and f ∗

are right continuous and nonincreasing with f ∗(t) = λ−1
f (t) for each t at which

f ∗ is continuous. Moreover, lims→0 λ f (s) = 0 and r f (ω) = λ f (| f (ω)|). Let 1/q =
1/p0 − 1/p1, and let

f0 = f · χ{| f |> f ∗(tq)}, f1(t) = f · χ{| f |≤ f ∗(tq)}. (3.44)
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Then f = f0(t) + f1(t) and DK (t) f = f0(t) by [10, Section 4.3]. We can now cal-
culate

ΩK
ψ,n( f ) =

1
n!

(
−
∫1

0
f0(t)dψ(log t)n +

∫∞
1
f1(t)dψ(log t)n +ψ(0)n f

)

=
f

n!

(
−
∫1

0
χ{| f |> f ∗(tq)}(t)dψ(log t)n

+
∫∞

1
χ{| f |≤ f ∗(tq)}(t)dψ(log t)n +ψ(0)n

)
.

(3.45)

By dealing with two different cases,

r f (ω) =
(
f ∗
)−1(∣∣ f (ω)

∣∣) ≤ 1, r f (ω) =
(
f ∗
)−1(∣∣ f (ω)

∣∣) > 1, (3.46)

we obtain that

ΩK
ψ,n( f ) =

1
n!
f ·ψ
(

logr1/q
f

)n
. (3.47)

Remark 3.10. In Examples 3.8 and 3.9, on the couple (L1(dµ),L∞(dµ)), we have

ΩE1
ψ,n( f ) = f ·ψ( log | f |), ΩK

ψ,n( f ) = f ·ψ( logr f
)
. (3.48)

These operators were first studied by Kalton in [12, Section 3], and were used
by him to determine the commutators of trace-class operators [13]. In those
papers, Kalton developed a general commutator theorem for the rearrangement
invariant function spaces with the nontrivial Boyd indices. It is an interesting
problem how to put Kalton’s work in the context of real interpolation [7, Section
VIII].

4. Cancellation and commutator estimates

As a preparation for the commutator theorem, we include now the following
cancellation result. The arguments on this topic have been used to deal with the
classical real interpolation in [15] but are of a much more general nature, so we
take them up once more.

Theorem 4.1. Let Φ be a quasi-power parameter for the real interpolation, let ψ
be a Lipschitz function satisfying (3.4), and let y ∈ ΣX̄ .

(i) If

y =
1
n!

∫∞
0
ψ(log t)nu(t)

dt

t
, (4.1)

where ∫∞
0
ψ(log t)ku(t)

dt

t
= 0 for k = 0,1, . . . ,n− 1, (4.2)
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and ‖J(t,u(t))‖Φ <∞, then y ∈ JΦ(X̄) with

‖y‖JΦ(X̄) ≤ γnψ‖S‖n�(Φ)

∥∥J(t,u(t)
)∥∥

Φ. (4.3)

(ii) If

y = − 1
n!

∫1

0
x0(t)dψ(log t)n +

1
n!

∫∞
1
x1(t)dψ(log t)n, (4.4)

where xj : R
+ → ∆X̄ ( j = 0,1), for which x0(t) + x1(t) = 0, and

∫1

0
x0(t)dψ(log t)k +

∫∞
1
x1(t)dψ(log t)k = 0 for k = 1, . . . ,n− 1, (4.5)

with ‖‖x0(t)‖0 + t‖x1(t)‖1‖Φ <∞, then y ∈ KΦ(X̄) with

‖y‖KΦ(X̄) ≤ γnψ‖S‖n�(Φ)

∥∥∥∥∥x0(t)
∥∥

0 + t
∥∥x1(t)

∥∥
1

∥∥∥
Φ
. (4.6)

Proof. (i) For n = 1, we have

y =
∫∞

0
ψ(log t)u(t)

dt

t
=
∫∞

0
ψ(log t)d

∫ t
0
u(s)

ds

s

= −
∫∞

0

(∫ t
0
u(s)

ds

s

)
ψ ′(log t)

dt

t

(4.7)

in terms of integrating-by-parts and Lemma 3.4. Observe that

J
(
t,

∫ t
0
u(s)

ds

s

)
≤
∫ t

0
J
(
s,u(s)

)ds
s

+ t
∫∞
t
J
(
s,u(s)

)ds
s2

(4.8)

according to the proof of [15, Theorem 3]. Therefore,

J
(
t,ψ ′(log t)

∫ t
0
u(s)

ds

s

)
≤ γψJ

(
t,

∫ t
0
u(s)

ds

s

)

≤ γψ
(∫ t

0
J
(
s,u(s)

)ds
s

+ t
∫∞
t
J
(
s,u(s)

)ds
s2

)
.

(4.9)

Since Φ is a quasi-power parameter for the real interpolation, we obtain that∥∥∥∥J
(
t,ψ ′(log t)

∫ t
0
u(s)

ds

s

)∥∥∥∥
Φ
≤ γψ‖S‖�(Φ)

∥∥J(t,u(t)
)∥∥

Φ (4.10)

and hence ‖y‖JΦ ≤ γψ‖S‖�(Φ)‖J(t,u(t))‖Φ.
For n > 1, we have

y =
1
n!

∫∞
0
ψ(log t)nu(t)

dt

t
=

1
n!

∫∞
0
ψ(log t)n d

∫ t
0
u(s)

ds

s

= − 1
(n− 1)!

∫∞
0

(∫ t
0
u(s)

ds

s

)
ψ(log t)n−1ψ ′(log t)

dt

t
.

(4.11)
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Let v(t) = ψ ′(log t)(
∫ t

0u(s)ds/s). Then

y = − 1
(n− 1)!

∫∞
0
v(t)ψ(log t)n−1 dt

t
,

∫∞
0
ψ(log t)kv(t)

dt

t
= −
∫∞

0

(∫ t
0
u(s)

ds

s

)
ψ(log t)kψ ′(log t)

dt

t

=
1

k + 1

∫∞
0
ψ(log t)k+1u(t)

dt

t
= 0

(4.12)

for k = 0,1, . . . ,n− 2. By induction, we obtain that y ∈ JΦ(X̄) with

‖y‖JΦ(X̄) ≤ γn−1
ψ ‖S‖n−1

�(Φ)

∥∥J(t,v(t)
)∥∥

Φ. (4.13)

By (4.10), ‖y‖JΦ(X̄) ≤ γnψ‖S‖n�(Φ)‖J(t,u(t))‖Φ.

(ii) Let v(t) = ψ ′(log t)x0(t). For n = 1, we have

y = −
∫1

0
x0(t)dψ(log t) +

∫∞
1
x1(t)dψ(log t)

= −
∫∞

0
ψ ′(log t)x0(t)

dt

t
= −
∫∞

0
v(t)

dt

t

(4.14)

by assumption. Observe that∥∥K(t, y)
∥∥
Φ ≤ ‖S‖�(Φ)

∥∥J(t,v(t)
)∥∥

Φ (4.15)

by (2.7), and

∥∥J(t,v(t)
)∥∥

Φ ≤ γψ
∥∥J(t,x0(t)

)∥∥
Φ ≤ γψ

∥∥∥∥∥x0(t)
∥∥

0 + t
∥∥x1(t)

∥∥
1

∥∥∥
Φ
. (4.16)

This gives that

‖y‖KΦ ≤ γψ‖S‖�(Φ)

∥∥∥∥∥x0(t)
∥∥

0 + t
∥∥x1(t)

∥∥
1

∥∥∥
Φ
. (4.17)

For n > 1, we have∫∞
0
ψ(log t)k−1v(t)

dt

t
=

1
k

∫∞
0
x0(t)dψ(log t)k = 0 (4.18)

for k = 1, . . . ,n− 1, and hence

y = − 1
(n− 1)!

∫∞
0
ψ(log t)n−1v(t)

dt

t

= − 1
(n− 1)!

∫∞
0
ψ(log t)n−1 d

∫ t
0
v(s)

ds

s

=
1

(n− 1)!

∫∞
0

(∫ t
0
v(s)

ds

s

)
dψ(log t)n−1.

(4.19)
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By induction, and in view of (2.7), (4.15), and (4.16), we obtain that

‖y‖KΦ =
∥∥K(t, y)

∥∥
Φ ≤ γn−1

ψ ‖S‖n−1
�(Φ)

∥∥J(t,v(t)
)∥∥

Φ

≤ γnψ‖S‖n�(Φ)

∥∥∥∥∥x0(t)
∥∥

0 + t
∥∥x1(t)

∥∥
1

∥∥∥
Φ
,

(4.20)

which completes the proof. �

Now define the nonlinear commutators in our situation and establish the ba-
sic theorem concerning the higher order commutator estimates.

Definition 4.2. Let T ∈ �(X̄, Ȳ), let Ωn be an operator from ΣX̄ to ΣȲ , and let
[T,Ωn] = TΩn −ΩnT . The commutator Cn = Cn(T) of order n from ΣX̄ to ΣȲ is
defined in the following way: C0(T) = T , C1(T) = [T,Ω1], and

Cn(T) =
[
T,Ωn

]− n−1∑
k=1

ΩkCn−k for n ≥ 2. (4.21)

In particular, for Ωn =ΩJ
ψ,n, ΩK

ψ,n, ΩE
ψ,n or Ωα

ψ,n, we write Cn = C
J
ψ,n, CKψ,n, CEψ,n

or Cαψ,n.

Theorem 4.3. Assume that Φ is a quasi-power parameter for the real interpola-
tion, and assume that ψ is a Lipschitz function satisfying (3.4). Then, in each of the
following cases, there exists a constant A depending on n, Φ, and ψ such that

∥∥CJψ,n(T)x
∥∥
JΦ(Ȳ) ≤ A‖T‖JΦ(X̄),JΦ(Ȳ)‖x‖JΦ(X̄), (4.22)∥∥CKψ,n(T)x
∥∥
KΦ(Ȳ) ≤ A‖T‖KΦ(X̄),KΦ(Ȳ)‖x‖KΦ(X̄), (4.23)∥∥CEψ,n(T)x
∥∥
EΦ(Ȳ) ≤ A‖T‖EΦ(X̄),EΦ(Ȳ)‖x‖EΦ(X̄), (4.24)

for all x ∈ JΦ(X̄), KΦ(X̄), or EΦ(X̄), respectively. If 0 < θ < 1 and 1 ≤ p <∞, then
there exists a constant A depending on α, ψ, n, θ, and p such that

∥∥Cαψ,n(T)x
∥∥
Ȳθ,p,Eα

≤ A‖T‖X̄θ,p,Eα ,Ȳθ,p,Eα ‖x‖X̄θ,p,Eα (4.25)

for all x ∈ X̄θ,p,Eα .

Proof. We mention first that all estimates are trivial for n = 0 since C0 = T .
For (4.22), we have C1(T) = [T,Ω1] and hence

C1(T)x =
∫∞

0

(
T
(
DJ(t)x

)−DJ(t)(Tx)
)
ψ(log t)

dt

t
(4.26)

for all x ∈ JΦ(X̄). Let

u1(t) = T
(
DJ(t)x

)−DJ(t)(Tx). (4.27)
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Then
∫∞

0 u1(t)dt/t = 0. According to Theorem 4.1(i), we have

∥∥C1(T)x
∥∥
JΦ(Ȳ
) ≤ γψ‖S‖�(Φ)

∥∥J(t,u1(t); Ȳ
)∥∥

Φ

≤ γψ‖S‖�(Φ)

(∥∥J(t,T(DJ(t)x
)
; Ȳ)
∥∥
Φ +
∥∥J(t,DJ(t)(Tx); Ȳ

)∥∥
Φ

)
≤ 2cγψ‖S‖�(Φ)‖T‖JΦ(X̄),JΦ(Ȳ)‖x‖JΦ(X̄).

(4.28)

Furthermore, we have

C2(T)x =
1
2

∫∞
0
ψ(log t)2u1(t)

dt

t
−
∫∞

0
ψ(log t)u2(t)

dt

t
(4.29)

for all x ∈ JΦ(X̄), where

∫∞
0
u2(t)

dt

t
=
∫∞

0
ψ(log t)u1(t)

dt

t
= C1(T)x. (4.30)

This, together with Lemma 3.4, implies that

C2(T)x =
∫∞

0

(
−ψ ′(log t)

∫ t
0
u1(s)

ds

s
−u2(t)

)
ψ(log t)

dt

t
, (4.31)

meanwhile

∫∞
0

(
−ψ ′(log t)

∫ t
0
u1(s)

ds

s
−u2(t)

)
dt

t

=
∫∞

0
ψ(log t)u1(t)

dt

t
−
∫∞

0
u2(t)

dt

t
= 0.

(4.32)

By Theorem 4.1(i) again, we obtain

∥∥C2(T)x
∥∥
JΦ(Ȳ) ≤ γψ‖S‖�(Φ)

(∥∥∥∥J
(
t,ψ ′(log t)

∫ t
0
u1(s)

ds

s
; Ȳ
)∥∥∥∥

Φ

+
∥∥J(t,u2(t); Ȳ

)∥∥
Φ

)
,

(4.33)

whereas

∥∥∥∥J
(
t,ψ ′(log t)

∫ t
0
u1(s)

ds

s
; Ȳ
)∥∥∥∥

Φ
≤ 2cγψ‖S‖�(Φ)‖T‖JΦ(X̄),JΦ(Ȳ)‖x‖JΦ(X̄),

∥∥J(t,u2(t); Ȳ
)∥∥

Φ ≤ 2cγψ‖S‖�(Φ)‖T‖JΦ(X̄),JΦ(Ȳ)‖x‖JΦ(X̄).

(4.34)

Therefore, we can prove (4.22) inductively for all n ≥ 2.
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For (4.23), we set x0(t) =DK (t)x and x1(t) = x − x0(t) for all x ∈ KΦ(X̄). Thus

C1(T)x = −
∫1

0

(
Tx0(t)− (Tx)0(t)

)
dψ(log t)

+
∫∞

1

(
Tx1(t)− (Tx)1(t)

)
dψ(log t).

(4.35)

Let y0(t) = Tx0(t)− (Tx)0(t) and y1(t) = Tx1(t)− (Tx)1(t). Then

y0(t) + y1(t) = Tx −Tx = 0. (4.36)

According to Theorem 4.1(ii), we have

∥∥C1(T)x
∥∥
KΦ(Ȳ) ≤ γψ‖S‖�(Φ)

∥∥∥∥∥y0(t)
∥∥

0 + t
∥∥y1(t)

∥∥
1

∥∥∥
Φ

≤ γψ‖S‖�(Φ)

(∥∥∥∥∥Tx0(t)
∥∥

0 + t
∥∥Tx1(t)

∥∥
1

∥∥∥
Φ

+
∥∥∥∥∥(Tx)0(t)

∥∥
0 + t
∥∥(Tx)1(t)

∥∥
1

∥∥∥
Φ

)

≤ 2cγψ‖S‖�(Φ)‖T‖KΦ(X̄),KΦ(Ȳ)‖x‖KΦ(X̄).

(4.37)

The case n > 1 and the estimates in (4.24) and (4.25) can be proved by making
a simple substitution or by induction as we did above. We leave all details to the
reader. �

5. Final remarks

Remark 5.1. According to Theorem 4.3, Cn can be considered as a bounded
(nonlinear) operator on �(X̄, Ȳ). This uniform boundedness plays an impor-
tant role in future studies.

Remark 5.2. According to Theorem 4.3, operatorsΩJ
ψ,1 andΩK

ψ,1 are uniquely de-
fined up to bounded errors. Combine this fact with Theorem 3.5, we may simply
write Ωψ =ΩJ

ψ,1 =ΩK
ψ,1. Observe that if ψ is a bounded function, then

Ωψ =
∫∞

0
ψ(log t)DJ(t)x

dt

t
(5.1)

is a bounded operator on JΦ(X̄) = KΦ(X̄) and vice versa.

Remark 5.3. If we replace the natural number n by any positive real number η in
Definitions 3.1 and 4.2, then we can obtain the quasilogarithmic operators ΩJ

ψ,η

and ΩK
ψ,η, and the corresponding commutators CJψ,η and CKψ,η, of fractional or-

der η. There are no essential difficulties to carry over Theorems 3.5, 4.1, and 4.3
to this more general case. In particular, if one chooses Φ = Lpϕ as in Example 2.2
and ψ(t) = t, [1, Theorem 8.5] is recovered.
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Remark 5.4. Let (Ω,µ) be a completely σ-finite measurable space, and let X
be an r.i. function space over (Ω,µ) with the nontrivial Boyd indices α and β,
that is, 0 < α ≤ β < 1. One can construct a quasi-power parameter Φ for the
real interpolation for which X = KΦ(L1,L∞) = JΦ(L1,L∞), where Lp = Lp(Ω,dµ)
for 1 ≤ p ≤ ∞. In fact, by the Luxemberg representation theorem [2, Theorem
II.4.10], there is an r.i. function space X̂ over (R+,dt) such that ‖ f ‖X = ‖ f ∗‖X̂ for
all f ∈ X . Now define the function space Φ over (R+,dt/t) by Φ = { f | f (t)/t ∈
X̂} with the norm ‖ f ‖Φ = ‖ f (t)/t‖X̂ . If we choose p0 and p1 with 1 < p0 <
1/β ≤ 1/α < p1 <∞, then, according to the Boyd interpolation theorem [2, The-
orem III.5.16], X̂ and its Köthe dual (X̂)′ are interpolation spaces for the couple
(Lp0 ,Lp1 ). As a consequence, the Calderón operator S is bounded on Φ. In addi-
tion, 1∧ (1/t) ∈ Lp0 ∩Lp1 ⊆ X̂ ∩ (X̂)′. This implies that 1∧ t ∈Φ and∫∞

0
1∧
(

1
t

)∣∣ f (t)
∣∣dt
t
≤
∥∥∥∥1∧
(

1
t

)∥∥∥∥
(X̂)′

·
∥∥∥∥ f (t)

t

∥∥∥∥
X̂
<∞ (5.2)

for all f ∈Φ. Therefore, Φ is a quasi-power parameter for the real interpolation.
The equivalence X = KΦ(L1,L∞) can be proved as in [8, Section 1]. With this
construction, we may apply Theorem 4.3 on the r.i. space X with the nontrivial
Boyd indices, and obtain the commutator theorem for operators ΩK

ψ,1, which are
given in Remark 3.10, on X . This is the case considered by Kalton [12, Corollary
3.2]. By applying Theorem 4.3 on the noncommutative Lp-spaces, the Schatten
classes Cp, one can immediately get other results by Kalton [13, Theorems 4.2
and 4.3]. The methods used by Kalton to prove those results are totally different.
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