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This article investigates the existence of positive periodic solutions for a first-
order functional differential equations of the form

y′(t) = −a(t)y(t) + λh(t) f
(
y
(
t − τ(t)

))
, (1)

where a = a(t), h = h(t), and τ = τ(t) are continuous T-periodic functions.
We will also assume that T > 0, λ > 0, f = f (t) as well as h = h(t) are positive,∫T

0 a(t)dt > 0.
Functional differential equations with periodic delays appear in a number of

ecological models. In particular, our equation can be interpreted as the standard
Malthus population model y′ = −a(t)y subject to perturbation with periodical
delay. One important question is whether these equations can support positive
periodic solutions. Such questions have been studied extensively by a number
of authors (cf. [1, 2, 3, 4, 6, 7] and the references therein). In this paper, we are
concerned with the existence and nonexistence of periodic solutions when the
parameter λ varies. For this purpose, we call a continuously differentiable and
T-periodic function a periodic solution of (1) associated with λ∗ if it satisfies
(1) when λ = λ∗. We show that there exists λ∗ > 0 such that (1) has at least one
positive T-periodic solution for λ ∈ (0,λ∗] and does not have any T-periodic
positive solutions for λ > λ∗. Our technique is based on the well-known upper
and lower solutions method (cf. [5]).

We proceed from (1) and obtain

[
y(t)exp

(∫ t

0
a(s)ds

)]′
= λexp

(∫ t

0
a(s)ds

)
h(t) f

(
y
(
t − τ(t)

))
. (2)
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After integration from t to t +T , we obtain

y(t) = λ

∫ t+T

t
G(t, s)h(s) f

(
y
(
s− τ(s)

))
ds, (3)

where

G(t, s) =
exp

(∫ s

t
a(u)du

)

exp
(∫T

0
a(u)du

)
− 1

. (4)

Note that the denominator in G(t, s) is not zero since we have assumed that∫T
0 a(t)dt > 0.

It is not difficult to check that any T-periodic function y(t) that satisfies (3)
is also a T-periodic solution of (1). Note further that

0 < N ≡ min
0≤s,t≤T

G(t, s) ≤ G(t, s) ≤ max
0≤t,s≤T

G(t, s) ≡M, t ≤ s ≤ t +T,

1 ≥ G(t, s)
max0≤s,t≤T G(t, s)

≥ min0≤s,t≤T G(t, s)
max0≤s,t≤T G(t, s)

=
N

M
> 0.

(5)

Now let X be the set of all real T-periodic continuous functions, endowed
with the usual linear structure as well as the norm

‖y‖ = sup
0≤t≤T

∣∣y(t)
∣∣. (6)

Then X is a Banach space with cones

Φ =
{
y(t) ∈ X : y(t) ≥ 0

}
,

Ω =
{
y(t) : y(t) ≥ σ‖y‖, t ∈ R

}
,

(7)

where σ =N/M.
Define a mapping F : X → X by

(Fy)(t) = λ

∫ t+T

t
G(t, s)h(s) f

(
y
(
s− τ(s)

))
ds. (8)

Then it is easily seen that F is completely continuous on bounded subsets of Ω
and for y ∈Φ,

(Fy)(t) ≤ λM

∫T

0
h(s) f

(
y
(
s− τ(s)

))
ds (9)

so that

(Fy)(t) ≥ λN

∫T

0
h(s) f

(
y
(
s− τ(s)

))
ds ≥ σ‖Fy‖. (10)



G. Zhang and S. S. Cheng 281

That is, FΦ is contained in Ω.

Lemma 1. The mapping F maps Φ into Ω.

Lemma 2. Suppose that

lim
u→+∞

f (u)
u

= +∞. (11)

Let I be a compact subset of (0,+∞). Then there exists a constant bI > 0 such that
‖u‖ < bI for all λ ∈ I and all possibleT-periodic positive solutions u of (1) associated
with λ.

Proof. Suppose to the contrary that there is a sequence {un} of T-periodic pos-
itive solutions of (1) associated with {λn} such that λn ∈ I for all n and ‖un‖ →
+∞ as n→∞. Since un ∈Ω,

min
0≤t≤T

un(t) ≥ σ
∥∥un∥∥. (12)

By (11), we may choose Rf > 0 such that f (u) ≥ ηu for all u ≥ Rf , and there exists
n0 such that σ‖un0‖ ≥ Rf , where η satisfies

σηNλn0

∫T

0
h(s)ds > 1. (13)

Thus, we have

∥∥un0

∥∥ ≥ un0 (t) = λn0

∫ t+T

t
G(t, s)h(s) f

(
un0

(
s− τ(s)

))
ds

≥ σηNλn0

∫T

0
h(s)

∥∥un0

∥∥ds > ∥∥un0

∥∥.
(14)

This is a contradiction. The proof is complete. �

Lemma 3. Suppose that

f is nondecreasing on [0,+∞) and f (0) > 0. (15)

Let (1) have a T-periodic positive solution y(t) associated with λ > 0. Then (1) also

has a positive T-periodic solution associated with λ ∈ (0,λ).

Proof. In view of (3) and (15), we have

y(t) = λ

∫ t+T

t
G(t, s)h(s) f

(
y
(
s− τ(s)

))
ds

≥ λ

∫ t+T

t
G(t, s)h(s) f

(
y
(
s− τ(s)

))
ds, 0 < λ

∫ t+T

t
G(t, s)h(s) f (0)ds.

(16)
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Let y0(t) = y(t),

yk+1(t) = λ

∫ t+T

t
G(t, s)h(s) f

(
yk
(
s− τ(s)

))
ds, k = 0,1,2, . . . , (17)

y
0
(t) = 0, and

y
k+1

(t) = λ

∫ t+T

t
G(t, s)h(s) f

(
y
k

(
s− τ(s)

))
ds, k = 0,1,2, . . . . (18)

Clearly, we have

y0(t) ≥ y1(t) ≥ · · · ≥ yk(t) ≥ y
k
(t) ≥ · · · ≥ y

1
(t) ≥ y

0
(t). (19)

If we now let y(t) = limk→∞ yk(t), then y(t) satisfies (3). Clearly, we have

y(t) ≥ y
1
(t) = λ

∫ t+T

t
G(t, s)h(s) f (0)ds > 0. (20)

This completes our proof. �

Lemma 4. Suppose that (11) and (15) hold. Then there exists λ∗ > 0 such that (1)
has a T-periodic positive solution.

Proof. Let

β(t) =
∫ t+T

t
G(t, s)h(s)ds, Mf = max

0≤t≤T
f
(
β
(
t − τ(t)

))
, λ∗ =

1
Mf

. (21)

We have

β(t) =
∫ t+T

t
G(t, s)h(s)ds ≥ λ∗

∫ t+T

t
G(t, s)h(s) f

(
β
(
s− τ(s)

))
ds,

0 < λ∗

∫ t+T

t
G(t, s)h(s) f (0)ds.

(22)

Let y0(t) = β(t),

yk+1(t) = λ∗

∫ t+T

t
G(t, s)h(s) f

(
yk
(
s− τ(s)

))
ds, k = 0,1,2, . . . , (23)

y
0
(t) = 0, and

y
k+1

(t) = λ∗

∫ t+T

t
G(t, s)h(s) f

(
y
k

(
s− τ(s)

))
ds, k = 0,1,2, . . . . (24)
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Clearly, we have

y0(t) ≥ y1(t) ≥ · · · ≥ yk(t) ≥ y
k
(t) ≥ · · · ≥ y

1
(t) ≥ y

0
(t). (25)

If we now let y(t) = limk→∞ yk(t), then y(t) satisfies (3). Clearly, we have

y(t) ≥ y
1
(t) = λ∗

∫ t+T

t
G(t, s)h(s) f (0)ds > 0. (26)

The proof is complete. �

Theorem 5. Suppose that (11) and (15) hold. Then there exists λ∗ > 0 such that
(1) has at least one positive T-periodic solution for λ ∈ (0,λ∗] and does not have
any T-periodic positive solutions for λ > λ∗.

Proof. Suppose to the contrary that there is a sequence {un} of T-periodic pos-
itive solutions of (1) associated with {λn} such that limn→∞ λn =∞. Then either
we have ‖unj‖ → +∞ as j →∞ or there is M̃ > 0 such that ‖un‖ ≤ M̃. Assume the
former case holds. Note that un ∈Ω and thus

min
0≤t≤T

un(t) ≥ σ
∥∥un∥∥. (27)

By (11), we may choose Rf > 0 and η1 > 0 such that f (u) ≥ η1u when σu ≥
Rf . On the other hand, there exist {tn} ⊂ [0,T] such that unj (tnj ) = ‖unj‖ and
u′nj

(tnj ) = 0 by the periodicity of {unj (t)}. In view of (1), we have

a
(
tnj

)∥∥unj

∥∥ = a
(
tnj

)
u
(
tnj

)
= λnj h

(
tnj

)
f
(
unj

(
tnj − τ

(
tnj

)))
≥ λnj η1σh

(
tnj

)∥∥unj

∥∥ (28)

for all large j. That is, we have λnj ≤ a(tnj )/(η1σh(tnj )). Note that a(t)/h(t) is
bounded. Thus, we obtain a contradiction.

Next, suppose that the latter case holds. In view of (15), there exists η2 > 0
such that f (0) ≥ η2M̃. Then as above, we will obtain

a
(
tn
)∥∥un∥∥ = a

(
tn
)
u
(
tn
)
= λnh

(
tn
)
f
(
un

(
tn − τ

(
tn
)))

≥ λnη2h
(
tn
)
M̃ ≥ λnη2h

(
tn
)∥∥un∥∥

(29)

for all n. A contradiction will again be reached.
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Thus, there exists λ∗ > 0 such that (1) has at least one positive T-periodic
solution for λ ∈ (0,λ∗) and no T-periodic positive solutions for λ > λ∗.

Finally, we assert that (1) has at least one T-periodic positive solution for
λ = λ∗. Indeed, let {λn} satisfy 0 < λ1 < · · · < λk < λ∗ and limk→∞ λk = λ∗. Since
un(t) is T-periodic positive solution of (1) associated with λn and Lemma 2
implies that the set {un(t)} of solutions is uniformly bounded in Ω, the se-
quence {un(t)} has a subsequence converging to u(t) ∈ Ω. We can now apply
the Lebesgue convergence theorem to show that u(t) is a T-periodic positive
solution of (1) associated with λ = λ∗. The proof is complete. �

Example 6. Consider the equation

x′(t) + a(t)x(t) = λh(t)
{
xγ
(
t − τ(t)

)
+ 1

}
, γ > 1, (30)

where a, h, and τ satisfy the same assumptions stated for (1). In view of Theorem
5, there exists a λ∗ > 0 such that (30) has at least one T-periodic positive solution
for λ ∈ (0,λ∗] and no T-periodic positive solution for λ > λ∗.

Example 7. Consider the equation

y′(t) = −ay(t) + λb
(
y2(t) + ε

)
, (31)

where a,b,ε > 0. Note that the function f (x) = (x2 + ε) satisfies (11) and (15) in
Theorem 5. Therefore Theorem 5 may be applied. However, we may give a direct
proof that, for λ > a/(2b

√
ε), this equation cannot have any positive 2π-periodic

solutions associated with λ. Indeed, assume to the contrary that y(t) is such a
solution. Then y′(ξ) = 0 for some ξ ∈ [0,2π]. Hence

−ay(ξ) + λby2(ξ) + λbε = 0. (32)

However, since the discriminant of the quadratic equation

λbx2 − ax+ λbε = 0 (33)

satisfies

a2 − 4λ2b2ε < 0, (34)

a contradiction is obtained. We remark that when ε = 0, our equation reduces to
the well-known logistic equation.

Similarly, we can consider the equation

x′(t) = a(t)x(t)− λh(t) f
(
x
(
t − τ(t)

))
, (35)
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where a = a(t), h = h(t), and f = f (t) satisfy the same assumptions stated for (1).
By (35), we have

x(t) =
∫ t+T

t
H(t, s)h(s) f

(
x
(
s− τ(s)

))
ds, (36)

where

H(t, s) =
exp

(
−
∫ s

t
a(u)du

)

1− exp
(
−
∫T

0
a(u)du

) =
exp

(∫ t+T

s
a(u)du

)

exp
(∫T

0
a(u)du− 1

) (37)

which satisfies

M ≥H(t, s) ≥N, t ≤ s ≤ t +T, (38)

for some M and N > 0, and σ =N/M ≤ 1.

Theorem 8. Suppose that (11) and (15) hold. Then there exists λ∗ > 0 such that
(35) has at least one positive T-periodic solution for λ ∈ (0,λ∗] and no T-periodic
positive solution for λ > λ∗.
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