
SINGULAR ESTIMATES AND UNIFORM
STABILITY OF COUPLED SYSTEMS
OF HYPERBOLIC/PARABOLIC PDES

F. BUCCI, I. LASIECKA, AND R. TRIGGIANI

Received 30 October 2001

1. Statement of the problem. Main results

1.1. Introduction; singular estimates for coupled PDE systems. The present
paper sets itself along that line of research established by [1, 3]—and later
streamlined and simplified in the exposition of [16]—that is focused on math-
ematical properties of an accepted acoustic chamber model [8, 31], subject to
unbounded control action on its flexible wall.

We consider a generalization of an established structural acoustic model. This
consists of a coupled system of two partial differential equations of different
types—a hyperbolic PDE acting within the acoustic chamber and a parabolic-
like PDE acting on the elastic wall of the chamber—which are strongly coupled
at their common interface. Unlike prior literature, we allow the parameter α—
which measures the strength of damping in the plate-like component—to run
over the entire range 1/2 ≤ α ≤ 1 of analyticity (parabolicity) of its free dynam-
ics. Prior literature considered only the limit case α = 1 (“Kelvin Voight damp-
ing”). However, the limit case α = 1/2 (“structural, square root damping”) is
at least equally important; indeed, even more so in applications. Entirely new
phenomena arise over the case α = 1 as α decreases from 1 to 1/2, which we de-
scribe below. Indeed, as α decreases from 1 to 1/2, we seek to achieve two critical
control-theoretic properties of the overall coupled system: (i) a quantitatively
precise singular estimate for the operator eAtB as t ↘ 0 and, simultaneously, (ii)
a uniform (exponential) stability result of the free dynamics operator eAt (which
is not analytic, of course). Here, B is the unbounded control operator: it typi-
cally contains derivatives of Dirac measures supported on points or curves of the
elastic wall of the chamber. It turns out that goals (i) and (ii) are in conflict with
one another, as α decreases from 1 to 1/2. Indeed, as the damping strength α of
the plate (parabolic) component decreases from 1 to 1/2, a progressively stronger
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damping on the boundary of the wave (hyperbolic) component is needed in or-
der to achieve goal (i). However, beyond an explicitly computed threshold of
α, then the additional boundary damping on the wave introduces instability of
the overall free dynamics eAt, thus violating goal (ii). This occurs since, beyond
a certain threshold of α, excessive wave damping—which is essential to achieve
goal (i)—causes, however, the origin (and only the origin) to become a point in
the continuous spectrum of the overall dynamic operator A. In order to remove
this pathology, and hence obtain both goals (i) and (ii) simultaneously beyond a
certain threshold of α, an additional “static damping” (acting on the position) is
introduced in the boundary conditions of the wave component. The paper gives
a precise description of these two intertwined and conflicting aspects for the
purpose of achieving the simplest possible model, as a function of α, 1/2 ≤ α ≤ 1,
where both goals (i) and (ii) are attained. These then insure, as a consequence, a
rich optimal control theory of the corresponding control problem.

The case α = 1; hence D0 = 0; β = 0, in (1.2c)–(1.2d) below (see [1, 3, 16]). In the
aforementioned references, the original model consisted of a coupled system of
two partial differential equations (PDEs) of different type—a hyperbolic PDE
and a parabolic-like PDE—which are strongly coupled at the interface (repre-
sented by the flexible wall Γ0). More precisely, the original model in the analysis
of [1, 3, 16] is problem (1.1) below with constant α = 1 in (1.2d) and, hence,
damping operator D0 taken to be null: D0 = 0, while the constant β is taken equal
to zero: β = 0 in (1.2c). In the resulting specialization of model (1.2), a wave
equation in z (a hyperbolic PDE, problems (1.2a), (1.2b), and (1.2c)) which is
active within the chamber, influences through its velocity trace zt |Γ0 on the flexi-
ble wall Γ0 the dynamics of a plate-like abstract Euler-Bernoulli equation (1.2d)
in v defined on Γ0 and subject to (strong) Kelvin-Voight damping (a parabolic
PDE with ρ > 0, α = 1). In turn, the velocity vt of the plate deflection acts on
the boundary conditions (1.2c) of the wave equation on the flexible wall Γ0. The
Kelvin-Voight damping of these aforementioned works corresponds to the value
α = 1 and ρ > 0 of the two constants entering the model in (1.2d) below, with,
further, β = 0, and D0 = 0, as already pointed out. For this model, these refer-
ences first settle the preliminary (and, in this case, rather standard) question of
well-posedness of the overall PDE coupled system, by asserting the existence of
a strongly continuous contraction semigroup eAt in the resulting energy space
Y (see (2.11) below with β = 0). Then, these references [1, 3, 16] establish the
following key, fundamental result. Let B be the resulting unbounded control op-
erator acting on the overall model (see (2.39) below) and expressed in terms
of the control operator � acting on the plate equation in (1.2d), then the term
eAtB satisfies, in the uniform operator norm of Y , a singular estimate of the
type

∥∥eAtB
∥∥ = �T

(
1
tγ

)
, 0 < t ≤ T, 0 < γ < 1. (1.1)
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Here γ is a constant, which is explicitly identified in terms of the degree of
unboundedness—measured by the parameter 0 < r < 1/2 in (1.3)—of the con-
trol operator � below, which acts on the plate equation (1.2d).

To really appreciate the singular estimate (1.1), it should be emphasized that
the strongly continuous (s.c.) well-posedness semigroup eAt referred to above,
is not analytic on Y . Yet, the above singular estimate (1.1) is a measure that re-
veals and emphasizes that parabolicity—originally present only in the plate com-
ponent on the flexible wall Γ0—has actually propagated onto the entire overall
chamber model.

Consequences of the singular estimate (1.1). Achieving the singular estimate (1.1)
for coupled PDE systems such as those arising in the structural acoustic problem
has important critical consequences. It would suffice to point out the basic im-
pact that estimate (1.1) has on the theory of quadratic optimal control problems
and corresponding differential/integral Riccati equations (T < ∞) or algebraic
Riccati equations (T =∞). Indeed, under the validity of estimate (1.1), and yet
in the absence of analyticity of the s.c. free dynamics semigroup eAt, one has the
following results: in the case T < ∞ (resp., in the case T = ∞), one obtains a
rather comprehensive and satisfactory theory of the quadratic optimal control
problem and corresponding differential/integral Riccati equations (resp., alge-
braic Riccati equations) which is truly akin to that of the parabolic (analytic
semigroup) case. Indeed, estimate (1.1) allows for a suitable adaptation of the
parabolic (analytic semigroup) technique. In the case T =∞, we require, in ad-
dition, that eAt is also uniformly (exponentially) stable on Y in order to satisfy
the finite cost condition. In particular, under (1.1), one obtains the very impor-
tant consequence that the gain operator B∗P(t) (resp., B∗P), where P(t) (resp.,
P) is the corresponding Riccati operator, is bounded as an operator between the
state space and the control space. See [1, 3, 16, 18, 26] for a progressively more
comprehensive treatment. See also [35] for a treatment of the corresponding
min-max problem and of the quadratic cost case with nondefinite cost. For the
optimal control theory for single PDE classes, we refer to [4, 24, 25].

The case 1/2 ≤ α < 1 and its consequences on the choice of the dynamical model.
The present paper maintains the hyperbolic/parabolic coupling of the afore-
mentioned works for the overall coupled PDE system, but its goal is to enlarge
the scope of the parabolic component from the original Kelvin-Voight damp-
ing α = 1 to the entire range of parabolicity 1/2 ≤ α ≤ 1 (see [5, 6]) initially with
β = 0. Of course, the two most important cases in applications are the extreme
cases α = 1/2 and α = 1. Stimulated by the above discussion, our objective is two-
fold.

(i) First, we seek to extend the singular estimate (1.1) to the entire analyt-
icity range 1/2 ≤ α ≤ 1. In order to achieve (1.1) as α decreases from α = 1 to
α = 1/2, we will be forced to introduce a progressively stronger damping term
D0zt in the Boundary Conditions (BC) of the wave component in (1.2c), up to
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a second-order tangential operator D0 for α = 1/2 (see Theorem 1.7). This way,
with 1/2 ≤ α ≤ 1 and β = 0, the singular estimate (1.1) is established and thus op-
timal control theory in a finite horizon is covered as an extension of the parabolic
case (see [26]).

(ii) The damping operator D0 imposed in step (i) in order to achieve the
beneficial singular estimate (1.1) introduces, however, negative effects on the sta-
bility of the wave component (let alone, of the overall system) by introducing
the origin λ = 0 as a point in the continuous spectrum of the relevant dynamics
operator of the wave component and of the overall system, even in the presence
of viscous damping on the entire domain (d2 > 0 in (1.2a)). This is shown in
Section 4. One natural way to see this state of affairs is to say that an original
model with d2 = 0 is not uniformly stabilizable by a choice of viscous damping
d2 > 0. Thus, with this model, even with d2 > 0, the optimal control theory over
an infinite time horizon is out of reach, as the preliminary finite cost condition is
not verified. Therefore, in order to recover the optimal control theory on T =∞
by requiring, in addition, exponential (uniform) stabilization of eAt, one is then
forced to further modify the original coupled PDE model, by introducing this
time a comparable (stabilizer) boundary term βD0z with β > 0 on Γ0 in (1.2c),
whose purpose is to eliminate the point λ = 0 from the (continuous) spectrum
of the overall dynamic operator. A more complete description of our strategy
is delineated after the quantitative introduction of the (ultimate) model and a
statement of the most relevant results.

1.2. Mathematical model and strategy

The mathematical model. In qualitative terms, the mathematical model under
consideration consists of a wave equation, active within an acoustic chamber,
which is then strongly coupled with a dynamic abstract plate equation acting
only on the elastic, flat wall of the chamber. In turn, the plate equation is then
subject to an unbounded control action. More precisely, let Ω ⊂ R3 be an open
bounded domain (“the acoustic chamber”) with boundary Γ = Γ0 ∪ Γ1, where Γ0

and Γ1 are open, connected, disjoint parts, Γ0 ∩ Γ1 = ∅ in R2, of positive mea-
sure. The sub-boundary Γ0 is flat and is referred to as the elastic or flexible
wall. Instead, Γ1 is referred to as the rigid or hard wall. The interaction between
wave and plate takes place on Γ0. We also assume that either Ω is sufficiently
smooth (say, Γ is of class C2), or else Ω is convex. This assumption guaran-
tees that solutions to classical elliptic equations with L2(Ω)-forcing term are in
H2(Ω) [11], or that the domain of the Laplacian in Ω, with (either Dirichlet
or) Neumann BC, is contained in H2(Ω) (see (2.1) in our case). The acoustic
medium in the chamber is described by the wave equation in the variable z with
acoustic pressure ρ1zt where ρ1 is the density of the fluid. Moreover, let c2 be
the speed of sound. Finally, denote by v the “abstract deflection” of the abstract
plate equation on Γ0. Then, in this paper, we consider the following coupled PDE
system:
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ztt = c2∆z − d2zt + f in Q = (0,T]×Ω; (1.2a)

∂z

∂ν
+ d1z = 0 on Σ1 = (0,T]× Γ1; (1.2b)

∂z

∂ν
+ D0zt + βD0z = vt on Σ0 = (0,T]× Γ0; (1.2c)

vtt + �v + ρ�αvt + ρ1zt |Γ0 = �u on Σ0 = (0,T]× Γ0; (1.2d)

z(0, ·) = z0, zt(0, ·) = z1 in Ω;
(1.2e)

v(0, ·) = v0, vt(0, ·) = v1 in Γ0,

under the following assumptions to be held throughout the paper.

  

 

 

  

 

 

 

∂Γ0

x0Γ0

ΩΓ1 Γ1

Γ1

∂Γ0

Γ0

Ω

Γ1

Assumption 1.1. � (the elastic operator): L2(Γ0) ⊃ �(�) → L2(Γ0) is a positive,
selfadjoint operator. Moreover, ρ > 0, β ≥ 0, d1 > 0, d2 ≥ 0, and 1/2 ≤ α ≤ 1 are
constants. Finally, f ∈ L2(0,T ;L2(Ω)) ≡ L2(Q) is an external disturbance.

Assumption 1.2. There exists a constant r, 0 < r < 1/2, such that

�−r� ∈ �
(
�;L2

(
Γ0
))

; equivalently, � continuous : � −→ [�(�r)]′. (1.3)

Here, � (control space) is a Hilbert space. Moreover, [ ]′ denotes the duality with
respect to L2(Γ0) as a pivot space.

Assumption 1.3. D0 : L2(Γ0) ⊃ �(D0) → L2(Γ0) is a positive, selfadjoint operator,
and there exist a constant r0, 0 ≤ r0 ≤ 1/4, and positive constants δ1, δ2 such that

δ1‖z‖2
�(�r0 ) ≤

(
D0z,z

)
L2(Γ0) ≤ δ2‖z‖2

�(�r0 ) ∀z ∈ �
(
�r0
) ⊂ �

(
D1/2

0

)
. (1.4)

Moreover, it is assumed that H1(Γ0) ⊆ �(D1/2
0 ), that is,

D1/2
0 : continuous H1(Γ0

) −→ L2
(

Γ0
)

. (1.5)

We aim, of course, to achieve the simplest model possible within the above
framework, subject to a specific strategy to be enunciated below. In particular, we
aim to ascertain if and when we may set D0 = 0 and β = 0, and still achieve both
of our sought-after results: singular estimate (1.1) and uniform stabilization of
eAt.
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Strategy and consequent evolving in the choice of model (1.2). Our viewpoint is as
follows. We take as original data of the problem two constants, both associated
with the controlled plate v-equation (1.2d):

(i) the parameter 0 < r < 1/2 of (1.3), which measures the degree of un-
boundness of the control operator � on the plate;

(ii) the parameter 1/2 ≤ α ≤ 1 which measures the degree of damping of the
structurally damped term ρ�αvt, ρ > 0, on the plate (1.2d), within the
analyticity range of the free v-equation.

Our goal is then to establish the “best” or “minimal” damping D0 (constant r0)
that is needed in the boundary conditions (1.2c) of the wave equation on the
flexible wall Γ0, in order to achieve the following three consequential goals on
the resulting overall system:

(i) it will be well posed in the semigroup sense over a natural energy space;
(ii) it will satisfy the singular estimate (1.1), with a “best” constant γ de-

pending on the data r and α and the minimally necessary constant r0, or
strength of the damping operator D0, in (1.4);

(iii) it will be uniformly stable by introducing, if necessary, an additional
boundary term βD0z on Γ0, β > 0.

As pointed out already in Section 1.1, the analysis of the present paper cul-
minating in Theorem 1.7 shows that there is a conflict between objectives (ii)
and (iii), as the damping coefficient α decreases from α = 1 to α = 1/2, and, say,
the degree r of unboundedness of the control operator � is fixed (r = 3/8 + ε

in canonical physical situations). Namely, less plate damping exponent α re-
quires more boundary wave damping D0 (or higher r0) on Γ0, to the point
where D0 is of high order: a second-order tangential operator (say Laplace-
Beltrami) in order to achieve (1.1) for the physically relevant case α = 1/2. But
the high wave damping D0 needed to achieve (1.1) causes, in turn, instability of
the wave problem (let alone, of the overall problem) when its order is strictly
greater than one (overdamping), even with viscous damping d2 > 0 in (1.2a),
by forcing the origin λ = 0 to be an element (in fact, the unique element) of
the continuous spectrum of the dynamic wave operator (Proposition 4.3) or of
the overall system (Remark 4.4). Removing such point in the continuous spec-
trum when D0 is at least a first-order operator, requires, in turn, the insertion
of the term βD0z on Γ0, with β > 0 in the wave component, and a renormaliza-
tion of the state space for z, which then preserves dissipativity of the overall new
system.

Remark 1.4. Before describing our results, we explicitly note that the phenom-
enon pointed out above in our present context is generally well known and not
surprising, namely, that the insertion of “high” damping in a dynamical system
may well work—beyond a certain threshold—as an inhibitor of stability, and
even destroy stability (this is referred to as “overdamping”). A simple example is
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the free v-problem in (1.2d):

vtt + �v + ρ�αvt = 0, ρ > 0, α ≥ 1
2

, (1.6)

with, say, a positive selfadjoint � with compact resolvent, as considered in [6,
Appendix A], from which we quote. There are two branches λ+,−

n of eigenvalues
explicitly given in [6, Lemma A.1, page 46]:

(i) for α > 1/2, or α = 1/2 and ρ ≥ 1, then λ+,−
n are all actually negative for n

sufficiently large and λ−
n →−∞ monotonically;

(ii) for 1/2 < α < 1, or α = 1/2 and ρ ≥ 1, then λ+
n →−∞ monotonically;

(iii) for α = 1, then λ+
n ↗−(1/2ρ) monotonically;

(iv) finally, for α > 1, then λ+
n ↗ 0 monotonically.

Thus, the spectrum of the dynamic operator corresponding to the free v-
equation (1.6) (see A2 in (2.13) below), is only point spectrum for α < 1 but
contains the point λ = −1/2ρ for α = 1, or the point λ = 0 for α > 1, in its contin-
uous spectrum. Thus, A2 has compact resolvent for α < 1, but not for α ≥ 1.

What happens in our wave z-component with “high” boundary damping D0

is precisely the same phenomenon (see Section 4).

Remark 1.5. Suppose that �α in (1.2d) is replaced with an operator “comparable
to it” in the sense of [5, 6, 7] and [24, Appendix 3B, Chapter 3]. Then, in order
to extend the results of this paper to this more general case, one needs to invoke
[7, Remark 5.3, page 291] or [24, page 291].

1.3. Statement of main results: singular estimates with “least” damping D0.
As a preliminary result, we state the following well-posedness result for the un-
controlled model (i.e., u = 0, f = 0 in (1.2)).

Theorem 1.6 (well-posedness of free problems). With reference to the above set-
ting, assume Hypotheses 1.1 and 1.3 for the coupled {z,v}-system (1.2). Then, the
map y0 ≡ [z0, z1, v0, v1] → [z(t), zt(t), v(t), vt(t)] ≡ eAt y0 defines an s.c. contraction
semigroup on the state space Yβ = Y defined in (2.11) below, where the free dynamic
operator Aβ = A is identified in (2.37) and (2.38) below.

The above generation result is nonstandard, due to the high damping on zt. In
particular, it greatly extends [25, Proposition 7.6.2.1, Chapter 7] (see Remark 2.5
and the paragraph below (2.40) for a more technical explanation).

A proof of Theorem 1.6 is given in Appendix A.
Our next main goal is to establish the singular estimate (1.1) with “least”

(“best”) damping D0. To state this result, we define the control operator for the
entire structure by B ≡ [0,0,0,�] (see (2.39) below). In line with our strategy
stated above, we will distinguish two cases which yield progressively more com-
plicated models. It turns out that in the range of α near α = 1 where one may take
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the damping operator D0 null: D0 = 0 (and so β = 0) in (1.2c), the geometry of
the chamber Ω plays a role (see Orientation at the outset of Section 3.3 below).
This is reflected by the parameter a in (1.7b).

Theorem 1.7 (singular estimate). (I) Assume Hypothesis 1.1 (hence ρ > 0; β ≥ 0;
d1 > 0, d2 ≥ 0; 1/2 ≤ α ≤ 1), Hypothesis 1.2, and, in addition, assume that there
exists a constant θ0 > 0 such that

H1−a(Γ0
)
= �
(
�θ0
)

, and satisfying α− 2r ≥ 2θ0, (1.7a)

a =




3
4

for Ω a rectangle (n = 2), or a parallelopiped (n = 3);

2
3

for Ω a general, either smooth or convex,

(1.7b)

where we recall that 1/2 ≤ α ≤ 1 and 0 < r < 1/2, by Hypotheses 1.1 and 1.2. (We
will see in the remarks below that for � a realization of ∆2 as in (1.11), then θ0 =
1/16 for a = 3/4; and θ0 = 1/12 for a = 2/3. Moreover, we refer to Remark 3.7 below
for the assertion that the present Part I requires, critically for its validity in the
canonical case (1.11), (1.12) for � and �, that a > 1/2.)

Then, in (1.2d) we can take D0 = 0 and then the corresponding s.c. semigroup
eAt on Y guaranteed by Theorem 1.6 and the control operator B = [0,0,0,�] in
(2.39) below satisfy the following singular estimate for some ω:

∥∥eAtB
∥∥

�(U ;Y) ≤ C
eωt

tγ , 0 < t; with γ =
r

α
<

1
2

. (1.8)

(II) Assume Hypotheses 1.1, 1.2, and 1.3, and, in addition, assume that the pa-
rameters α, r0, r of these assumptions satisfy the following constraint:

r0 +
α

2
≥ r or α− 2r ≥ −2r0. (1.9)

Then, the singular estimate (1.8) holds true, this time with

γ =




r

α
, r ≤ α

2
;

1/2−α + r

1−α
, r >

α

2
,

(1.10)

where, for r = α/2, both right-hand sides in (1.10) produce the same value γ = 1/2.

Remarks on, and illustrations of, Theorem 1.7

Remark 1.8 (on canonical realization of � and �). The operators � and �
which arise in the original canonical structural acoustic model (with α = 1; D0 =
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0 or else D0 = d0I , d0 > 0; β = 0 in (1.2)) as in [1, 3, 16], are as follows:

� = realization of ∆2 with appropriate BC (hinged, clamped, free, etc.)

(1.11)

�u =
J∑

j=1

aj uj δ
′
ξj

, u =
[
u1, . . . ,uJ

] ∈ RJ = � (see [8]), (1.12)

where (i) if dimΓ0 = 1 (dimΩ = 2), then ξj are points on Γ0, aj are constants,
and δ ′

ξj
are derivatives of the Dirac distribution supported at ξj ; while (ii) if

dimΓ0 = 2 (dimΩ = 3), then ξj denote closed regular curves on Γ0, aj are smooth
functions, and each δ ′

ξj
denotes the normal derivative supported at ξj . Model

(1.12) for � arises when the control action is exercised on Γ0 via piezoceramic
elements [8]. Then for � and � as in (1.11), (1.12), one readily shows, on the
strength of Sobolev embedding, that the constant r of Assumption 1.2 is (see [3],
[25, page 890]):

r =
3
8

+ ε, ∀ε > 0. (1.13)

Remark 1.9 (on the application of Theorem 1.7(I)). In the canonical case of
physical interest where � is given by (1.11), one always has (see [23, Appendix
3A, Chapter 3, page 284], [10]),

H1/4(Γ0) = �
(
�1/16), in case a =

3
4

, 1− a =
1
4

;

H1/3(Γ0
)
= �
(
�1/12), in case a =

2
3

, 1− a =
1
3

,
(1.14)

under all BC (hinged, clamped, free). Thus, assumption (1.7a) is fulfilled with

θ0 =
1

16
, for a =

3
4

(Ω a parallelopiped);

θ0 =
1

12
, for a =

2
3

(general Ω).
(1.15)

Thus, Theorem 1.7(I) applies with θ0 = 1/16 and θ0 = 1/12, respectively, and so,
whenever

α− 2r ≥ 1
8

for a =
3
4

;

α− 2r ≥ 1
6

for a =
2
3

,
(1.16)
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by (1.7a). With r = 3/8 + ε as in the case of � and � in (1.11) and (1.12) (see
Remark 1.8), this means that Theorem 1.7(I) applies in the range

7
8

< α ≤ 1, for a =
3
4

(Ω a parallelopiped);

11
12

< α ≤ 1, for a =
2
3

(general Ω),
(1.17)

in which case we can take r0 = 0 and D0 = 0 in (1.2c).
In the case α = 1 (Kelvin-Voight damping), we obtain γ = r = 3/8 + ε in the

singular estimate (1.8). We thus recover the result of [1, 3, 16].

Remark 1.10 (on the application of Theorem 1.7(II)). If r −α/2 ≤ 0 or α ≥ 2r, we
can then take r0 = 0 in (1.9), or D0 as a bounded operator on L2(Γ0), say D0 = d0I
with d0 ≥ 0 by (1.4) and (1.5). In particular, this occurs in the range 1 ≥ α > 3/4
in the case of � and � given by (1.11) and (1.12).

Remark 1.11 (case α = 1/2 with � and � given by (1.11) and (1.12)). On the
other hand, if α = 1/2, the best r0 we may take in (1.9) is r0 = r − α/2 = r − 1/4.
In the case of � and � given by (1.11) and (1.12), where r = 3/8 + ε, this means
1/8 < r0 ≤ 1/4, according to (1.4) and (1.5). From here we then conclude that
�(�r0 ) = H4r0

0 (Γ0) in the case of hinged and clamped BC, and, instead, �(�r0 ) =
H4r0 (Γ0) in the case of free BC for the operator � as in (1.11) (see [10], [23, page
284]).

Worst subcase 4r0 = 1. Thus, in the worst case 4r0 = 1, we must have �(D1/2
0 ) ⊃

�(�r0 ), where �(�r0 ) is topologically equivalent to H1(Γ0) in order to satisfy
assumption (1.4) and (1.5). Thus, assumption (1.4) and (1.5) on D1/2

0 is fulfilled
and D0 may be, in this case, the Laplace operator on Γ0 (second order).

“Best” subcase 4r0 = 1/2 + 4ε, or r0 − 1/8 + ε, ε > 0. In this case, in order to sat-
isfy assumption (1.4), we must have �(�r0 ) ≡ �(�1/8+ε) ⊂ �(D1/2

0 ), with
�(�1/8+ε) topologically equivalent to H1/2+4ε(Γ0). It follows that D0 must be of
order s > 1.

Remark 1.12 (range of α for D0 a first-order operator and � and � given by
(1.11) and (1.12)). In this case �(D1/2

0 ) ≡ H1/2(Γ0) and assumption (1.5) is ful-
filled. To satisfy assumption (1.4), �(�r0 ) ⊂ �(D1/2

0 ) ≡ H1/2(Γ0) with � given by
(1.11), we must take r0 = 1/8. In fact, this way, �(�r0 ) ≡ �(�1/8) ≡ H1/2

00 (Γ0) ⊂
H1/2(Γ0) for the case of clamped or hinged BC [36]; and �(�r0 ) = �(�1/8) =
H1/2(Γ0) in the case of free BC [10], [24, page 284]. Finally, with r0 = 1/8 and
� satisfying (1.13), Theorem 1.7(II) requires α/2 ≥ r − r0 = 3/8 + ε − 1/8, or α ≥
1/2 + 2ε, ε > 0. Thus, the important case α = 1/2 is excluded when D0 is a first-
order operator � and � are given by (1.11) and (1.12).

As Theorems 1.13 and 1.14 will show, the case where “the operator D0 is
of order 1” is the limit case, up to which we may take β = 0 in (1.2c) and still
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obtain uniform (exponential) stability of the free dynamics eAt guaranteed by
Theorem 1.6.

Illustration of Theorem 1.7 for � and � as in (1.11) and (1.12). (I) For � as in
(1.11) implies

θ0 =
1

16
, for a =

3
4

;

θ0 =
1

12
, for a =

2
3

.
(1.18)

Can take D0 = 0 for

α ≥ 2r +
1
8

, for a =
3
4

;

α ≥ 2r +
1
6

, for a =
2
3

.

(1.19)

Can take D0 = I for

2r ≤ α <




2r +
1
8

, for a =
3
4

;

2r +
1
6

, for a =
2
3

.

(1.20)

general Ω

a parallelopiped
Ω 0 r

1
2 2r

1
8

1

D0=0
D0 = I

1
6

D0=0
0 r 1

2 2r

D0 = I

1

α

α

For � as in (1.12): r = 3/8 + ε:
(II) Can take D0 = first-order operator for 1/2 < α ≤ 1; we have r0 = 1/8. Must

take D0 of order s, s > 1, to include α = 1/2.

Comparison with the literature. As repeatedly stated, this paper is a de facto suc-
cessor of the original work on this topic of hyperbolic/parabolic coupled PDE
system [1, 3, 16] which was motivated by the structural acoustic problem with �



180 Singular estimates and uniform stability

((

( (
Ω

general Ω

a parallelopiped
r = 3

8 + ε 1
2

3
4

7
8 1 α

D0=0D0 = I

1
6

1
12

3
4

1 α

and � as in (1.11) and (1.12). This work deals with a fixed hyperbolic/parabolic
model, contained in (1.2) with α = 1, D0 = 0 (or D0 = d0I , d0 > 0), β = 0 and
makes the fundamental discovery that, in this canonical case, the singular esti-
mate (1.8) holds true with γ = r, r being the constant in (1.3). In this case α = 1,
viscous damping d2 > 0 readily yields uniform stabilization.

In seeking to establish the singular estimate (1.8) for a “best” coefficient γ
throughout the entire analyticity range 1/2 ≤ α ≤ 1, the present paper is con-
fronted not only with additional technicalities, but also with a new strategic par-
adigm: that of producing the “simplest” variation of the original model for α = 1,
D0 = 0, β = 0, as to accomplish both of the sought-after goals: (i) the validity of
the singular estimate (1.8), and (ii) uniform stability of the overall system which
now, unlike the case of [1, 3, 16], may fail to hold true. This way one can extend
the quadratic optimal control theory and related Riccati equations over both a fi-
nite and an infinite time horizon [24]. In short, the present paper deals also with
an evolving model, where the suitable selection of the “simplest” model at hand
responds to the original data 0 < r < 1/2, 1/2 ≤ α ≤ 1 in order to achieve both
desired goals. This way, the original model for α = 1, D0 = 0, β = 0 in [1, 3, 16]
has to give way to a more complicated model as α decreases to 1/2, due to the
conflict imposed by the two sought-after goals: lower α (lower damping on the
plate) requires higher r0 (higher damping on the wave on Γ0), and the latter
produces instability of the wave component, hence of the overall system. To re-
move this, the term βD0z with β > 0 has to be inserted on the boundary Γ0 of
the z-problem. The necessity of β > 0 is established in Proposition 4.3 (see also
figures in Appendix C). Of course, our present singular estimate results recover
[1, 3, 16] for α = 1, D0 = 0, β = 0.

At the technical level, our present effort benefits from some obliged strategies
already carried out successfully in [1, 3], with progressive streamlining and sim-
plification in [16]. As it stands in these references, the proof given there uses the
following key ingredients:

(i) analyticity of the s.c. semigroup eA2t describing the dynamics of the flex-
ible wall as established in [5, 6] where the generator A2 is defined in
(2.13) below;
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(ii) characterization of the domains of fractional powers (−A2)s in the range
0 ≤ s ≤ 1/2, as established in [7];

(iii) a sharp trace theorem giving, in the case D0 = 0, critical regularity of
a second-order hyperbolic equation with Neumann boundary datum;
in particular, the sharp trace theory [2, 21, 22, 23, 34] of its velocity
component;

(iv) decoupling of the z-problem and v-problem based on the inversion of
an operator [I + K0] on the space L2(0,T ;�(−A2)η), η = 1/2 − r, where
K0 is a double-integrator operator (cf. [3, equation (46), page 705; equa-
tion (65), page 709]). This is done by applying a contraction fixed point
first over a sufficiently small terminal interval [T − δ,T] to get the con-
traction constant strictly less than one, as required, and independent of
the step size δ > 0; and then reiterating a finite number of steps to get
bounded inversion on all of [0,T].

The first three steps (i), (ii), and (iii) are “obliged” for obtaining the singu-
lar estimate (1.8), and we likewise follow this path, with additional technical
difficulties embodied by the new Lemma 3.3, and by the use of the characteri-
zation of domains of fractional powers �((−A2)s) this time on the entire range
0 ≤ s ≤ 1, and in the dual version, as in Lemma 2.7 below. However, even in the
case α = 1; D0 = 0 (or D0 = d0I , d0 > 0); β = 0, there is a notable technical simpli-
fication in our treatment over that of [1, 3, 16], which perhaps is responsible for
our succeeding in carrying out the generalization to the case 1/2 ≤ α < 1 in the
first place. And this concerns point (iv) above, that is, the issue of untangling the
coupling between the {z,zt}-variables and the {v,vt}-variables. Instead of the
fixed point strategy described in (iv) above, we use a definitely simpler approach
which consists in taking estimates (rather than keeping exact expressions) and
finally resolving the coupling by virtue of the Gronwall’s inequality in various
forms (see (3.20), (B.9), or (B.15) below).

1.4. Statement of main results: spectral properties and stability for problem
(1.2) with f ≡ 0, u ≡ 0. As described in Section 1.2, the present paper studies
also the stability properties of problem (1.2), which are critical in the study of
the optimal control problem with quadratic cost functional, over an infinite time
horizon. In this respect, our main result is the following.

Theorem 1.13. Assume Hypothesis 1.1 this time with d2 > 0, as well as Hypothesis
1.3. More precisely, under these assumptions, consider the following two cases.

Case 1. Let the operator D0 be of order up to 1; in particular, let D1/2
0 : contin-

uous H1/2(Γ0) → L2(Γ0). Then, in this case, take β = 0 in (1.2c), and hence Zβ=0 ≡
�(A1/2

N ) (see (2.8)–(2.9) below) and Yβ=0 ≡ �(A1/2
N ) × L2(Ω) × �(�1/2) × L2(Γ0)

(see (2.11) below).
Case 2. Let now the operator D0 be of order s, 1 < s ≤ 2. Then, in this case, take

β > 0 in (1.2c) and thus Yβ ≡ Zβ ×L2(Ω)×�(�1/2)×L2(Γ0) (see (2.11) below).
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Denote now by Aβ the operator (identified in (2.37) and (2.38) below and) called
simply A in Theorem 1.6, to emphasize the present role of β.

Then, in either case, the corresponding s.c. contraction semigroup eAβt guaran-
teed by Theorem 1.6 is uniformly (exponentially) stable on Yβ: there exists constants
Mβ ≥ 1, ωβ > 0 (possibly depending on β) such that∥∥eAβt

∥∥
�(Yβ) ≤ Mβe−ωβt, t ≥ 0. (1.21)

We provide two radically different proofs of this result. A first proof, given
in Section 5, uses energy methods in t (multipliers). A second proof, given in
Section 6, uses the stability characterization in terms of the resolvent operator
[9, 13, 14, 30, 33]; and, indeed, provides the more informative Theorem 1.14
below, along with Section 4. This examines the spectral properties of the origin
λ = 0 in terms of the strength of the boundary operator D0, to determine, in
particular, when the term βD0z is critically needed for stability in (1.2c) (D0 is
of order s, 1 < s ≤ 2), and when is not (D0 is of order up to 1). Precise statements
are given in Propositions 4.3 and 4.5.

Theorem 1.14. Consider problem (1.2) with f ≡ 0 and u ≡ 0 (i.e., problem (5.1)),
on the space Yβ under the assumptions that d1 ≥ 0, d2 > 0, 0 ≤ α ≤ 1, ρ > 0, and
(1.4) and (1.5). The case α = 0, D0 = 0 is explicitly included. Let β ≥ 0 be fixed.

(i) Given ε > 0, there exists Cε,β such that the resolvent operator R(iω,Aβ) of
the operator Aβ in (2.37) and (2.38) over Yβ ≡ Zβ ×L2(Ω)×�(�1/2)×L2(Γ0) (see
(2.8), (2.9), (2.10), and (2.11)), as evaluated in the imaginary axis, satisfies the
estimate ∥∥R

(
iω,Aβ

)∥∥
�(Yβ) ≤ Cε,β, ∀ω ∈ R s.t. |ω| ≥ ε. (1.22)

In particular, iR − {0} ∈ ρ(AB): the imaginary axis, with the origin removed,
belongs to the resolvent set of AB.

(ii) Assume that 0 ∈ ρ(AB), the resolvent set of AB, this occurs for both Cases 1
and 2 of Theorem 1.13 (see Proposition 4.3). Then, for each β ≥ 0, we can take ε = 0
in (1.22), so that ∥∥R

(
iω,Aβ

)∥∥
�(Yβ) ≤ Cβ, ∀ω ∈ R. (1.23)

Accordingly (see [9, 30, 33]), the s.c. contraction semigroup eAβt on Yβ (see Theorem
1.6) is uniformly (exponentially) stable, that is, it satisfies (1.21). The case α = 0,
D0 = 0 is included.

2. Abstract setting. Preliminaries

In this section, we introduce the abstract setup for the coupled system (1.2),
along with critical preliminary material which is needed in the proof of the main
results. Henceforth, for simplicity of notation, we will normalize the physical
constants c and ρ1, by setting them equal to 1: c = 1, ρ1 = 1.
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Operators acting on Ω. (i) Let AN : L2(Ω) ⊃ �(AN ) → L2(Ω) be the strictly pos-
itive, selfadjoint operator, with d1 > 0, defined by

AN h = −∆h,

�
(

AN
)
=
{

h ∈ H2(Ω) :
∂

∂ν
h

∣∣∣∣
Γ0

= 0,
[

∂

∂ν
h + d1h

]
Γ1

= 0
}

.
(2.1)

Thus, A−1
N ∈ �(L2(Ω)). This is the reason why we are taking d1 > 0 throughout.

(ii) Let N0 be the Neumann map [24, page 195] from L2(Γ) to L2(Ω), defined
by

ψ = N0g ⇐⇒
{

∆ψ = 0 in Ω;
∂ψ

∂ν

∣∣∣∣
Γ0

= g,
∂ψ

∂ν
+ d1ψ

∣∣∣∣
Γ1

= 0
}

, (2.2)

N0 continuous : L2
(

Γ0
) −→ H3/2(Ω) ⊂ �

(
A3/4−ε

N

)
, ε > 0, (2.3)

so that

A3/4−ε
N N0 continuous : L2

(
Γ0
) −→ L2(Ω), (2.4)

or, more generally,

N0 continuous : Hs(Γ0
) −→ Hs+3/2(Ω), s ∈ R. (2.5)

Moreover, by Green’s second theorem [24, page 196], the following trace results
hold true:

N∗
0 AN h =

{
h|Γ0 on Γ0,

0 on Γ1,
(2.6)

where h ∈ �(AN ), and the validity of (2.6) may be extended to all h ∈ H1(Ω) ≡
�(A1/2

N ), as �(A1/2
N ) is dense in �(AN ).

Second-order abstract model. By using the Green operators introduced above, the
coupled PDE problem (1.2) can be rewritten as the following abstract second-
order system:

ztt + AN z + βAN N0D0N∗
0 AN z + AN N0D0N∗

0 AN zt + d2zt −AN N0vt = f , (2.7a)

vtt + �v + ρ�αvt + N∗
0 AN zt = �u, (2.7b)

the first equation to be read on [�(AN )]′, the latter one on [�(�)]′ (see [24,
25]).

Function spaces and operators. Next we define the space

Zβ ≡ {h ∈ �
(

A1/2
N

) ≡ H1(Ω) : h|Γ0 ∈ �
(

D1/2
0

)}
, (2.8)
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endowed with the norm

‖h‖2
Zβ

≡ ∥∥A1/2
N h
∥∥2

L2(Ω) + β
∥∥D1/2

0 N∗
0 AN h

∥∥2
L2(Γ0), (2.9)

which is needed to describe the state space of problem (2.7) (or (1.2)). (Notice
that, for β = 0, we then have Zβ = �(A1/2

N ).) In fact, the function spaces Y1 for the
wave component [z,zt] and Y2 for the plate component [v,vt] of system (2.7) are
given, respectively, by

Y1,β ≡ Y1 ≡ Zβ ×L2(Ω); Y2 ≡ �
(
�1/2)×L2

(
Γ0
)

. (2.10)

The state space for problem (2.7) is then

Yβ ≡ Y ≡ Y1 ×Y2 = Zβ ×L2(Ω)×�
(
�1/2)×L2

(
Γ0
)

. (2.11)

Remark 2.1. Note that the operator D1/2
0 N∗

0 AN is a densely defined, closed op-
erator on �(A1/2

N ) ≡ H1(Ω). In fact, for instance, �(AN ) ⊂ �(D1/2
0 N∗

0 AN ), since
by Assumption 1.3, D1/2

0 is bounded from H1(Γ0) into L2(Γ0) (see (1.5)). Fur-
thermore, D1/2

0 N∗
0 AN is closed being the composition of the closed boundedly

invertible operator D1/2
0 with the operator N∗

0 AN which is bounded on �(A1/2
N )

[15, page 164] (see (2.4) and (2.5)).

Remark 2.2. From definitions (2.8) and (2.9) it follows that Zβ reduces to �(A1/2
N )

when β = 0. Also, if r0 = 0 in (1.4) and (1.5), then D0 is a bounded operator on
L2(Γ0) and therefore the norm defined by (2.9) is equivalent to the usual one
in the space �(A1/2

N ). More generally, if D0 is an operator of order 1, that is, if
D1/2

0 : continuous H1/2(Γ0) → L2(Γ0), then the norm (2.9) for Zβ is equivalent to
the �(A1/2

N )-norm. For � being the realization of fourth-order elastic operator,
as given by (1.11), this is the case for all r0 ∈ [0,1/8]. In fact, in the worst case,
as we have seen in Remark 1.10, �(�r0 ) is topologically equivalent to H4r0 (Γ0) =
H1/2(Γ0) for r0 = 1/8. We have seen in Remarks 1.11 and 1.12 that then we must
have 1/2 < α ≤ 1.

Accordingly, we define the operators A1 : Y1 ⊃ �(A1) → Y1 and A2 : Y2 ⊃
�(A2) → Y2 as follows:

A1 =

[
0 I

−AN − βAN N0D0N∗
0 AN −AN N0D0N∗

0 AN − d2I

]
, (2.12a)

�
(

A1
)
=
{[

h1,h2
]

: h1,h2 ∈ Zβ,

h1 + βN0D0N∗
0 AN h1 + N0D0N∗

0 AN h2 ∈ �
(

AN
)}

;
(2.12b)

A2 =

[
0 I

−� −ρ�α

]
, (2.13a)

�
(

A2
)
=
{[

h1,h2
]

: h1,h2 ∈ �
(
�1/2) : �1−αh1 + ρh2 ∈ �

(
�α)}. (2.13b)



F. Bucci et al. 185

The adjoint operators are given, respectively, by

A∗
1 =

[
0 −I

AN + βAN N0D0N∗
0 AN −AN N0D0N∗

0 AN − d2I

]
, (2.14)

A∗
2 =

[
0 −I
� −ρ�α

]
, (2.15)

with domains analogously defined.

Remark 2.3 (even for β = 0). Equation (2.12b) implies that D1/2
0 N∗

0 AN h2 ∈ L2(Γ0)
for {h1,h2} ∈ �(A1) (compare with (2.8) and (2.9) for β > 0).

In fact, (2.12b), for β = 0 and with �(AN ) ⊂ �(A1/2
N ), implies at first that

N0D0N∗
0 AN h2 ∈ �(A1/2

N ), since h1∈�(A1/2
N ). It then follows that AN N0D0N∗

0 AN h2

∈ [�(A1/2
N )]′, and hence that∥∥D1/2

0 N∗
0 AN h2

∥∥2
L2(Γ0) =

(
AN N0D0N∗

0 AN h2,h2
)

L2(Γ0) < ∞, (2.16)

as h2 ∈ �(A1/2
N ) as well.

Generation results for A1 and A2, and fractional powers of (−A2). We begin with
the statement of the main properties of the operators A1 and A2 which will be
used in the sequel. In particular, the generation properties of A1 and A2 will
eventually lead to the proof of well-posedness of the first-order abstract system
to which (2.7) (hence (1.2)) will be reduced.

Lemma 2.4. Assume Hypotheses 1.1, 1.2, and 1.3. With d1 > 0, for all d2, β ≥ 0,
the operators A1 and A∗

1 defined by (2.12), and (2.14) are maximal dissipative on
the space Y1 defined by (2.10) and hence are the generators of strongly continuous
semigroups eA1t and eA∗

1t of contractions on Y1, t ≥ 0.

Proof. This is given in Appendix A and is based on the critical role of the norm
(2.9) for the space Zβ. �

Remark 2.5. The presence of the high damping term D0zt in (1.2c), hence of the
term −AN N0D0N∗

0 AN in (2.12a) makes the present generation result of Lemma
2.4 nonstandard; in particular, outside the scope of [25, Proposition 7.6.2.1,
Chapter 7, page 664].

Remark 2.6 (for β ≥ 0). Let {z0, z1} ∈ �(A1). Then, by Lemma 2.4,{
z,zt
}
= eA1·[z0, z1

] ∈ C
(
[0,T];�(A1)

)
,{

zt, ztt
}
= eA1·A1

[
z0, z1
] ∈ C

(
[0,T];Y1

)
.

(2.17)

Explicitly, via (2.12b) and (2.10), this implies that

z,zt ∈ C
(
[0,T];H1(Ω)

)
, ztt ∈ C

(
[0,T];L2(Ω)

)
,

hence ∆z ∈ C
(
[0,T];L2(Ω)

)
.

(2.18)
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Moreover, recalling Remark 2.3 for β = 0, and (2.8) and (2.9) for β > 0, we
obtain

D1/2
0 N∗

0 AN zt(t) ∈ C
(
[0,T];L2(Γ0)

)
. (2.19)

Hence,

D1/2
0 N∗

0 AN z(t) = D1/2
0 N∗

0 AN z(0) +
∫ t

0
D1/2

0 N∗
0 AN zτ(τ)dτ ∈ C1([0,T];L2(Γ0)

)
if D1/2

0 N∗
0 AN z(0) ∈ L2

(
Γ0
)

.
(2.20)

Finally, for β = 0, let � be the subspace of �(A1) defined by

� ≡ {[z1, z2
] ∈ �

(
A1
)

: D1/2
0 N∗

0 AN z1 ∈ L2
(

Γ0
)}

. (2.21)

Then, we have that � is invariant under the resolvent R(λ,A1) of A1; that is,

R
(

λ,A1
)
� ⊂ �, for β = 0, Reλ > 0. (2.22)

Indeed, writing −R(λ,A1)[z1, z2] = [y1, y2] ∈ �(A1) for [z1, z2] ∈ �, by (2.12a)
and (2.12b) with β = 0 and, say, d2 = 0 without loss of generality, we obtain
y1 = (y2 − z1)/λ, with [y1, y2] ∈ �, as desired, since by Remark 2.3 we have
D1/2

0 N∗
0 AN y2 ∈ L2(Γ0).

In the following lemma, we recall from [5, 6, 7] a set of results concerning the
operator A2 of paramount importance here.

Lemma 2.7 (see [5, 6, 7]). Assume Hypothesis 1.1 on �.
(i) For every α ∈ [1/2,1], the operators A2 and A∗

2 defined by (2.13) and (2.15)
are maximal dissipative on the space Y2 defined by (2.10), and hence are the gen-
erators of strongly continuous semigroups eA2t and eA∗

2t of contractions on Y2, t ≥ 0,
which moreover are analytic for t > 0, as well as (uniformly) exponentially stable
on Y2: there exist constants C ≥ 1, a > 0 such that ‖eAt‖�(Y1) ≤ Ce−at, t ≥ 0. Also,
A−1

2 ∈ �(Y2).
(ii) For every s ∈ [0,1], the fractional powers (−A2)s of A2 are well defined and

their domains are given as follows:

(a) if 0 ≤ s ≤ 1/2, then

�
((−A2

)s) = �
(
�1/2+s(1−α))×�

(
�αs); (2.23a)∥∥∥∥∥(−A2

)s

[
x1

x2

]∥∥∥∥∥
2

Y2

=
∥∥�1/2+s(1−α)x1

∥∥2
L2(Γ0) +

∥∥�αsx2
∥∥2

L2(Γ0); (2.23b)

(b) if 1/2 ≤ s ≤ 1, then

�
((−A2

)s) = {[x, y] : x ∈ D
(
�1/2+s(1−α)),

y ∈ �
(
�α−1/2+s(1−α)); �1−αx + ρy ∈ �

(
�αs)}. (2.24)
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The previous characterization of domains of fractional powers (−A2)s of −A2

allows us to establish some properties of their inverse, along with their corre-
sponding norms, which will be critically used in the proof of Theorem 1.7.

Lemma 2.8. Assume Hypothesis 1.1 on �.
(i) If 0 ≤ s ≤ 1/2, then

∥∥∥∥∥A−s
2

[
v1

v2

]∥∥∥∥∥
2

Y2

=
∥∥�1/2−s(1−α)v1

∥∥2
L2(Γ0) +

∥∥�−αsv2
∥∥2

L2(Γ0),

[
v1

v2

]
∈ [�((−A2

)s)]′
,

(2.25)

so that in particular,

∥∥∥∥∥A−s
2

[
0
v2

]∥∥∥∥∥
2

Y2

=
∥∥�−αsv2

∥∥2
L2(Γ0), v2 ∈

[
�
(
�αs)]′. (2.26)

In (2.25), [ ]′ (resp., ( )′) denotes duality with respect to Y2 (resp., L2(Γ0)) as a
pivot space.

(ii) If, instead, 1/2 ≤ s ≤ 1, then

∥∥∥∥∥A−s
2

[
v1

v2

]∥∥∥∥∥
2

Y2

≤ k
(∥∥�1/2−s(1−α)v1

∥∥2
L2(Γ0) +

∥∥�1/2−α−s(1−α)v2
∥∥2

L2(Γ0)

)
,

[
v1

v2

]
∈ [�((−A2

)s)]′
,

(2.27)

for some constant k, so that in particular,

∥∥∥∥∥A−s
2

[
0
v2

]∥∥∥∥∥
2

Y2

≤ k
∥∥�1/2−α−s(1−α)v2

∥∥2
L2(Γ0), v2 ∈

(
�
(
�α−1/2+s(1−α)))′. (2.28)

Proof of Lemma 2.8. (i) Let 0 ≤ s ≤ 1/2. Then, from the first characterization
(2.23) it follows that

[
�
((−A2

)s)]′ = �
(
�1/2−s(1−α))× (D(�αs))′, (2.29)

where [ ]′ in the left-hand side of (2.29) denotes duality with respect to Y2 as
a pivot space, while ( )′ on the right-hand side denotes duality with respect to
L2(Γ0), respectively, as a pivot space. Hence, (2.29) implies (2.25), which yields
estimate (2.26) as a special case.

(ii) Let now 1/2 ≤ s ≤ 1. Characterization (2.24) implies, a fortiori,

�
((−A2

)s) ⊆ �
(
�1/2+s(1−α))×�

(
�α−1/2+s(1−α)), (2.30)
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it then follows that

�
(
�1/2−s(1−α))× (�(�α−1/2+s(1−α)))′ ⊆ [�((−A2

)s)]′
, (2.31)

with continuous injection, and dualities to be understood as before. Therefore,
(2.31) implies estimate (2.27), and this yields estimate (2.28), again as a spe-
cial case. �

Coupling. Finally, we introduce the densely defined (unbounded, unclosable)
trace operator C : Y1 ⊃ �(C) → Y2 defined by

C

[
z1

z2

]
≡
[

0
N∗

0 AN z2

]
=

[
0 0
0 N∗

0 AN

][
z1

z2

]
, (2.32)

with domain (see (2.4) and (2.5))

�(C) =
{[

z1, z2
] ∈ Y1 : N∗

0 AN z2 = z2|Γ0 ∈ L2
(

Γ0
)}

⊃ �
(

A1/2
N

)×D
(

A1/4+ε
N

)
, ε > 0,

(2.33)

so that �(A1/2
N )×�(A1/2

N ) ⊂ �(C). Its adjoint

C∗ : Y2 −→ �
(

A1/2
N

)× [�(A1/4+ε
N

)]′
, (2.34)

in the sense that (Cy1, y2)Y2 = (y1,C∗y2)Y1 , is given by

C∗
[

v1

v2

]
=

[
0

AN N0v2

]
=

[
0 0
0 AN N0

][
z1

z2

]
, (2.35)

where AN N0 : L2(Γ0) → [�(A1/4+ε
N )]′, recalling properties (2.4) and (2.5).

First-order abstract model. Dynamics operator. Finally, from (2.12), (2.13), (2.32),
and (2.35), we define the operator

A =

[
A1 C∗

−C A2

]
: Y ⊃ �(A) −→ Y

= Y1 ×Y2 = Zβ ×L2(Ω)×�
(
�1/2)×L2

(
Γ0
)

,

(2.36)

which explicitly reads as follows:

Aβ ≡ A

=




0 I 0 0

−AN −βAN N0D0N∗
0 AN −AN N0D0N∗

0 AN −d2I 0 AN N0

0 0 0 I

0 −N∗
0 AN −� −ρ�α




;
(2.37)
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with domain

�(A) =
{[

z1, z2, v1, v2
]∈Y : z2 ∈ Zβ, v2 ∈ �

(
�1/2),�1−αv1 + ρv2 ∈ �

(
�α),

z1 + βN0D0N∗
0 AN z1 + N0D0N∗

0 AN z2 −N0v2 ∈ �(AN )
}

.

(2.38)

Control operator. Finally, we set U = 0× 0× 0×�, set ũ = [0,0,0,u], u ∈ �, and
define the operator B : U → [�(A∗)]′, duality with respect to Y , as a pivot space,
as well as F by

Bũ =




0
0
0

�u


 ; F =




0
f
0
0


 ; A−1B =




0
0

−�−1�
0


 ∈ �(U ;Y), (2.39)

so that B ∈ �(U ; [�(A∗)]′). Here we have used (1.3) to deduce that �−1� =
�r−1�−r� is bounded from � into L2(Γ0), where r < 1/2. To obtain the form of
A−1B, we write explicitly the system A[z1, z2, v1, v2] = Bũ by using (2.37), (2.38),
and (2.39) and readily obtain z2 = 0, v2 = 0, ‖A1/2

N z1‖2 + β‖D1/2
0 N∗

0 AN z1‖2 = 0,
hence z1 = 0; then −�v1 = �u which finally yields v1 = −�−1�u.

Finally, returning to the second-order abstract model (2.7), we see that these
equations can be rewritten as the following first-order abstract equation in the
variable y(t) = [z(t), zt(t), v(t), vt(t)]:

y′ = Ay + Bũ + F in
[
�
(

A∗)]′, (2.40)

where A, B, F are defined in (2.37), (2.38), and (2.39), respectively.
Theorem 1.6 claims well-posedness of (2.40) with ũ ≡ 0, F ≡ 0, in the sense

that the operator A in (2.37) and (2.38) is maximal dissipative and hence gener-
ates an s.c. semigroup of contractions eAt on the space Y defined by (2.11). As
noted in Remark 2.5, Theorem 1.6 is nonstandard due to the high damping term
D0zt in (1.2c), hence of the term −AN N0D0N∗

0 AN in (2.37) acting on the second
coordinate. In particular, we cannot invoke [25, Proposition 7.6.2.1, Chapter 7,
page 664].

3. Proof of Theorem 1.7: singular estimate for eAtB

The goal of this section is to establish the singular estimate (1.8) under the con-
ditions of Theorem 1.7(I), (II).

3.1. Orientation. We have already observed that the s.c. semigroup eAt, origi-
nally defined on the space Y in (2.11), or (2.36), as guaranteed by Theorem 1.6,
can, in fact, be extended as an s.c. semigroup on [�(A∗)]′ as well, where [ ]′

denotes duality with respect to Y as a pivot space. Thus, according to prop-
erty (2.39) for B, we have that y(t) ≡ eAtBũ ∈ C([0,T]; [�(A∗)]′) and satisfies
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ẏ = Ay ∈ [�(A∗)]′, y(0) = Bũ for all ũ ∈ U . Our goal is to drastically improve
upon this regularity result and show that, in fact, eAtBũ ∈ C((0,T];Y) and, more-
over, it satisfies the singular estimate (1.8) as t ↓ 0.

However, the original solution y(t) = eAtBũ is not sufficiently regular in space
to justify the required computations in the arguments below. This fact then re-
quires that we start with another, smoother initial condition y(0) ∈ �(A) so that,
in view of Theorem 1.6, the corresponding solution y(t) = eAt y(0) ∈ C([0,T];
�(A)) possesses the required regularity properties in space. Due to the form of
Bũ = [0,0,0,�u] in (2.39), where �u ∈ [�(�r)]′ or �−r�u ∈ L2(Γ0), by (1.3),
a natural first guess would be to take an initial condition of the type [0,0,0, v2]
with 0 �= v2 sufficiently smooth, but to be penalized on the final estimates in the
[�(�r)]′-norm; so that, in the end, by continuity, v2 can be substituted with
�u in the final estimates. However, the problem with this choice is that no mat-
ter how smooth v2 is, the point [0,0,0, v2] can never belong to �(A), as (2.38)
readily reveals. Thus, we modify our initial guess and take, instead, a sequence of
initial conditions y0,n = [z0,n,0,0, v2] ∈ �(A)—this is now possible by (2.38)!—
penalize v2 in the [�(�r)]′-norm and, at the end, let z0,n → 0, in order to recover
the desired initial condition [0,0,0,�u] by continuity. This is what we will do
next.

Thus, as explained above, we will begin by analyzing the following first-order
problem:

ẏ = Ay, y(0) ∈ �(A), (3.1)

where A is given by (2.37) and (2.38); or, more specifically, its corresponding
second-order version

ztt + AN z + βAN N0D0N∗
0 AN z + AN N0D0N∗

0 AN zt + d2zt −AN N0vt = 0, (3.2a)

vtt + �v + ρ�αvt + N∗
0 AN zt = 0, (3.2b)

y(0) =
{

z(0) = z0, zt(0) = 0, v(0) = 0, vt(0) = v2
} ∈ �(A), (3.2c)

which is system (2.7) (i.e., problem (1.2)) with f ≡ 0, u ≡ 0, and a special ini-
tial condition. Then, according to Theorem 1.6, the solution of problem (3.2)
satisfies the regularity property

y(t) =
[
z(t), zt(t), v(t), vt(t)

]
= eAt y(0) ∈ C

(
[0,T];�(A)

)
, (3.3)

that is, a fortiori, from (2.38),

y1(t) =
[
z(t), zt(t)

] ∈ C
(
[0,T];Zβ ×Zβ

)
; (3.4)

y2(t) =
[
v(t), vt(t)

] ∈ C
(
[0,T];�

(
�1/2)×�

(
�1/2)), (3.5)
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where Zβ is defined in (2.8) and (2.9). The a priori regularity in (3.4)–(3.5) will
allow us to justify the computations in the lemmas below. As explained above,
in effect, we will work with a set of initial conditions y0,n ∈ �(A) given by (3.2c);
obtain the desired singular estimate for ‖eAt y0,n‖ for this set of initial conditions;
and then, at the end, extend the singular estimate to initial conditions of the form
[0,0,0,�u] by letting zn(0) → 0.

Furthermore, since the proof of Theorem 1.7(II) is more amenable, due to
the smoothing effect of the boundary damping on Γ0 in the wave component, we
choose to give first the proof of (II) in Section 3.2. The proof of (I) will require,
by contrast, delicate sharp regularity results of the trace zt |Γ0 of a second-order
hyperbolic equation, and will be given in Section 3.3.

3.2. Proof of Theorem 1.7(II)

Lemma 3.1. Assume Hypotheses 1.1, 1.2, and 1.3 of (II). Then, the solution of
the homogeneous system (3.2) satisfies the following estimate for any ε > 0, where
δ1 > 0 is the constant in assumption (1.4):

∥∥zt(t)
∥∥2

L2(Ω) +
∥∥A1/2

N z(t)
∥∥2

L2(Ω) + β
∥∥D1/2

0 N∗
0 AN z(t)

∥∥2
L2(Γ0)

+
(
2δ1 − ε

)∫ t

0

∥∥N∗
0 AN zτ(τ)

∥∥2
�(�r0 ) dτ + 2d2

∫ t

0

∥∥zτ(τ)
∥∥2

L2(Ω) dτ

≤ 1
ε

∫ t

0

∥∥vτ(τ)
∥∥2

[�(�r0 )]′ dτ +
∥∥z0
∥∥2

Zβ
.

(3.6)

(Here and below, we keep z0 in the estimates: at the end of this section, we
will let a sequence of z0 go to zero.)

Proof. With the a priori regularity stated in (3.4), we take the inner product of
(3.2a) with zt, thus obtaining at each t:

1
2

d

dt

{(
zt(t), zt(t)

)
L2(Ω) +

(
AN z(t), z(t)

)
L2(Ω)

+ β
(

D0N∗
0 AN z(t),N∗

0 AN z(t)
)

L2(Γ0)

}
+
(

D0N∗
0 AN zt(t),N∗

0 AN zt(t)
)

L2(Γ0) + d2
(

zt(t), zt(t)
)

L2(Ω)

=
(

vt(t),N∗
0 AN zt(t)

)
L2(Γ0).

(3.7)

Now, integrating (3.7) in time from 0 to t with initial condition z(0) = z0, zt(0) =
0 by (3.2c), and using the left-hand side of estimate (1.4) yields, via Schwarz
inequality,
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∥∥2

L2(Ω) +
∥∥A1/2

N z(t)
∥∥2

L2(Ω) + β
∥∥D1/2

0 N∗
0 AN z(t)

∥∥2

+ 2δ1

∫ t

0

∥∥N∗
0 AN zτ(τ)

∥∥2
�(�r0 ) dτ + 2d2

∫ t

0

∥∥zτ(τ)
∥∥2

L2(Ω) dτ

≤ 2
∫ t

0

∣∣∣(vτ(τ),N∗
0 AN zτ(τ)

)
L2(Γ0)

∣∣∣dτ

+
∥∥A1/2

N z0
∥∥2

L2(Ω) + β
∥∥D1/2

0 N∗
0 AN z0

∥∥2
L2(Γ0)

≤ ε

∫ t

0

∥∥N∗
0 AN zτ(τ)

∥∥2
�(�r0 ) dτ +

1
ε

∫ t

0

∥∥vτ(τ)
∥∥2

[�(�r0 )]′ dτ +
∥∥z0
∥∥2

Zβ
.

(3.8)

In the last step, we have recalled the space Zβ in (2.8) and (2.9). Then, (3.8) yields
(3.6), as desired. Moreover, we have used the duality pairing between [�(�r0 )]′

and �(�r0 ) for the last term in (3.7). �

As an immediate corollary, we extract the following two key estimates to be
invoked in the sequel, by taking now ε sufficiently small in (3.6).

Lemma 3.2. Assume Hypotheses 1.1, 1.2, and 1.3 of Theorem 1.7(II). Then there
exists a positive constant C1 such that for any t > 0,

∥∥zt(t)
∥∥2

L2(Ω) +
∥∥A1/2

N z(t)
∥∥2

L2(Ω) + β
∥∥D1/2

0 N∗
0 AN z(t)

∥∥2
L2(Γ0)

≡ ∥∥z(t)
∥∥2

Zβ
+
∥∥zt(t)

∥∥2
L2(Ω)

≤ C1

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ +
∥∥z0
∥∥2

Zβ
;

(3.9)

∫ t

0

∥∥N∗
0 AN zτ(τ)

∥∥2
�(�r0 ) dτ ≤ C1

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ +
∥∥z0
∥∥2

Zβ
. (3.10)

At this point we need to estimate the integral on the right-hand side of (3.9)
and (3.10) in terms of �−r v2 ∈ L2(Γ0).

Lemma 3.3. Assume, in addition to Hypotheses 1.1, 1.2, and 1.3, also condition
(1.9): α− 2r ≥ −2r0 for the constants r, r0, and α as in Theorem 1.7(II). Then, the
following estimate holds true for the component vt of system (3.2), where C2 and C3

are suitable (generic) positive constants:
(i)

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ ≤ C3eC2t
[∥∥�−r v2

∥∥2
L2(Γ0) +

∥∥z0
∥∥2

Zβ

]
. (3.11)

(ii) Consequently, by (3.10) and (3.11),

∫ t

0

∥∥N∗
0 AN zτ(τ)

∥∥2
�(�r0 ) dτ ≤ CeC2t

[∥∥�−r v2
∥∥2

L2(Γ0) +
∥∥z0
∥∥2

Zβ

]
. (3.12)
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Remark 3.4. If we had α = 1 in the plate model (1.2d) (Kelvin-Voight damping),
then by (1.9), we could then take r0 = 0 in assumption (1.4), and so we could as
well deal with a bounded damping operator D0 = d0I , d0 ≥ 0. In the present Part
(II) of boundary damping on Γ0, we would then have d0 > 0. Then, the proof
of Lemma 3.3, (3.11), in the case r0 = 0 would simplify, as it would only require
to have an estimate of vt ∈ L2(0, t;L2(Γ0)) in terms of �−r v2 ∈ L2(Γ0). This is an
easier task over the one of establishing the full statement of (3.11) when r0 > 0. In
short, the weakening of the damping term �αvt in the plate equation (1.2d), as
α decreases from α = 1 (r0 = 0) to α = 1/2 (r0 > 0 as in (1.4) and (1.5)) forces the
necessity of increasing the strength of the damping operator D0 (r0) on the wave
equation in (1.2c). This is then responsible for requiring the full strength of the
statement of Lemma 3.3, which then reflects the additional difficulty caused by
the parameter α, as it ranges from α = 1 (easier case) to α = 1/2 (more challenging
case).

Proof of Lemma 3.3. We will provide two different proofs of this critical new in-
gredient over the case α = 1: one here below, and one in Appendix B.

First proof. (i) With the a priori regularity stated in (3.3), (3.4), and (3.5), we
take the inner product of (3.2b) with �−2r vt, where r is the constant of assump-
tion (1.3). We then obtain at each t the following equality:

1
2

d

dt

{∥∥�−r vt(t)
∥∥2 +
∥∥�1/2−r v(t)

∥∥2
}

+ ρ
∥∥�α/2−r vt(t)

∥∥2 +
(

N∗
0 AN zt(t),�−2r vt(t)

)
= 0.

(3.13)

Now, we integrate (3.13) in time from 0 to t with initial condition v(0) = 0,
vt(0) = v2 by (3.2c)—using Schwarz inequality. We obtain

∥∥�−r vt(t)
∥∥2

L2(Γ0) +
∥∥�1/2−r v(t)

∥∥2
L2(Γ0) + 2ρ

∫ t

0

∥∥�α/2−r vτ(τ)
∥∥2

L2(Γ0) dτ

≤ 2
∫ t

0

∣∣∣(�r0 N∗
0 AN zτ(τ),�−2r−r0 vτ(τ)

)
L2(Γ0)

∣∣∣dτ +
∥∥�−r v2

∥∥2
L2(Γ0)

≤ ε

∫ t

0

∥∥N∗
0 AN zτ(τ)

∥∥2
�(�r0 ) dτ

+
1
ε

∫ t

0

∥∥�−2r−r0 vτ(τ)
∥∥2

L2(Γ0) dτ +
∥∥�−r v2

∥∥2
L2(Γ0)

(3.14)

(by (3.10)) ≤ C1ε

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ

+
1
ε

∫ t

0

∥∥�−2r−r0 vτ(τ)
∥∥2

L2(Γ0) dτ

+
∥∥�−r v2

∥∥2
L2(Γ0) + ε

∥∥z0
∥∥2

Zβ
,

(3.15)

where to go from (3.14) to (3.15) we have invoked estimate (3.10) for N∗
0 AN zt.
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Next, we recall assumption (1.9) of the present part (II) that

α

2
− r ≥ −r0, so that

∥∥�α/2−r vτ(τ)
∥∥2 ≥ c1

∥∥�−r0 vτ(τ)
∥∥2

, (3.16)

where here and below, in the present proof, ‖ ‖ refers to the L2(Γ0)-norm. As a
consequence, using this bound on the third term on the left-hand side of (3.14),
we see that (3.15) implies

∥∥�−r vt(t)
∥∥2 +
∥∥�1/2−r v(t)

∥∥2 + 2ρc1

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

dτ

≤ C1ε

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

dτ +
1
ε

∫ t

0

∥∥�−2r−r0 vτ(τ)
∥∥2

dτ +
∥∥�−r v2

∥∥2 + ε
∥∥z0
∥∥2

Zβ
.

(3.17)

Taking now ε sufficiently small, and since −r > −2r − r0, we obtain, with positive
constants C2 and c2 = 2ρc1 −C1ε > 0,

∥∥�−r vt(t)
∥∥2 +
∥∥�1/2−r v(t)

∥∥2 + c2

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

dτ

≤ C2

∫ t

0

∥∥�−r vτ(τ)
∥∥2

dτ +
∥∥�−r v2

∥∥2 + ε
∥∥z0
∥∥2

Zβ
,

(3.18)

which finally yields

∥∥�−r vt(t)
∥∥2 ≤ ∥∥�−r v2

∥∥2 + ε
∥∥z0
∥∥2

Zβ
+ C2

∫ t

0

∥∥�−r vτ(τ)
∥∥2

dτ. (3.19)

In (3.19), we invoke the classical Gronwall inequality (see [37, page 92], [29,
page 205]), thus obtaining∥∥�−r vt(t)

∥∥2 ≤
[∥∥�−r v2

∥∥2 + ε
∥∥z0
∥∥2

Zβ

]
eC2t , (3.20)

which in turn implies after integration∫ t

0

∥∥�−r vτ(τ)
∥∥2

dτ ≤ 1
C2

(
eC2t − 1

)[∥∥�−r v2
∥∥2 + ε

∥∥z0
∥∥2

Zβ

]
. (3.21)

We return to (3.18), apply (3.21) on its right-hand side and finally get∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

dτ ≤ 1
c2

[(
eC2t − 1

)
+ 1
]{∥∥�−r v2

∥∥2 + c
∥∥z0
∥∥2

Zβ

}
=

1
c2

eC2t
[∥∥�−r v2

∥∥2 + c
∥∥z0
∥∥2

Zβ

]
,

(3.22)

which is nothing but (3.11), as desired, after setting C3 = 1/c2.
(ii) Estimate (3.12) follows immediately from (3.10) by using (3.11).
A second proof of Lemma 3.3 is given in Appendix B. �
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Proposition 3.5. Assume Hypotheses 1.1, 1.2, and 1.3, and, in addition, condi-
tion (1.9): α− 2r ≥ −2r0 of Theorem 1.7(II). Then, the solution y(t) = [y1(t), y2(t)]
of system (3.1) or (3.2), with y1(t) = [z(t), zt(t)], y2(t) = [v(t), vt(t)], satisfies the
following estimates on 0 ≤ t ≤ T , where the constant γ is given in (1.10) and Ci are
suitable positive constants:

∥∥y1(t)
∥∥2

Y1
=
∥∥[z(t), zt(t)

]∥∥2
Y1

≤ C1eC2t
[∥∥�−r v2

∥∥2
L2(Γ0) +

∥∥z0
∥∥2

Zβ

]
; (3.23)

∥∥y2(t)
∥∥

Y2
=
∥∥[v(t), vt(t)

]∥∥
Y2

≤ CT eC2t
(

1
tγ + 1

)[∥∥�−r v2
∥∥

L2(Γ0) +
∥∥z0
∥∥

Zβ

]
.

(3.24)

In summary, the following is true (see (3.2c)):

∥∥eAt y(0)
∥∥

Y =

∥∥∥∥∥∥∥∥∥
eAt




z0

0
0
v2



∥∥∥∥∥∥∥∥∥

Y

=

∥∥∥∥∥
[

y1(t)
y2(t)

]∥∥∥∥∥
Y

≤ CT

tγ

{∥∥z0
∥∥

Zβ
+
∥∥�−r v2

∥∥
L2(Γ0)

}
, 0 < t ≤ T,

(3.25)

for all z0 ∈ Zβ, and all v2 ∈ [�(�r)]′. (The factor eC2t in (3.23), (3.24) is not im-
portant.)

Proof. The first estimate (3.23) is easily deduced from (3.9) by using (3.11) and
recalling (2.10) for Y1 and (2.8) and (2.9) for Zβ. In order to obtain the second
estimate (3.24), we return to the initial value problem (3.2), with focus on the
v-equation (3.2b). By the structure of the operator A in (2.37) and (2.38), it
follows that this equation, (3.2b), reduces to the first-order system

d

dt

[
v
vt

]
= A2

[
v
vt

]
+

[
0

−N∗AN zt

]
,

[
v(0)

vt(0)

]
=

[
0
v2

]
, (3.26)

whose mild solution is given by

[
v(t)

vt(t)

]
= eA2t

[
0
v2

]
−
∫ t

0
eA2(t−τ)

[
0

N∗AN zτ(τ)

]
dτ. (3.27)

We recall that, by Lemma 2.7, the operator A2 in (3.26) and (3.27) is the gener-
ator of an s.c. semigroup of contractions eA2t on the space Y2, which, moreover,
is analytic on Y2. We split the first term on the right-hand side of (3.27) as

∥∥∥∥∥eA2t

[
0
v2

]∥∥∥∥∥ =
∥∥∥∥∥(−A2

)s
eA2t(−A2

)−s

[
0
v2

]∥∥∥∥∥ , (3.28)
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with s to be chosen appropriately below: this way we can exploit both analyticity
of eA2t and the estimates preliminarily established in Lemma 2.8 for the frac-
tional powers A−s

2 . To proceed, we need to distinguish two cases.
Case 1. Let r/α ≤ 1/2. Then we take s = r/α in (3.28), thus apply formula

(2.26) and immediately get

∥∥∥∥∥eA2t

[
0
v2

]∥∥∥∥∥
Y2

=

∥∥∥∥∥(−A2
)r/α

eA2t(−A2
)−r/α

[
0
v2

]∥∥∥∥∥
Y2

≤ ∥∥(−A2
)r/α

eA2t
∥∥∥∥�−r v2

∥∥
L2(Γ0) ≤

c3

tr/α

∥∥�−r v2
∥∥

L2(Γ0),

(3.29)

where c3 is a positive constant.
Case 2. Let instead r/α > 1/2, we then seek to find an exponent s, which will

turn out to be 1/2 < s < 1, such that, by (2.28), the following estimates hold true:

∥∥∥∥∥A−s
2

[
0
v2

]∥∥∥∥∥
2

Y2

≤ k
∥∥�1/2−α+s(α−1)v2

∥∥2
L2(Γ0) = k

∥∥�1/2−α+r+s(α−1)�−r v2
∥∥2

L2(Γ0) (3.30)

≤ c2
∥∥�−r v2

∥∥2
L2(Γ0). (3.31)

This is possible, provided that 1/2−α + r + s(α− 1) = 0 (or ≤ 0), that is, provided
that we choose

s = γ ≡ 1/2−α + r

1−α
, so that

1
2
=

1/2−α + α/2
1−α

< s = 1 +
r − 1/2
1−α

< 1, (3.32)

as anticipated, in which case estimate (3.31) holds true. Therefore, with s = γ
given by (3.32), that is, with γ given by (1.10), returning to (3.28) and using
(3.31), we obtain

∥∥∥∥∥eA2t

[
0
v2

]∥∥∥∥∥
Y2

=

∥∥∥∥∥(−A2
)s

eA2t(−A2
)−s

[
0
v2

]∥∥∥∥∥
Y2

≤ ∥∥(−A2
)s

eA2t
∥∥∥∥∥∥∥(−A2

)−s

[
0
v2

]∥∥∥∥∥
Y2

(by (3.31)) ≤ kc3

tγ

∥∥�−r v2
∥∥

L2(Γ0), 0 < t,

(3.33)

as desired.
We notice that for r/α = 1/2 both cases yield the same estimate γ = 1/2. On the

other hand, in both cases r/α ≤ 1/2 and r/α > 1/2, we obtain by use of Hölder’s
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inequality, estimate (3.12), and (2.10) on Y2:

∥∥∥∥∥
∫ t

0
eA2(t−τ)

[
0

N∗AN zτ(τ)

]
dτ

∥∥∥∥∥
Y2

≤
∫ t

0

∥∥N∗AN zτ(τ)
∥∥

L2(Γ0) dτ

≤
√

t
(∫ t

0

∥∥N∗AN zτ(τ)
∥∥2

L2(Γ0) dτ
)1/2

(by (3.12)) ≤
[∥∥�−r v2

∥∥
L2(Γ0) +

∥∥z0
∥∥

Zβ

]
c5

√
t e(C2/2)t

≤
[∥∥�−r v2

∥∥
L2(Γ0) +

∥∥z0
∥∥

Zβ

]
cT eC2t ,

(3.34)

0 < t ≤ T , for a suitable constant cT .
Finally, in order to estimate the solution (3.27), we combine (3.29), (3.33),

and (3.34) and obtain (3.24), as desired. Finally, estimate (3.25) is obtained by
continuous extension, from y(0) ∈ �(A) as originally taken in (3.2c) to y(0) ∈
Y . �

We finally complete the proof of Theorem 1.7(II) by the anticipated limit pro-
cess described in Section 3.1. (That is why we kept z0 in the estimates through-
out.)

Completion of the proof of Theorem 1.7(II). We want to show that, under As-
sumptions 1.1, 1.2, 1.3, and, in addition, condition (1.9): α − 2r ≥ −2r0 of part
(II), then the singular estimate (1.8) holds true, where the exponent γ is defined
by (1.10).

To establish this, we consider a sequence of problems (3.2) with initial con-
ditions yn(0) = {zn,0,0,0, v2} ∈ �(A), and zn,0 → 0 in Zβ. For each such problem,
Proposition 3.5 holds true, and (3.25) yields, for each t > 0,

∥∥eAt yn(0)
∥∥

Y =

∥∥∥∥∥∥∥∥∥
eAt




zn,0

0
0
v2



∥∥∥∥∥∥∥∥∥

Y

≤ CT

tγ

{∥∥zn,0
∥∥

Zβ
+
∥∥�−r v2

∥∥
L2(Γ0)

}
, 0 < t ≤ T,

(3.35)

for all zn,0 ∈ Zβ and all v2 ∈ [�(�r)]′. Letting n ↗∞ on both sides of (3.35), we
obtain, with y(0) = [0,0,0, v2],

∥∥eAt y(0)
∥∥

Y =

∥∥∥∥∥∥∥∥∥
eAt




0
0
0
v2



∥∥∥∥∥∥∥∥∥

Y

≤ CT

tγ

∥∥�−r v2
∥∥

L2(Γ0), 0 < t ≤ T, (3.36)
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for all v2 ∈ [�(�r)]′. Setting, in particular, v2 = �u in (3.36), that is, taking
y(0) = Bũ = [0,0,0,�u], we obtain by recalling (1.3),

∥∥eAtBũ
∥∥

Y ≤ CT

tγ

∥∥�−r�u
∥∥

L2(Γ0) =
CT

tγ ‖u‖� =
CT

tγ

∥∥ũ
∥∥

U , 0 < t ≤ T, (3.37)

and Theorem 1.7(II) is proved.

3.3. Proof of Theorem 1.7(I): case D0 = 0

Orientation. Theorem 1.7 says that under the assumptions of part (I), we can
take the operator D0 in (1.2c) to be null: D0 ≡ 0. This means that the boundary
condition on Γ0 does not provide in this case any smoothing effect for the veloc-
ity trace zt |Γ0 = N∗

0 AN zt of the wave component on the flat, flexible wall Γ0. Thus,
the present case D0 = 0, where no regularizing damping occurs on the interface
wall Γ0 for the z-problem, is much more challenging than the one of Section 3.2,
where—by contrast—a natural regularity of the trace zt |Γ0 in (1.2c) was built-in
with D0 coercive and satisfying assumption (1.4). In the present case, in fact, the
a priori regularity of the velocity component zt ∈ L2(Ω) (due to Theorem 1.6)
does not even allow a priori to define the trace zt |Γ0 on the boundary Γ0. On the
other hand, this trace appears in (1.2c) of the model, as a coupling term between
the abstract plate and the wave. This coupling term is now the main technical
difficulty of the problem under study in the present case D0 = 0. In order to cope
with this issue, we will have to resort to “sharp” trace regularity theory for solu-
tions to hyperbolic problems [19, 21, 22, 34] (see also [2] for a parallelopiped).
It is known, by now, that hyperbolicity in the dynamics induces a certain addi-
tional regularity to traces of solutions on the boundary, which is not obtainable
from trace theory and sharp interior regularity. The amount of additional regu-
larity gained on the boundary depends on the boundary conditions imposed on
the wave. More precisely,

(a) if the boundary conditions of the hyperbolic problem are of Dirichlet
type (i.e., the so-called Lopatinski condition is satisfied), then traces of
its solutions on the boundary display an additional 1/2 derivative with
respect to standard interior results [17, 19]. In particular, finite energy
solutions z ∈ H1(Q) will have traces z|Γ ∈ H1(Σ). This means that we ob-
tain a gain of 1/2 derivative with respect to classical trace theory applied
to H1(Ω)-functions;

(b) if, instead, the boundary conditions do not satisfy the Lopatinski condi-
tion (as in the present case of Neumann BC), then there is still a gain of
boundary (trace) regularity of hyperbolic solutions, but always strictly
less than 1/2, unless the wave equation is one dimensional. The amount
of the “additional” regularity gained on the boundary depends on the
geometry of the domain.
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For instance, to illustrate, if Ω is an n-dimensional parallelopiped (resp., an
n-sphere), n ≥ 2, then a finite energy wave-equation solution z ∈ H1(Q) has a
trace z|Σ ∈ H3/4(Σ) (resp., z|Σ ∈ H2/3(Σ)) (see [23, Theorems B and C] and [23,
Theorem 3.3a]), thus with a gain of 1/4 (resp., of 1/6) with respect to standard
trace theory applied to interior regularity. The case of a general domain Ω, dim
Ω ≥ 2, is like that of the sphere [21, Theorems 1.2b, 1.3b] and [34].

Remark 3.6. It appears that in our present context, where the trace of the wave
solution z is needed globally on all of the flat boundary Γ0, we cannot appeal
to the local trace regularity on flat surfaces as in [34], which is like the global
regularity of the parallelopiped, as we approach the junction between Γ0 and Γ1

(which is not flat). This accounts for the introduction of the parameter “a” in
(1.7b), which distinguishes between a parallelopiped Ω (where the trace results
are better) and a general domain Ω.

Remark 3.7. (Critical importance to have a regularity theory: (3.45), (3.46),
(3.47), (3.48), (3.49), (3.50), and (3.52) below for the Neumann mixed prob-
lems (3.44) with the parameter a strictly greater than 1/2: a > 1/2.) The goal of
this remark is to show that:

(i) if the regularity theory (3.45), (3.46), (3.47), (3.48), (3.49), (3.50), and
(3.52) of the Neumann mixed problems (3.44) were available only in the
case a = 1/2, then (our proof of Theorem 1.7(I) would fail and) we could
not assert the validity of Theorem 1.7 in the canonical case where � and
� are given by (1.11) and (1.12);

(ii) on the other hand, if the regularity theory (3.45), (3.46), (3.47), (3.48),
(3.49), (3.50), and (3.52) of the Neumann mixed problem (3.44) were
available only in the case a = 1/2 + ε, for all ε > 0, then we could assert
the validity of Theorem 1.7(I) only in the case α = 1 for � and � given
by (1.11), (1.12). Naturally, from (1.7a), the higher the parameter a, the
lower the parameter θ0, the larger the range of α ≤ 1 for the validity of
Theorem 1.7(I).

Justification of (i). Let a = 1/2, so that H1−a(Γ0) ≡ H1/2(Γ0). Let � and � be
given by (1.11) and (1.12), so that r = 3/8 + ε, by (1.13).

(a) Assume that � includes hinged or clamped BC in this case, there is no θ0

such that H1−a(Γ0) ≡ H1/2(Γ0) = �(�θ0 ). Indeed, for the candidate value θ0 = 1/8
we have [10], [24, page 284],

�
(
�1/8) = H1/2

00

(
Γ0
)

� H1/2(Γ0
)

. (3.38)

Thus, in this case, the first part of assumption (1.7a) is violated.
(b) Assume now that � includes the free BC Then, the first part of assump-

tion (1.7a) is satisfied with θ0 = 1/8 [10], [24, page 284]:

H1−a(Γ0
) ≡ H1/2(Γ0

) ≡ �
(
�θ0
)
= �
(
�1/2). (3.39)
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However, in this case where r = 3/8 + ε by (1.13), we have that the second part of
assumption (1.7a) imposes the condition α ≥ 2r + θ0 = 2(3/8 + ε) + 1/8 = 1 + 2ε,
ε > 0. Thus, such condition is not satisfied in the range 1/2 ≤ α ≤ 1.

Justification of (ii). Let now a = 1/2 + ε, for all ε > 0. Then, in this case, the first
part of assumption (1.7a) is satisfied with θ0 = 1/8− ε/4 [10], [24, page 284],

H1−a(Γ0
)
= H1/2−ε(Γ0

)
= �
(
�1/8−ε/4), (3.40)

for all BC (hinged, clamped, free, etc.). Then, with θ0 = 1/8− ε/4, for all ε > 0 and
r = 3/8 + ε′, for all ε′ > 0, we see that we can satisfy the second part of assumption
(1.7a) only for the case α = 1.

We finally note that the “classical” regularity theory [27, 28, 30] for the Neu-
mann mixed problems (3.44) does not even guarantee the validity of (3.45),
(3.46), (3.47), (3.48), (3.49), (3.50), and (3.52) for a = 1/2. Thus, the availability
of the sharp/optimal theory for problems (3.44) given in [21, 22, 23, 34] (see
also [1] for a parallelopiped) is critical to obtain Theorem 1.7(I).

Proof of Theorem 1.7(I)
Step 1. As mentioned in the above Orientation, the proof of Theorem 1.7(I)

relies on “sharp” regularity results obtained for traces of wave equations subject
to Neumann’s data. By exploiting this particular regularity (which does not fol-
low from trace theory), we are able, in the range 2θ0 + 2r ≤ α ≤ 1, to dispense
altogether with the necessity of additional damping on the wall Γ0 and choose
D0 = 0. Accordingly, we consider the following wave equation:

ztt = ∆z − d2zt in (0,T]×Ω = Q; (3.41a)

z(0, ·) = z0, zt(0, ·) = z1 in Ω; (3.41b)

∂z

∂ν
+ d1z = 0 in (0,T]× Γ1 = Σ1; (3.41c)

∂z

∂ν
= g on (0,T]× Γ0 = Σ0. (3.41d)

The required sharp trace regularity result is given next.

Proposition 3.8. Let z be a finite energy solution of problem (3.41), where d2 ∈ R,
d1 ≥ 0. Recall the parameter a given in (1.7b): a = 3/4 for Ω being a parallelopiped;
and a = 2/3 for a general domain Ω (which, moreover, is smooth or convex, as
noted in the paragraph above problem (1.2)). Then there exists a constant CT > 0
such that∫T

0

∥∥zt

∥∥2
Ha−1(Γ0) dt ≤ CT

[∥∥z0
∥∥2

H1(Ω) +
∥∥z1
∥∥2

L2(Ω) +
∫T

0
‖g‖2

H1−a(Γ0) dt
]

. (3.42)

Proof. The trace regularity result of Proposition 3.8 is essentially given in the
above references [2, 20, 21, 22, 23, 34]. Given the critical role of this result in
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the present proof of Theorem 1.7(I), we will provide some details based on gen-
eral arguments. In [2], the result for a parallelopiped by a directed computation
based on eigenfunction expansion is given. By the superposition principle, we
write

z = ζ + w; (3.43)

ζtt = ∆ζ − d2ζt; wtt = ∆w − d2wt in Q;

ζ(0, ·) = z0, ζt(0, ·) = z1; w(0, ·) = 0, wt(0, ·) = 0 in Ω;

∂ζ

∂ν
+ d1ζ = 0;

∂w

∂ν
+ d1w = 0 in Σ1;

∂ζ

∂ν
= 0;

∂w

∂ν
= g in Σ0.

(3.44)

Analysis of ζ-problem (3.44). According to [22, Theorems B and C], [23, Theo-
rem 3.3], and [34] we have that, the map{

z0, z1
} ∈ H1(Ω)×L2(Ω) −→ ζ |Σ0 ∈ Ha(Σ0

)
≡ Ha(0,T ;L2

(
Γ0
))∩L2

(
0,T ;Ha(Γ0

)) (3.45)

is continuous, with a = 3/4 when Ω is a parallelopiped and a = 2/3 for a general
Ω, as assumed. It then follows a fortiori from (3.45) that

ζt |Σ0 ∈ Ha−1(0,T ;L2
(

Γ0
))

continuously in
{

z0, z1
} ∈ H1(Ω)×L2(Ω). (3.46)

On the other hand, we know from [20, 21, 22, 23, 34] that for the Neumann
mixed hyperbolic problem (3.41), the loss of differentiability occurs only in the
characteristic microlocal sector. We denote by H�

cs and H�
ncs the microlocal reg-

ularity in the characteristic sector, and in the non-characteristic sector, respec-
tively. With reference to the ζ-problem in (3.44), we have

ζ ∈ H1
ncs

(
Σ0
)

, hence ζt |Σ0 ∈ H0
ncs

(
Σ0
)

. (3.47)

Combining (3.46) and (3.47), we can restate the regularity of ζt |Σ0 more precisely
as

ζt |Σ0 ∈ H0
ncs

(
Σ0
)∩Ha−1(0,T ;L2

(
Γ0
))

. (3.48)

But, as noted explicitly in [22, page 122] in the characteristic sector, time reg-
ularity is equivalent to (interchangeable with) tangential space regularity (since
the corresponding dual variables have comparable bounds from above and be-
low in such sector). Therefore, the statement ζt |Σ0 ∈ Ha−1

cs (0,T ;L2(Γ0)) contained
in (3.48) equivalently implies

ζt |Σ0 ∈ H0
cs

(
0,T ;Ha−1(Γ0

))
. (3.49)
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Then, (3.49) combined with ζt |Σ0 ∈ H0
ncs(Σ0) contained in (3.48) ultimately leads

(since a− 1 < 0) to the sought-after estimate

ζt |Σ0 ∈ L2
(
0,T ;Ha−1(Γ0

))
continuously in

{
z0, z1
} ∈ H1(Ω)×L2(Ω) :∫T

0

∥∥ζt

∥∥2
Ha−1(Γ0) dt ≤ CT

∥∥{z0, z1
}∥∥2

H1(Ω)×L2(Ω).

(3.50)

Analysis of w-problem (3.44). Recalling [22, Remark 3.6, page 136, Corollary 4.3,
page 148, and Remark, page 121, bottom], [23, Corollary 3.4b, page 113], with
(2a− 1) + (1− a) = a, we have that, the map

g ∈ L2
(
0,T ;H1−a(Γ0

)) −→ w|Σ0 ∈ Ha(Σ0
)

≡ Ha(0,T ;L2
(

Γ0
))∩L2

(
0,T ;Ha(Γ0

)) (3.51)

is continuous (see detailed justification below). Compare with (3.45) for ζ |Σ0 .
Then the very same argument from (3.45) through (3.50) given for ζ |Σ0 applies
now verbatim to w|Σ0 , and yields the continuity of the map

g ∈ L2
(
0,T ;H1−a(Γ0

)) −→ wt |Σ0 ∈ L2
(
0,T ;Ha−1(Γ0

))
;∫T

0

∥∥wt

∥∥2
Ha−1(Γ0) dt ≤ CT

∫T

0
‖g‖2

H1−a(Γ0) dt,
(3.52)

as desired. Hence, combining (3.50) with (3.52) for z = ζ + w in (3.43), we obtain
estimate (3.42), as desired.

A more detailed explanation is needed to justify the full statement in (3.51)
on the basis of [22, 23]. First, [23, Corollary 3.4, page 148] and [22, Corol-
lary 4.3(b)] yield, indeed, the conclusion of (3.51), but under the seemingly
stronger assumption that g ∈ H1−a(Σ0) ≡ L2(0,T ;H1−a(Γ0))∩H1−a(0,T ;L2(Γ0)).
However, as already noted above, following (3.48), the original assumption g ∈
L2(0,T ;H1−a(Γ0)) in (3.51) also yields: (i) g ∈ H1−a

cs (Σ0) (in the characteristic
sector), and hence (a): w|Σ0 ∈ Ha

cs(Σ0) (in the characteristic sector), as recalled
above; as well as, a fortiori, (ii) g ∈ H0

ncs(Σ0) (in the non-characteristic sector),
and hence w ∈ H1

ncs(Q) and (b): w|Σ0 ∈ H1
ncs(Σ0) (in the non-characteristic

sector). Thus, combining (a) and (b) yields the full statement of (3.51), as
desired. �

Step 2. Equipped with the result of Proposition 3.8, we now follow the same
procedure as in Section 3.2 with some appropriate modifications. The counter-
part of Lemma 3.1 is now the following.

Lemma 3.9. Assume Hypotheses 1.1 and 1.2 and, in addition, that there exists a
constant θ0 > 0 such that

H1−a(Γ0
)
= �
(
�θ0
)

, satisfying α− 2r ≥ 2θ0, (3.53)



F. Bucci et al. 203

as in assumption (1.7a). Then, setting D0 = 0 (hence β = 0) in (1.2c) or in (3.2a),
the corresponding solution of (1.2) with zt(0, ·) = v(0, ·) = 0, or (3.2), satisfies the
following estimates for 0 ≤ t ≤ T :

(i)

∥∥A1/2
N z(t)

∥∥2
L2(Ω) +

∥∥zt(t)
∥∥2

L2(Ω) + 2d2

∫ t

0

∥∥zτ(τ)
∥∥2

L2(Γ1) dτ

≤ CT

[∫ t

0

∥∥vτ(τ)
∥∥2

�(�θ0 ) dτ +
∥∥A1/2

N z0
∥∥2

L2(Ω)

]
;

(3.54)

(ii)∫ t

0

∥∥N∗
0 AN zτ(τ)

∥∥2
[�(�θ0 )]′ dτ ≡

∫ t

0

∥∥zτ(τ)
∥∥2

Ha−1(Γ0) dτ

≤ CT

[∫ t

0

∥∥vτ(τ)
∥∥2

�(�θ0 ) dτ +
∥∥A1/2

N z0
∥∥2

L2(Ω)

]
.

(3.55)

Proof. (i) We follow the proof of Lemma 3.1 with appropriate modifications,
where now D0 = 0 (and β = 0). More precisely, the counterpart of (3.7) is now
(we set d2 = 0 just to streamline the relevant formulas, as these are innocuous
terms)

1
2

d

dt

{(
zt(t), zt(t)

)
L2(Ω) +

(
AN z(t), z(t)

)
L2(Ω)

}
=
(

vt(t),N∗
0 AN zt(t)

)
L2(Γ0) =

(
vt(t), zt(t)|Γ0

)
L2(Γ0).

(3.56)

Integrating (3.56) in time from 0 to t with initial conditions z(0) = z0, zt(0) = 0
by (3.2c), we obtain the counterpart of (3.8)

∥∥zt(t)
∥∥2

L2(Ω) +
∥∥A1/2

N z(t)
∥∥2

L2(Ω) −
∥∥A1/2

N z0
∥∥2

L2(Ω)

= 2
∫ t

0

(
vτ(τ), zτ(τ)|Γ0

)
L2(Γ0) dt

≤ 2
∫ t

0

∥∥vτ(τ)
∥∥

H1−a(Γ0)

∥∥zτ(τ)
∥∥

Ha−1(Γ0) dτ

(3.57)

≤
∫ t

0

∥∥zτ(τ)
∥∥2

Ha−1(Γ0) dτ +
∫ t

0

∥∥vτ(τ)
∥∥2

H1−a(Γ0) dτ. (3.58)

Next, for the first term on the right-hand side of (3.58) we invoke Proposition
3.8, (3.42) with g = vt (see (1.2c) with D0 = 0 and (3.41d)) to get with z1 = 0, on
0 ≤ t ≤ T :∫ t

0

∥∥zτ(τ)
∥∥2

Ha−1(Γ0) dτ ≤ CT

[∫ t

0

∥∥vτ(τ)
∥∥2

H1−a(Γ0) dτ +
∥∥A1/2

N z0
∥∥2

L2(Ω)

]
. (3.59)
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Inserting (3.59) into (3.58) yields∥∥zt(t)
∥∥2

L2(Ω) +
∥∥A1/2

N z(t)
∥∥2

L2(Ω)

≤ CT

[∫ t

0

∥∥vτ(τ)
∥∥2

H1−a(Γ0) dτ +
∥∥A1/2

N z0
∥∥2

L2(Ω)

]
.

(3.60)

Finally, using assumption (3.53), H1−a(Γ0) = �(�θ0 ), on the right-hand side of
(3.60) yields estimate (3.54), as desired.

(ii) We return to (3.59), use again assumption (3.53) including this time with
the dual version Ha−1(Γ0) = [�(�θ0 )]′, and obtain estimate (3.55), as desired.

�

Step 3. At this point, we need to estimate the integral on the right-hand side of
(3.54), (3.55) in terms of �−r v2 ∈ L2(Γ0). Thus, the counterpart of the critical
Lemma 3.3 is now the following.

Lemma 3.10. Assume Hypotheses 1.1 and 1.2 as well as (3.53): H1−a(Γ0) = �(�θ0 )
where α− 2r ≥ 2θ0. Then, the component vt of the solution of system (3.2) (or (1.2)
with zt(0) = v(0) = 0), with D0 = 0 (hence β = 0) satisfies the following estimate on
0 ≤ t ≤ T , for constant C2 and C3 depending on T :

(i)∫ t

0

∥∥�θ0 vτ(τ)
∥∥2

L2(Γ0) dτ ≤ C3eC2t
[∥∥�−r v2

∥∥2
L2(Γ0) +

∥∥A1/2
N z0
∥∥2

L2(Ω)

]
. (3.61)

(ii) Consequently, by (3.55) and (3.61), we have∫ t

0

∥∥N∗
0 AN zτ(τ)

∥∥2
[�(�θ0 )]′ dτ ≡

∫ t

0

∥∥zτ(τ)
∥∥2

Ha−1(Γ0) dτ

≤ C eCt
[∥∥�−r v2

∥∥∣∣2
L2(Γ0) +

∥∥A1/2
N z0
∥∥2

L2(Ω)

]
,

(3.62)

for a constant C > 0 depending on T .

Proof. (i) We repeat verbatim the proof of Lemma 3.3 (both the one given in
Section 3.2, and the one given in Appendix B), with the only difference that the
assumption α− 2r ≥ −2r0 of Lemma 3.3 is now replaced by the present assump-
tion α− 2r ≥ 2θ0, that is, (−r0) there is now replaced by θ0. This way, conclusion
(3.11) of Lemma 3.3 becomes precisely conclusion (3.61) now.

(ii) We use (3.61) in (3.55) and obtain (3.62). �

The remaining part of the proof of Theorem 1.7(II) from Proposition 3.5 to
the end of Section 3.2 remains unchanged and produces Theorem 1.7(I). �

4. Spectral/stability analysis of the uncoupled hyperbolic z-problem

4.1. Spectral character of the origin λ = 0 depending upon the strength of the
operator D0. So far, in achieving the singular estimate (1.8), the term βD0z on
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the “flexible wall” Γ0 in (1.2c) has played no critical role. In particular, Theorem
1.7 holds true also for the simplest model with β = 0 in (1.2c), as noted in that
theorem. It turns out, however, that if the boundary operator D0 required by
Theorem 1.7 (via assumption (1.9)) is of sufficiently high unboundedness (see
Proposition 4.3 below) as is required in the case α = 1/2, then its impact on the
stability properties of the overall system is negative, in the sense that the sys-
tem then becomes unstable; more precisely, the origin λ = 0 becomes a point
of the continuous spectrum of the dynamics operator. To gain enlightenment on
this issue, it suffices to consider the uncoupled hyperbolic z-problem, the criti-
cal component of problem (1.2). Thus, throughout this section we consider the
following hyperbolic dynamics with d1 > 0:

ztt = ∆z − d2zt in (0,T]×Ω ≡ Q; (4.1a)

∂z

∂ν
+ d1z

∣∣∣∣
Σ1

= 0 in (0,T]× Γ1 ≡ Σ1; (4.1b)[
∂z

∂ν
+ D0zt + βD0z

]
Σ0

= 0 in (0,T]× Γ0 = Σ0; (4.1c)

z(0, ·) = z0, zt(0, ·) = z1 in Ω. (4.1d)

Its abstract model is (specializing (2.7)),

ztt + AN z + βAN N0D0N∗
0 AN z + AN N0D0N∗

0 AN zt + d2zt = 0, (4.2)

or (by (2.12a)),

d

dt

[
z
zt

]
= A1

[
z
zt

]
, (4.3)

where, actually, in the present section, A1 will denote the realization of the op-
erator

[
0 I

−AN − βAN N0D0N∗
0 AN −AN N0D0N∗

0 AN − d2I

]
, (4.4)

on either the space E or the space Z in (4.5), (4.7) below, respectively, and either
for β = 0, or else for β = 1 in both cases. These values of β are the most repre-
sentative ones. Thus, in effect, the symbol A1 stands for four operators: we will
explicitly specify the value of β, the underlying space, and corresponding domain
in question, so no confusion is likely to arise. Regarding the state space selected
for {z,zt} and hence the corresponding definition of �(A1), we will study the
original problem (4.1), or equivalently its abstract version (4.2), (4.3), (4.4) in
two frameworks both for β = 0 and β = 1.
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Framework 1 (energy space). Here for β = 0 or β = 1, the state space chosen is the
“energy space” E,

E ≡ �
(

A1/2
N

)×L2(Ω);

‖ f ‖2
E
=
∥∥A1/2

N f1
∥∥2

L2(Ω) +
∥∥ f2
∥∥2

L2(Ω), f =
[

f1, f2
]
.

(4.5)

Then

(#1i) for β = 0, the space E coincides with the space Y1 in (2.8) and (2.9) for
β = 0; moreover, the operator A1 : E ⊃ �(A1) → E in (4.4), (4.5) with the
usual domain given by (2.12b) with β = 0 is dissipative, in fact maximal
dissipative, and thus the generator of an s.c. contraction semigroup eA1t on
E (this is nothing but Lemma 2.4 for β = 0);

(#1ii) for β = 1, the operator A1 : E ⊃ �(A1) → E in (4.4), (4.5), this time with
the domain

�(A1) =
{[

h1,h2
]

: h1,h2 ∈ �
(

A1/2
N

)
,

h1 + N0D0N∗
0 AN h1 + N0D0N∗

0 AN h2 ∈ �
(

AN
)} (4.6)

is not dissipative on E. Nevertheless, we have the following lemma.

Lemma 4.1. Assume Hypotheses 1.1, 1.2, and 1.3, and let β = 1. Then the operator
A1 in (4.4) with domain as in (4.6) is the generator of an s.c. semigroup eA1t on E
which, moreover, is uniformly bounded on E (but not contraction).

A proof may be given using a Galerkin approximation argument. One starts
with the final dimensional projection on E of the original problem. For this
finite-dimensional approximation, the requires a priori global bounds (uniform-
ly in the parameter of approximation) are obtained by the energy method (mul-
tiplication by zt). This then allows passage to the limit. Details are, however,
omitted also because this result is not critical in the present paper.

Framework 2. Here for β = 0 or β = 1, we take as the state space the space Z
defined by

Z = Z1 ×L2(Ω); (4.7a)∥∥ f1
∥∥2

Z1
=
∥∥A1/2

N f1
∥∥2

L2(Ω) +
∥∥D1/2

0 N∗
0 AN f1

∥∥2
L2(Γ0), (4.7b)

where Z1 is therefore the space defined in (2.8) and (2.9) for β = 1. Then

(#2i) for β = 1, the space Z coincides with Y1 in (2.10) for β = 1; moreover, the
operator A1 : Z ⊃ �(A1) → Z in (4.4), (4.7), with the usual domain given
by (2.12b) with β = 1 is dissipative, in fact maximal dissipative, and thus
the generator of an s.c. contraction semigroup eA1t on Z (this is nothing
but Lemma 2.4 for β = 1);
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(#2ii) for β = 0, the operator A1 : Z ⊃ �(A1) → Z in (4.4), (4.7) with domain
�(A1) given by

�
(

A1
)
=
{[

h1,h2
]

: h1,h2 ∈ Z, h1 + N0D0N∗
0 AN h2 ∈ �

(
AN
)}

(4.8)

is not dissipative on Z (same reason as in case (#1ii) above). Neverthe-
less, analogously to Lemma 4.1, we have the following lemma.

Lemma 4.2. Assume Hypotheses 1.1, 1.2, and 1.3, and let β = 0. Then the operator
A1 in (4.4) with domain (4.8) is the generator of an s.c. semigroup eA1t on Z which,
moreover, is uniformly bounded on Z (but not contraction).

Spectral consequences. In either framework 1 or 2, with either β = 0 or else β = 1,
A1 with the appropriate domain generates an s.c. uniformly bounded semigroup
on E, respectively, Z. Therefore, the open right half-plane belongs to the resol-
vent ρ(A1) of A1 in either case:

{λ : Reλ > 0} ∈ ρ
(

A1
)

, either β = 0 or β = 1; either on E, or on Z. (4.9)

In the present section, combined with the more substantial Section 6 below, we
describe the spectral situation for the operator A1 on the imaginary axis. More
precisely, the next proposition is enlightening.

Orientation on Proposition 4.3. The significance of Proposition 4.3 may be stated
as follows.

(i) If the boundary operator D0 is mild, of order only up to 1, then we may
take β = 0 in problem (4.1) (simplest model, most desirable situation), and still
obtain that the origin is in the resolvent set ρ(A1) of A1, 0 ∈ ρ(A1), for A1 realized
either on the space E or on the space Z.

(ii) If, instead, the boundary operator D0 is stronger, of order s, 1 < s ≤ 2, as
needed in the case α = 1/2 of Theorem 1.7, then

(a) taking β = 0 on problem (4.1) (simplest model) has the negative im-
plication that the origin belongs to the continuous spectrum of A1,
0 ∈ σc(A1), for A1 realized either on the space E or on the space Z; and
so, problem (4.1) is accordingly unstable in both these cases;

(b) in order to obtain, again, that 0 ∈ ρ(A1), both on E or on Z, it is nec-
essary to set β = 1 (or β �= 0) in problem (4.1).

A restatement from an alternative angle is the following. In its first part,
Proposition 4.3 says that if β = 0 (the simplest, most desirable situation for prob-
lem (4.1) to enjoy the singular estimate (1.8)), the origin belongs to the continu-
ous spectrum of the operator A1, 0 ∈ σc(A1), whether A1 is viewed on E or on Z,
except for the less interesting case where D0 is at most a first-order (rather than
second-order, as needed for α = 1/2) differential operator on Γ0. In this latter
case then, the origin is in the resolvent set of A1, 0 ∈ ρ(A1), whether A1 is viewed
on E or on Z.
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Moreover, in its second part, Proposition 4.3 says that the insertion of the
boundary term D0z on Γ0 in (4.1c) (β = 1), or the term D0N∗

0 AN z in (4.2) (β = 1)
has the effect of removing the origin from the (continuous) spectrum of A1 in
the pathological case (4.12) of Proposition 4.3(i) with D0 at least of order 1, so
that with β = 1, we have that 0 ∈ ρ(A1) both on E and on Z, even with D0 a
second-order tangential operator (as in Assumption 1.3).

Proposition 4.3. Assume Hypothesis 1.1, and, moreover, that D0 is a positive,
selfadjoint operator on L2(Γ0), of order s so that

D0 : continuous H p(Γ0
) −→ H p−s(Γ0

)
. (4.10)

(i) Let β = 0 in (4.4) or (4.1c). Then

if 0 ≤ s ≤ 1, then =⇒ 0 ∈ ρ
(

A1
)
= resolvent set of A1, (4.11)

if 1 < s ≤ 2, then =⇒ 0 ∈ σc
(

A1
)
= continuous spectrum of A1, (4.12)

regardless of whether A1 is defined on the space E in (4.5), or on the space Z in
(4.7).

(ii) Let β = 1, and let 1 < s ≤ 2. Then,

0 ∈ ρ
(

A1
)

, (4.13)

regardless of whether A1 is defined on the space E, or on the space Z; thus removing
the pathology in part (i), (4.12).

Proof. (i) For β = 0, we will see that the operator A1 is injective; and that its
inverse A−1

1 is a bounded operator on E, or on Z, if 0 ≤ s ≤ 1; and is not a bounded
operator on E, or on Z, if 1 < s ≤ 2. Let [ f1, f2] be given with f2 ∈ L2(Ω) and with
f1 either in �(A1/2

N ) ≡ H1(Ω), or else in Z1 (defined by (4.7)). With β = 0, we seek
to solve

A1

[
z1

z2

]
=

[
f1

f2

]
, or

{
z2 = f1,

−AN
[
z1 + N0D0N∗

0 AN z2
]− d2z2 = f2

(4.14)

for [z1, z2] ∈ �(A1), on either the space E or Z (see (2.12b) and (4.8), respec-
tively, for �(A1)). Injectivity of A1 follows at once. (AN is injective, in fact
boundedly invertible, on L2(Ω), see (2.1) with d1 > 0.) Moreover, solving (4.14)
one has

−z1 = A−1
N

(
d2 f1 + f2

)
+ N0D0N∗

0 AN f1. (4.15)
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Let f1 be either in �(A1/2
N ), or else in Z1. It remains to test whether [z1, z2] ∈

�(A1). We have that

N∗
0 AN f1 ∈ H1/2(Γ0

)
, if f1 ∈ �

(
A1/2

N

) ≡ H1(Ω), (4.16a)

D1/2
0 N∗

0 AN f1 ∈ L2
(

Γ0
)

, if f1 ∈ Z1. (4.16b)

In fact, (4.16a) follows by (2.6) on N∗
0 AN and trace theory; while, (4.16b) follows

by definition (4.7b) of Z1. Next, we need to distinguish between the two cases
assumed on D0.

First, let 0 ≤ s ≤ 1. It then follows from (4.10) for p = 1/2 and (4.16a) that
D0N∗

0 AN f1 ∈ H−1/2(Γ0) in both cases f1 ∈ �(A1/2
N ) and f1 ∈ Z1. Then, by (2.5),

it follows that (#): N0D0N∗
0 AN f1 ∈ H1(Ω) ≡ �(A1/2

N ); and then by (4.15), z1 ∈
�(A1/2

N ) in both cases, as desired. Thus, (4.11) is proved on E. Moreover, if f1 ∈
Z1, it follows from (4.15) that

−D1/2
0 N∗

0 AN z1 = D1/2
0 N∗

0 AN A−1
N

(
d2 f1 + f2

)
+ D1/2

0 N∗
0 AN
(

N0D0N∗
0 AN f1

) ∈ L2
(

Γ0
)

.
(4.17)

To justify the membership in (4.17), we recall (2.6), trace theory, (4.10) on D0

with 0 ≤ s ≤ 1, and (#) a few lines above for the second term in (4.17). Thus
z1 ∈ Z1 as well, and (4.11) is proved also for Z.

Let now 1 < s ≤ 2 in (4.10). Then the same argument employed above shows
that z1 /∈ H1(Ω) for f1 ∈ H1(Ω), as D1/2

0 loses 1/2 + ε and N0 gains 3/2. Thus,
N0D0N∗

0 AN f1 ∈ H1−ε(Ω) in both cases, f1 ∈ H1(Ω) and f1 ∈ Z1. Hence, (4.12) is
proved.

(ii) Let now β = 1. Let [ f1, f2] be given with f2 ∈ L2(Ω), and with f1 either in
�(A1/2

N ), or else in Z1. We seek accordingly to solve, with β = 1,

A1

[
z1

z2

]
=

[
f1

f2

]
, or

{
z2 = f1,

−AN
{[

I + N0D0N∗
0 AN
]
z1 + N0D0N∗

0 AN z2
}− d2z2 = f2,

(4.18)

for [z1, z2] ∈ �(A1), on either space E or Z (see (4.6) and (2.12a) for �(A1),
respectively). Solving (4.18) yields

−[I + S]A1/2
N z1 = −[I + A1/2

N N0D0N∗
0 A1/2

N

]
A1/2

N z1

= A−1/2
N

(
d2 f1 + f2

)
+ A1/2

N N0D0N∗
0 AN f1

= SA1/2
N f1 + ψ,

(4.19)
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where ψ = A−1/2
N (d2 f1 + f2) ∈ �(A1/2

N ), and

S ≡ A1/2
N N0D0N∗

0 A1/2
N ;

SA1/2
N f1 + ψ ∈



[
�
(

A1/2
N

)]′ if f1 ∈ �
(

A1/2
N

)
,[

�
(

A1/4
N

)]′ if f1 ∈ Z1.

(4.20)

To justify the membership in (4.20), let f1 ∈ �(A1/2
N ) (resp., let f1 ∈ Z1) and as-

sume the worst case s = 2. Then, N∗
0 AN f1 ∈ H1/2(Γ0) by (2.6) and trace theory;

hence, D0N∗
0 AN f1 ∈ H−3/2(Γ0) by (4.10) with s = 2, p = 1/2; then N0D0N∗

0 AN f1 ∈
L2(Ω) by (2.5) (resp., D1/2

0 N∗
0 AN f1 ∈ L2(Γ0), D0N∗

0 AN f1 ∈ H−1(Γ0), N0D0N∗
0 AN f1

∈ H1/2(Ω) = �(A1/4
N )), and then (4.20) follow. We have shown therefore that

SA1/2
N = A1/2

N N0D0N∗
0 AN : continuous


�
(

A1/2
N

) −→ [�(A1/2
N

)]′
,

Z1 −→
[
�
(

A1/4
N

)]′
.

(4.21)

Thus, it follows that the operator [I + S], which is positive selfadjoint on the
space L2(Ω), also satisfies

[I + S]= I + A1/2
N N0D0N∗

0 A1/2
N : continuous, injective L2(Ω)−→[�(A1/2

N

)]′;
(4.22)

hence, [I + S] is invertible on its range S(L2(Ω)). Returning to (4.19) and using
this latter information, we find

−A1/2
N z1 = [I + S]−1SA1/2

N f1 + [I + S]−1A−1/2
N

(
d2 f1 + f2

) ∈ L2(Ω). (4.23)

In (4.23) we have that A1/2
N f1 ∈ L2(Ω), while

[I + S]−1S is a bounded operator on L2(Ω), (4.24)

by the closed graph theorem [15, page 164] via (4.22). Thus, the membership in
(4.23) follows. Then (4.23) shows that

z1 ∈ �
(

A1/2
N

)
continuously in

[
f1, f2
] ∈ E, (4.25)

while z2 = f1 ∈ �(A1/2
N ), so that 0 ∈ ρ(A1) as desired in (4.13) at least for A1 de-

fined on E, with domain given by (4.6). Moreover, from (4.19), taking the inner
product with A1/2

N z1 yields

∥∥A1/2
N z1
∥∥2

L2(Ω) +
∥∥D1/2

0 N∗
0 AN z1

∥∥2
L2(Γ0)

= −(D1/2
0 N∗

0 AN f1,D1/2
0 N∗

0 AN z1
)− (d2 f1 + f2, z1

)
,

(4.26)

from which it readily follows that if actually f1 ∈ Z1, then z1 ∈ Z1 as well. Thus,
(4.13) is proved also for A1 on Z. �
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Regarding the remaining points on the imaginary axis, iω, ω ∈ R, ω �= 0, we
refer to the forthcoming Section 6: this shows that iω ∈ ρ(A1) for ω �= 0.

Remark 4.4. The exact counterpart result of Proposition 4.3 holds true for the
overall system (1.1); that is, for the operator A in (2.37) and (2.38) in place of A1.

Indeed, writing A[z1, z2, z3, z4, z5] = [ f1, f2, f3, f4, f5], we now obtain

z2 = f1,

−AN
[
z1 + N0D0N∗

0 AN z2 −N0v2
]− d2z2 + AN N0v2 = f2,

v2 = f3,

−N∗
0 AN z2 −�v1 − ρ�αv2 = f4,

(4.27)

in place of (4.14); hence

−z1 = A−1
N

(
d2 f1 + f2

)
+ N0D0N∗

0 AN f1 −N0 f3, (4.28a)

−v1 = �−1[N∗
0 AN f1 + ρ�α f3 + f4

]
, (4.28b)

in place of (4.15). The new term N0 f3 = N∗
0 AN A−1

N f3 in (4.28a) and the new term
(4.28b) over the case of Proposition 4.3 are “innocuous.” Thus, the analysis in
the proof of Proposition 4.3 is the critical one.

4.2. Eigenvalue/vector problem for A1 with β = 0 on E or Z. In this section, we
set β = 0 and study the corresponding eigenvalue/vector problem for the opera-
tor A1 in (4.4) with β = 0 on either the space E, or else the space Z, that is,

A1

[
φ1n

φ2n

]
= λn

[
φ1n

φ2n

]
, or


φ2n = λnφ1n,

AN
[
φ1n + N0D0N∗

0 AN φ2n
]

+
(

λn + d2
)

φ2n = 0,

(4.29)

where {φ1n,φ2n} are considered either on the space E, and thus normalized as∥∥A1/2
N φ1n

∥∥2 +
∥∥φ2n

∥∥2 ≡ 1, (4.30)

or else on the space Z, and hence normalized as∥∥A1/2
N φ1n

∥∥2 +
∥∥D1/2

0 N∗
0 AN φ1n

∥∥2 +
∥∥φ2n

∥∥2 ≡ 1. (4.31)

We must have both φ1n �= 0 and φ2n �= 0 and λn �= 0.

Proposition 4.5. Let λn be an eigenvalue of problem (4.29), (4.30) on E. Then,
(i) if Imλn �= 0, then

Reλn ≤ −d2

2
; (4.32)
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(ii) if Imλn = 0, then

Reλn = λn = − 1∥∥D1/2
0 N∗

0 AN φ1n

∥∥2 + d2
∥∥φ1n

∥∥2
; (4.33)

∥∥D1/2
0 N∗

0 AN φ1n

∥∥∥∥φ2n

∥∥ ≤ 1

2
√

d2

. (4.34)

Thus, if {λn} is a sequence with Imλn ≡ 0, then

Reλn ↗ 0 ⇐⇒ ∥∥D1/2
0 N∗

0 AN φ1n

∥∥ −→∞
⇐⇒ ∥∥φ2n

∥∥ −→ 0 ⇐⇒ ∥∥A1/2
N φ1n

∥∥ −→ 1;
(4.35)

(iii) finally, if D0 is of order up to 1 (or D1/2
0 is of order up to 1/2), then∥∥D1/2

0 N∗
0 AN φ1n

∥∥ ≤ c
∥∥N∗

0 AN φ1n

∥∥
H1/2(Γ0)

≤ c
∥∥φ1n

∥∥
H1(Ω) ≤ c

∥∥A1/2
N φ1n

∥∥ ≤ k,
(4.36)

and then (4.35) cannot hold true. More precisely, in this case where D0 is of order
up to 1, if Imλn ≡ 0, then

∣∣Reλn

∣∣ = ∣∣λn

∣∣ ≥ 1

k2 + d2
∥∥A−1/2

N

∥∥2
, (4.37)

where k is the constant in (4.36).

Proof. Taking the inner product of the second equation in (4.29) with φ2n yields

(
A1/2

N φ1n,A1/2
N φ2n

)
+
∥∥D1/2

0 N∗
0 AN φ2n

∥∥2 +
(

λn + d2
)∥∥φ2n

∥∥2 = 0, (4.38)

and substituting φ2n = λnφ1n into the first two terms of (4.38) yields

λ̄n

∥∥A1/2
N φ1n

∥∥2 +
∣∣λn

∣∣2∥∥D1/2
0 N∗

0 AN φ1n

∥∥2 +
(

λn + d2
)∥∥φ2n

∥∥2 ≡ 0. (4.39)

Taking the real part and imaginary part of (4.39) yields

(
Reλn

)[∥∥A1/2
N φ1n

∥∥2 +
∥∥φ2n

∥∥2
]

+ d2
∥∥φ2n

∥∥2 +
∣∣λn

∣∣2∥∥D1/2
0 N∗

0 AN φ1n

∥∥2 = 0; (4.40)

Imλn

[∥∥φ2n

∥∥2 −∥∥A1/2
N φ1n

∥∥2
]
= 0. (4.41)

Using the normalization (4.30) on E in (4.40) yields∣∣λn

∣∣2∥∥D1/2
0 N∗

0 AN φ1n

∥∥2 + Reλn + d2
∥∥φ2n

∥∥2 = 0. (4.42)

Notice that (4.42) implies Re λn < 0, since φ2n �= 0.
(i) Let Imλn �= 0. Then, ‖A1/2

N φ1n‖2 = ‖φ2n‖2 = 1/2 by (4.41) and (4.30). Then,
using this information in (4.42) yields (2Reλn + d2) ≤ 0 and (4.32) is established.
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(ii) Let Imλn = 0. Then, (4.42) with φ2n = λnφ1n yields

λ2
n

∥∥D1/2
0 N∗

0 AN φ1n

∥∥2 + λn + d2λ2
n

∥∥φ1n

∥∥2 = 0, λn = Reλn �= 0, (4.43)

which, in turn, yields (4.33). Moreover, (4.36) is readily verified to hold true, by
(2.6) and trace theory with D1/2

0 of order up to 1/2. Using (4.30) and (4.36) in
(4.33), we obtain (4.37). Finally, solving the quadratic equation (4.42) for real,
negative solutions λn = Reλn, imposes that its discriminant be nonnegative, and
this condition is precisely (4.34). Then (4.35) follows from (4.30), (4.33), and
(4.34). �

Proposition 4.6. Let λn be an eigenvalue of problem (4.29), (4.31), on Z. Then,

(i) if Imλn �= 0, then Reλn satisfies (4.32);
(ii) if Imλn = 0, then

Reλn = λn =

∥∥D1/2
0 N∗

0 AN φ1n

∥∥− 1∥∥D1/2
0 N∗

0 AN φ1n

∥∥2 + d2
∥∥φ1n

∥∥2
. (4.44)

Thus, if {λn} is a sequence with Imλn ≡ 0, then

Reλn ↗ 0 ⇐⇒ ∥∥D1/2
0 N∗

0 AN φ1n

∥∥ −→ 1 (4.45a)

⇐⇒ ∥∥A1/2
N φ1n

∥∥2 +
∥∥φ2n

∥∥2 −→ 0; (4.45b)

(iii) finally, if D0 is of order up to 1 (or D1/2
0 is of order up to 1/2), then (4.45)

cannot hold true.

Proof. Equations (4.40) and (4.41) are still valid. Thus, if Imλn �= 0, we now get
that ‖A1/2

N φ1n‖2 = ‖φ2n‖2 ≤ 1/2 by (4.41) and (4.31). Using this information in
(4.40) yields (4.42) with “= 0” replaced by “≤ 0” and hence again (4.32).

Let now Imλn = 0. Then, using this time the normalization (4.31) in (4.40)
yields now for Reλn = λn:

λn + d2λ2
n

∥∥φ1n

∥∥2 +
(

λ2
n − λn

)∥∥D1/2
0 N∗

0 AN φ1n

∥∥2 = 0, (4.46)

in place of (4.43), λn �= 0, from which (4.44) is obtained. Moreover, (4.45a) fol-
lows from (4.44) since the denominator of (4.44) is uniformly bounded. Then
(4.45a) is equivalent to (4.45b) by (4.31). Finally, (4.45) cannot happen when D0

is of order up to 1 by (4.36). �

5. Proof of stability Theorem 1.13 by energy methods in t

Statement of the problem and preliminaries. In this section, we show the uniform
stability of the uncontrolled, unforced coupled PDE system (1.2), namely with
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f ≡ 0 and u ≡ 0. Thus, we will consider the initial boundary value problem

ztt = c2∆z − d2zt, d2 > 0, in (0,T]×Ω; (5.1a)

∂

∂ν
z + d1z = 0 on (0,T]× Γ1; (5.1b)

∂

∂ν
z + D0zt + βD0z = vt on (0,T]× Γ0; (5.1c)

vtt + �v + ρ�αvt + ρ1zt |Γ0 = 0 on (0,T]× Γ0; (5.1d)[
z(·,0), zt(·,0), v(·,0), vt(·,0)

]
=
[
z0, z1, v0, v1

]
in Ω× Γ0. (5.1e)

Equivalently, after the innocuous normalization c = 1, ρ1 = 1, we rewrite prob-
lem (5.1) in abstract form as in (2.7a)–(2.7b) with f ≡ 0, u ≡ 0:

ztt + AN z + βAN N0D0N∗
0 AN z + AN N0D0N∗

0 AN zt + d2zt −AN N0vt = 0, (5.2a)

vtt + �v + ρ�αvt + N∗
0 AN zt = 0, (5.2b)

z(0) = z0, zt(0) = z1; v(0) = v0, vt(0) = v1. (5.2c)

In line with the well-posedness Theorem 1.6, the total energy of the system
is given by the square of the Yβ-norm of the solution, with Yβ ≡ Zβ × L2(Ω) ×
�(�1/2)×L2(Γ0) by (2.11):

Eβ(t) ≡ ∥∥eAt y0
∥∥2

Y ≡ Ez,β(t) + Ev(t);

Ez,β(t) ≡ ∥∥A1/2
N z(t)

∥∥2 + β
∥∥D1/2

0 N∗
0 AN z(t)

∥∥2 +
∥∥zt(t)

∥∥2;

Ev(t) ≡ ∥∥�1/2v(t)
∥∥2 +
∥∥vt(t)

∥∥2
, y0 =

[
z0, z1, v0, v1

]
.

(5.3)

In this section, as in the statement of Theorem 1.13, we emphasize the depen-
dence on β explicitly with a subscript.

We recall the hypotheses of Theorem 1.13: in addition to Hypotheses 1.1, 1.2,
and 1.3, we assume that d2 > 0, while d1 > 0, (see below (2.1)), and, moreover,
that:

Case 1. β = 0 when D0 is of order s, 0 ≤ s ≤ 1.
Case 2. β > 0 when D0 is of order s, 1 < s ≤ 2.
We then seek to prove the exponential decay (1.21).

Proof of Theorem 1.13. We provide a proof of Theorem 1.13 by energy methods
in t. In Section 6, we will provide a second proof by using a resolvent charac-
terization (which, in fact, gives more information). The present energy method
proof consists in combining the use of standard multipliers zt and z on the z-
wave equation, with standard multipliers vt and v on the v-plate equation.

Our main goal is to prove that, under present assumptions, the following
statement holds true: for all y0 = [z0, z1, v0, v1] ∈ Yβ there exists a constant Cβ,
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which does not depend on T , such that

∫T

0

∥∥eAβt y0
∥∥2

Yβ
dt ≡
∫T

0
Eβ(t)dt ≤ Cβ

∥∥y0
∥∥2

Yβ
= CβEβ(0), (5.4)

where Yβ=0 ≡ �(A1/2
N )× L2(Ω)×�(�1/2)× L2(Γ0) for β = 0 and Yβ ≡ Zβ × L2(Ω)

×�(�1/2)×L2(Γ0) for β > 0 (see Theorem 1.13, (2.8), and (2.9)). This is done, as
usual, by taking initial conditions, at first, in �(A) as to justify the computations
leading to estimate (5.4) (see, e.g., Remark 2.6), and then extending (5.4) to all
Y by density.

Once (5.4) is established, we let T ↗ ∞, invoke Datko’s standard theorem
[32, page 116] and conclude that the exponential decay in (1.21) holds true:
there exist Mβ ≥ 1 and ωβ > 0 such that ‖eAβt y0‖Yβ ≤ Mβe−ωβt‖y0‖Yβ .

Step 1. As usual, we begin with a preliminary energy identity which shows
that the system is dissipative.

Proposition 5.1. Assume Hypotheses 1.1, 1.2, and 1.3. With respect to the system
(5.1), (5.2), and (5.3), the following energy equality holds true for all T > 0:

Eβ(T) + 2
∫T

0

∥∥D1/2
0 N∗

0 AN zt(t)
∥∥2

dt

+ 2d2

∫T

0

∥∥zt(t)
∥∥2

dt + 2ρ

∫T

0

∥∥�α/2vt(t)
∥∥2

dt = Eβ(0).

(5.5)

In particular, Eβ(T) ≤ Eβ(0) for all T > 0.

Proof. Multiplying the wave equation (5.2a) by zt, we get, see (3.7),

1
2

d

dt

{∥∥zt

∥∥2 +
∥∥A1/2

N z
∥∥2 + β

∥∥D1/2
0 N∗

0 AN z
∥∥2
}

+
∥∥D1/2

0 N∗
0 AN zt

∥∥2 + d2
∥∥zt

∥∥2 − (vt,N∗
0 AN zt

)
= 0.

(5.6)

After integration between 0 and T , then (5.6) yields the following identity for
the wave energy Ez,β in (5.3): for all T > 0 we have

Ez,β(T) + 2
∫T

0

∥∥D1/2
0 N∗

0 AN zt(t)
∥∥2

dt

+ 2d2

∫T

0

∥∥zt(t)
∥∥2

dt − 2
∫T

0

(
vt(t),N∗

0 AN zt(t)
)

dt = Ez,β(0).

(5.7)

Analogously, multiplying the plate equation (5.2b) by vt, we obtain (see (3.13)
for r = 0)

1
2

d

dt

{∥∥vt

∥∥2 +
∥∥�1/2v

∥∥2
}

+ ρ
∥∥�α/2vt

∥∥2 +
(

N∗
0 AN zt,vt

)
= 0. (5.8)
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Next, integrating (5.8) between 0 and T yields the following identity for the plate
energy Ev in (5.3): for all T > 0, we have

Ev(T) + 2ρ

∫T

0

∥∥�α/2vt(t)
∥∥2

dt + 2
∫T

0

(
N∗

0 AN zt(t), vt(t)
)

dt = Ev(0). (5.9)

Summing up (5.7) and (5.9) yields the energy equality (5.5) after a cancellation
of the integral term. �

In the following corollary, we point out a list of estimates which follow from
Proposition 5.1, and which will play a crucial role later.

Corollary 5.2. Assume Hypothesis 1.1 with d2 > 0, Hypotheses 1.2 and 1.3. For
the components zt, vt of the solution of system (5.1), the following estimates hold
true: for any T > 0, there exist constants C1, C2 which do not depend on T , such
that

∫T

0
Ek

z,β(t)dt ≡
∫T

0

∥∥zt(t)
∥∥2

L2(Ω) dt ≤ 1
2d2

Eβ(0); (5.10)∫T

0
Ek

v (t)dt ≡
∫T

0

∥∥vt(t)
∥∥2

L2(Γ0) dt

≤ ∥∥�−α/2
∥∥2
∫T

0

∥∥�α/2vt(t)
∥∥2

L2(Γ0) dt ≤ C1Eβ(0);

(5.11)

Eβ(T)+
∫T

0

∥∥N∗
0 AN zt(t)

∥∥2
L2(Γ0) dt

≤ Eβ(T) +

∥∥�−r0
∥∥2

δ1

∫T

0

∥∥D1/2
0 N∗

0 AN zt(t)
∥∥2

L2(Γ0) dt (5.12a)

≤ C2Eβ(0). (5.12b)

Proof. Both estimates (5.10) and (5.11) on the kinetic energies Ek
z,β and K k

v (de-

fined above) of the wave and plate components readily follow from the energy
identity (5.5); moreover, the first one (5.10) does require d2 to be strictly posi-
tive. Finally, the latter estimate (5.12) is obtained first by using the left-hand side
part of the estimates in (1.4) (from Hypothesis 1.3) on the damping operator D0

to obtain (5.12a), and then by using (5.5) to reach (5.12b). �

We now proceed with the estimates of the energy functional on a finite
interval; first the plate energy in Proposition 5.3 and next the wave energy in
Proposition 5.4.

Proposition 5.3. Assume Hypotheses 1.1, 1.2, and 1.3. With respect to the plate
energy Ev defined in (5.3), the following inequality holds true: for all T > 0, there
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exist constants C3 and C4 independent of T , such that∫T

0
Ev(t)dt ≤ C3

[
Eβ(0) + Ev(T)

]
+ C4

∫T

0

∥∥N∗
0 AN zt(t)

∥∥2
L2(Γ0) dt. (5.13)

Proof. We multiply the plate equation (5.2b) by the multiplier v this time, then
integrate between 0 and T , thus obtaining the difference “potential minus ki-
netic”:

(
vt(T), v(T)

)−∫T

0

∥∥vt(t)
∥∥2

dt +
∫T

0

∥∥�1/2v(t)
∥∥2

dt +
ρ

2

∥∥�α/2v(t)
∥∥2

+
∫T

0

(
�−1/2N∗

0 AN zt(t),�1/2v(t)
)

dt =
(

v1, v0
)

+
ρ

2

∥∥�α/2v0
∥∥2

,

(5.14)

where the relevant norms are self-explanatory. Dropping the fourth (positive)
term on the left-hand side of (5.14) and using the Schwarz inequality, we obtain
(as α ≤ 1) recalling (5.3):

(1− ε)
{∫T

0

∥∥�1/2v(t)
∥∥2

dt +
∫T

0

∥∥vt(t)
∥∥2

dt
}

≤ (2− ε)
∫T

0

∥∥vt(t)
∥∥2

dt + c1Ev(T) + c2Ev(0) + Cε

∫T

0

∥∥N∗
0 AN zt(t)

∥∥2
dt.

(5.15)

Finally, on the left-hand side of (5.15) we use (5.3), for Ev(t) and on the right-
hand side of (5.15) we invoke estimate (5.11) for its first integral term as well as
Ev(0) ≤ Eβ(0), to obtain (5.13), as desired. �

Proposition 5.4. Assume Hypothesis 1.1, this time with d2 > 0, Hypotheses 1.2
and 1.3.

Case 1. Assume further that

D1/2
0 : continuous H1/2(Γ0

) −→ L2
(

Γ0
)

, (5.16)

and let β = 0 in (5.1c). Then, the energy Ez,β=0(t) = ‖A1/2
N z(t)‖2 + ‖zt(t)‖2 defined

in (5.3) satisfies the following estimate for some ci > 0:∫T

0
Ez,β=0(t)dt ≤

[
c1

d2
+ c2

]
Eβ=0(0) + c3Ez,β=0(T), (5.17)

with Eβ=0(t) defined in (5.3).
Case 2. Assume now that D0 is of order s, 1 < s ≤ 2. Take now β > 0. Then the

corresponding energy Ez,β(t) in (5.3) satisfies the following estimate for ci > 0:∫T

0
Ez,β(t)dt ≤

[
c4

d2
+

c5

β
+ c6

]
Eβ(0) +

c7

β
Ez,β(T), (5.18)

with Eβ(t) defined in (5.3).
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Proof. We multiply the wave equation (5.2a) by the multiplier z this time, then
integrate between 0 and T , thus obtaining the difference “potential minus ki-
netic”:

(
zt(T), z(T)

)−∫T

0

∥∥zt(t)
∥∥2

dt

+
∫T

0

∥∥A1/2
N z(t)

∥∥2
dt + β

∫T

0

∥∥D1/2
0 N∗

0 AN z(t)
∥∥2

dt

+
1
2

{∥∥D1/2
0 N∗

0 AN z(T)
∥∥2 + d2

∥∥z(T)
∥∥2
}
−
∫T

0

(
vt(t),N∗

0 AN z(t)
)

dt

=
(

z1, z0
)

+
1
2

{∥∥D1/2
0 N∗

0 AN z0
∥∥2 + d2

∥∥z0
∥∥2
}

.

(5.19)

We now distinguish between the two cases assumed.
Case 1. Assume (5.16) and take β = 0. By (5.16), it follows that

D1/2
0 N∗

0 A1/2
N = D1/2

0

(
N∗

0 AN
)

A−1/2
N : continuous L2(Ω) −→ L2

(
Γ0
)

. (5.20)

Indeed, with f ∈ L2(Ω), then A−1/2
N f ∈ �(A1/2

N ) ≡ H1(Ω), and hence (N∗
0 AN )×

A−1/2
N f ∈ H1/2(Γ0) continuously, by (2.6) and trace theory, and (5.16) then yields

(5.20), as desired. It follows from (5.20) and N∗
1 A1/2

N ∈ �(L2(Ω);L2(Γ1)) by (2.6),
that the terms { } in (5.19) satisfy the estimate

{∥∥(D1/2
0 N∗

0 A1/2
N

)
A1/2

N z(t)
∥∥2 + d2

∥∥(N∗
1 A1/2

N

)
A1/2

N z(t)
∥∥2 + d2

∥∥z(t)
∥∥2
}

≤ C
∥∥A1/2

N z(t)
∥∥2 ≤ cEz,β=0(t).

(5.21)

Using (5.21) for t = 0 and t = T and given ε > 0, we then obtain the following
estimate from (5.19) with β = 0:

∫T

0

∥∥A1/2
N z(t)

∥∥2
dt ≤
∫T

0

∥∥zt(t)
∥∥2

dt + c
[
Ez,β=0(T) + Ez,β=0(0)

]

+ ε
∥∥N∗

0 A1/2
∥∥∫T

0

∥∥A1/2
N z(t)

∥∥2
dt + cε

∫T

0

∥∥vt(t)
∥∥2

dt.

(5.22)
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With ε′ = ε‖N∗
0 A1/2

N ‖ small, (5.22) then yields

(1− ε′)
{∫T

0

∥∥A1/2
N z(t)

∥∥2
dt +
∫T

0

∥∥zt(t)
∥∥2

dt
}

≤ (2− ε′)
∫T

0

∥∥zt(t)
∥∥2

dt + c
[
Ez,β=0(T) + Ez,β=0(0)

]
+ Cε

∫T

0

∥∥vt(t)
∥∥2

dt

(5.23)

(by (5.10) and (5.11))

≤
[

2− ε′

2d2
+ CεC1

]
Eβ=0(0) + c

[
Ez,β=0(T) + Ez,β=0(0)

]
. (5.24)

To go from (5.23) to (5.24) we have invoked estimates (5.10) and (5.11) for
the integral terms on zt and vt. (In (5.24), we have deliberately put into evi-
dence the dependence of the estimate on d2 > 0.) Finally, (5.24) yields (5.17)
as desired, by recalling Ez,β=0(t) in (5.3) on the left-hand side of (5.24) and
Ez,β=0(0) ≤ Eβ=0(0) on its right-hand side.

Case 2. Returning to the terms { } on the right-hand side of (5.19), we now
have since β > 0,{

1
β

β
∥∥D1/2

0 N∗
0 AN z(t)

∥∥2 + d2
∥∥z(t)

∥∥2
}

≤ c

β

[∥∥A1/2
N z(t)

∥∥2 + β
∥∥D1/2

0 N∗
0 AN z(t)

∥∥2
]
≤ c

β
Ez,β(t)

(5.25)

in contrast with (5.21). Thus, from (5.19) and (5.26), the counterpart of (5.22)
is now ∫T

0

∥∥A1/2
N z(t)

∥∥2
dt +
∫T

0
β
∥∥D1/2

0 N∗
0 AZz(t)

∥∥2
dt

≤
∫T

0

∥∥zt(t)
∥∥2

dt +
c

β

[
Ez,β(T) + Ez,β(0)

]
+ ε
∥∥N∗

0 A1/2
N

∥∥∫T

0

∥∥A1/2
N z(t)

∥∥2
dt + Cε

∫T

0

∥∥vt(t)
∥∥2

dt,

(5.26)

while the counterpart of (5.23) is now, still with ε′ = ε‖N∗
0 A1/2

N ‖ small:

(1− ε′)
∫T

0

[∥∥A1/2
N z(t)

∥∥2 + β
∥∥D1/2

0 N∗
0 AN z(t)

∥∥2 +
∥∥zt(t)

∥∥2
]

dt

≤ (2− ε′)
∫T

0

∥∥zt(t)
∥∥2

dt +
c

β

[
Ez,β(T) + Ez,β(0)

]
+ Cε

∫T

0

∥∥vt(t)
∥∥2

dt (5.27)

(by (5.10) and (5.11))

≤
[

2− ε′

2d2
+ Cεc1

]
Eβ(0) +

c

β

[
Ez,β(T) + Ez,β(0)

]
. (5.28)
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Again, to go from (5.27) to (5.28) we have invoked (5.10), (5.11) on the integral
terms on zt and vt. (Again, in (5.29), (5.30) we have deliberately put into evi-
dence the dependence of the estimates on d2 > 0 and β > 0.) Finally, (5.28) yields
(5.18), as desired, by recalling Eβ(t) in (5.3) on the left-hand side of (5.28), and
Ez,β(0) ≤ Eβ(0) on its right-hand side. �

Proposition 5.5. Assume the situation of Proposition 5.3. Then, there are two
cases.

Case 1 (β = 0; d2 > 0)

∫T

0
Eβ=0(t)dt ≤

[
c′1
d2

+ c′2

]
Eβ=0(0). (5.29)

Case 2 (β > 0; d2 > 0)

∫T

0
Eβ(t)dt ≤

[
c′4
d2

+
c′5
β

+ c′6

]
Eβ(0). (5.30)

Proof
Case 1. We sum up estimates (5.13) and (5.17) to get via (5.3),

∫T

0
Eβ=0(t)dt ≤

[
c′1
d2

+ c′2

]
Eβ=0(0)

+
{

C3Ev(T) + c3Ez,β=0(T) + c4

∫T

0

∥∥N∗
0 AN zt(t)

∥∥2
L2(Γ0) dt

} (5.31)

(by (5.12)) ≤
[

c′1
d2

+ c′′2

]
Eβ=0(0), (5.32)

where in the last step we have invoked estimate (5.12) for the { }-term in
(5.31). Then, (5.32) proves (5.29), as desired.

Case 2. We sum up estimates (5.13) and (5.18) to obtain via (5.3)

∫T

0
Eβ(t)dt ≤

[
c′4
d2

+
c′5
β

+ c′6

]
Eβ(0)

+
{

C3Ev(T) +
c7

β
Ez,β(T) +

∫T

0

∥∥N∗
0 AN zt(t)

∥∥2
L2(Γ0) dt

} (5.33)

(by (5.12)) ≤
[

c′4
d2

+
c′′5
β

+ c′6

]
Eβ(0), (5.34)

where in the last step we have invoked estimate (5.12) for the { }-term in
(5.33). Then, (5.34) proves (5.30), as desired. �

Finally, Proposition 5.4 proves the desired goal (5.4) in both cases. Hence, by
Datko’s theorem [32, page 116] there exists constants Mβ ≥ 1, ωβ > 0 such that
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(1.21) holds true:

∥∥eAβt
∥∥

�(Yβ) ≤ Mβe−ωβt, t ≥ 0. (5.35)

�

6. Theorem 1.14: uniform stability of problem (1.2) with f ≡ 0, u ≡ 0 via the
resolvent condition

We return to problem (1.2), hence to its abstract version (2.40) with f ≡ 0, u ≡ 0,
identified by the operator A in (2.37) and (2.38). To emphasize its dependence
on β, we will now append a subscript and write Aβ = A = given by (2.37) and
(2.38) as in Section 1.4. Recall

Yβ ≡ Zβ ×L2(Ω)×�
(
�1/2)×L2

(
Γ0
)

, β ≥ 0, with norm given by{∥∥A1/2
N z1
∥∥2 + β

∥∥D1/2
0 N∗

0 AN z1
∥∥2 +
∥∥�1/2v1

∥∥2 +
∥∥v2
∥∥2
}1/2 ≡ ∥∥{z1, z2, v1, v2

}∥∥
Yβ

.

(6.1)

The goal of Section 6 is to show Theorem 1.14, which is here restated for con-
venience.

Theorem 6.1. Consider problem (1.2) with f ≡ 0, u ≡ 0 (i.e., problem (5.1)) on
the space Yβ under assumptions that d1 ≥ 0, d2 > 0, 0 ≤ α ≤ 1, ρ > 0, and (1.4) and
(1.5). The case α = 0, D0 = 0 is explicitly included. Let β ≥ 0.

(i) Given ε > 0, there exists Cε > 0 such that, for all ω ∈ R with |ω| ≥ ε, then
the operator A = Aβ defined by (2.37) and (2.38) satisfies the following resolvent
condition on the imaginary axis:

∥∥R
(

iω,Aβ
)∥∥

�(Yβ) ≤ Cε,β, ∀ω ∈ R s.t. |ω| ≥ ε. (6.2)

(ii) Assume that λ = 0 is in the resolvent set of Aβ. By Proposition 4.3 this holds
true in the two cases mentioned in Theorem 1.13 or Theorem 1.14 under Assump-
tions 1.1 and 1.3:

Case 1. D0 is of order up to 1 and β = 0.
Case 2. D0 is of order s, 1 < s ≤ 2 and β > 0.
Then estimate (6.2) holds true with ε = 0, that is, for all ω ∈ R. Accordingly

([9, 30, 33]), there exist constants Mβ ≥ 1 and kβ > 0 such that

∥∥eAβt
∥∥

�(Yβ) ≤ Mβe−kβt, t ≥ 0, (6.3)

(see Theorem 1.6). The case α = 0, D0 = 0 is also included.

Proof. (i) We will write the proof simultaneously for all β ≥ 0, 0 ≤ α ≤ 1, and D0

as in Hypothesis 1.3, possibly D0 = 0.
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Step 1. Given f = [ f1, f2, f3, f4] ∈ Yβ in (6.1), we seek to solve

(
iωI −Aβ

)



z1

z2

v1

v2


 =




f1

f2

f3

f4


 , to obtain




z1

z2

v1

v2


 = R

(
iω,Aβ

)



f1

f2

f3

f4


 , (6.4)

for [z1, z2, v1, v2] ∈ �(Aβ), where, in addition, we seek to obtain the following
estimate for [z1(ω), z2(ω), v1(ω), v2(ω)]: given ε > 0, there exists Cε > 0 such that
for all ω ∈ R with |ω| ≥ ε, we have

∥∥A1/2
N z1(ω)

∥∥2
L2(Ω) + β

∥∥D1/2
0 N∗

0 AN z1(ω)
∥∥2

L2(Γ0) +
∥∥z2(ω)

∥∥2
L2(Ω)

+
∥∥�1/2v1(ω)

∥∥2
L2(Γ0) +

∥∥v2(ω)
∥∥2

L2(Γ0) ≤ Cε‖ f ‖2
Yβ

,
(6.5)

‖ f ‖2
Yβ

=
{∥∥A1/2

N f1
∥∥2

L2(Ω) + β
∥∥D1/2

0 N∗
0 AN f1

∥∥2
L2(Γ0)

+
∥∥ f2
∥∥2

L2(Ω) +
∥∥�1/2 f3

∥∥2
L2(Γ0) +

∥∥ f4
∥∥2

L2(Γ0)

}
.

(6.6)

Recalling (2.37) and (2.38) for A = Aβ, we rewrite (6.5) explicitly as

iωz1 − z2 = f1; (6.7a)

AN
[
z1 + βN0D0N∗

0 AN z1 + N0D0N∗
0 AN z2

]
+
(

iω + d2
)

z2 −AN N0v2 = f2; (6.7b)

iωv1 − v2 = f3; (6.7c)

N∗
0 AN z2 + �v1 + ρ�αv2 + iωv2 = f4. (6.7d)

Taking the L2(Ω)-inner product of (6.7b) with z2, and, respectively, the L2(Γ0)-
inner product of (6.7d) with v2 yields

(
A1/2

N z1,A1/2
N z2
)

+ β
(

D0N∗
0 AN z1,N∗

0 AN z2
)

+
∥∥D1/2

0 N∗
0 AN z2

∥∥2

+ iω
∥∥z2
∥∥2 + d2

∥∥z2
∥∥2 − (AN N0v2, z2

)
=
(

f2, z2
)
;

(6.8)

(
N∗

0 AN z2, v2
)

+
(
�1/2v1,�1/2v2

)
+ ρ
∥∥�α/2v2

∥∥2 + iω
∥∥v2
∥∥2 =
(

f4, v2
)

, (6.9)

where inner products and norms are in L2(Ω) or L2(Γ0).
Step 2. We begin by substituting z2 = iωz1 − f1 from (6.7a) into the first two

terms of (6.8), thus obtaining

− iω
∥∥A1/2

N z1
∥∥2 − iωβ

∥∥D1/2
0 N∗

0 AN z1
∥∥2 +
∥∥D1/2

0 N∗
0 AN z2

∥∥2

+ iω
∥∥z2
∥∥2 + d2

∥∥z2
∥∥2 − (v2,N∗

0 AN z2
)

=
(

f2, z2
)

+
(

A1/2
N z1,A1/2

N f1
)

+ β
(

D1/2
0 N∗

0 AN z1,D1/2
0 N∗

0 AN f1
)

.

(6.10)
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Similarly, we substitute v2 = iωv1 − f3 from (6.7c) into the second term of (6.9),
thus obtaining

(
N∗

0 AN z2, v2
)− iω

∥∥�1/2v1
∥∥2 + ρ

∥∥�α/2v2
∥∥2 + iω

∥∥v2
∥∥2

=
(

f4, v2
)

+
(
�1/2v1,�1/2 f3

)
.

(6.11)

Next, we take the real part of (6.10) and (6.11), thus obtaining

∥∥D1/2
0 N∗

0 AN z2
∥∥2 + d2

∥∥z2
∥∥2 −Re

(
v2,N∗

0 AN z2
)

= Re
{(

f2, z2
)

+
(

A1/2
N z1,A1/2

N f1
)

+ β
(

D1/2
0 N∗

0 AN z1,D1/2
0 N∗

0 AN f1
)}

,
(6.12)

Re
(

N∗
0 AN z2, v2

)
+ ρ
∥∥�α/2v2

∥∥2 = Re
{(

f4, v2
)

+
(
�1/2v1,�1/2 f3

)}
. (6.13)

Similarly, we take the imaginary part of (6.10) and (6.11), thus obtaining

ω
[∥∥z2
∥∥2 −∥∥A1/2

N z1
∥∥2 − β

∥∥D1/2
0 N∗

0 AN z1
∥∥2
]
− Im
(

v2,N∗
0 AN z2

)
= Im

{(
f2, z2
)

+
(

A1/2
N z1,A1/2

N f1
)

+ β
(

D1/2
0 N∗

0 AN z1,D1/2
0 N∗

0 AN f1
)}

,
(6.14)

Im
(

N∗
0 AN z2, v2

)
+ ω
[∥∥v2
∥∥2 −∥∥�1/2v1

∥∥2
]
= Im
{(

f4, v2
)

+
(
�1/2v1,�1/2 f3

)}
.

(6.15)
Next, we sum up (6.12) and (6.13), thus cancelling Re(N∗

0 AN z2, v2) = Re(v2,
N∗

0 AN z2); and, similarly, we sum up (6.14) and (6.15), where

Im
(

N∗
0 AN z2, v2

)
= − Im

(
v2,N∗

0 AN z2
)

. (6.16)

We obtain, respectively,

∥∥D1/2
0 N∗

0 AN z2
∥∥2 + d2

∥∥z2
∥∥2 + ρ

∥∥�α/2v2
∥∥2

= Re
{(

f2, z2
)

+
(

A1/2
N z1,A1/2

N f1
)

+ β
(

D1/2
0 N∗

0 AN z1,D1/2
0 N∗

0 AN f1
)

+
(
�−α/2 f4,�α/2v2

)
+
(
�1/2v1,�1/2 f3

)}
;

(6.17)

ω
[∥∥A1/2

N z1
∥∥2 + β

∥∥D1/2
0 N∗

0 AN z1
∥∥2 +
∥∥�1/2v1

∥∥2
]

= ω
[∥∥z2
∥∥2 +
∥∥v2
∥∥2
]

+ 2Im
(

N∗
0 AN z2, v2

)
− Im
{(

f2, z2
)

+
(

A1/2
N z1,A1/2

N f1
)

+ β
(

D1/2
0 N∗

0 AN z1,D1/2
0 N∗

0 AN f1
)

+
(

f4, v2
)

+
(
�1/2v1,�1/2 f3

)}
.

(6.18)
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From (6.17), we estimate, thus obtaining

∥∥D1/2
0 N∗

0 AN z2
∥∥2 +
(

d2 − ε

2

)∥∥z2
∥∥2 +
(

ρ − ε

2

)∥∥�α/2v2
∥∥2

≤ ε

2

[∥∥A1/2
N z1
∥∥2 + β

∥∥D1/2
0 N∗

0 AN z1
∥∥2 +
∥∥�1/2v1

∥∥2
]

+
1

2ε

[∥∥A1/2
N f1
∥∥2 +
∥∥ f2
∥∥2 + β

∥∥D1/2
0 N∗

0 AN f1
∥∥2 +
∥∥�−α/2 f4

∥∥2 +
∥∥�1/2 f3

∥∥2
]
.

(6.19)

Recalling z2 = iωz1 − f1 from (6.7a), and setting C = ‖N∗
0 A1/2

N ‖ (see (2.4)), we
estimate

2
∣∣Im(N∗

0 AN z2, v2
)∣∣ ≤ 2|ω|1/2

∥∥A1/2
N z1
∥∥C|ω|1/2

∥∥v2
∥∥+ 2C

∥∥A1/2
N f1
∥∥∥∥v2
∥∥

≤ ε1|ω|∥∥A1/2
N z1
∥∥2 +

C2|ω|
ε1

∥∥v2
∥∥2 +

ε

2

∥∥v2
∥∥2 +

2C2

ε

∥∥A1/2
N f1
∥∥2

.

(6.20)

Next, we estimate (6.18), and use (6.20) on its right-hand side, thus obtaining[
|ω|(1− ε1

)− ε

2

][∥∥A1/2
N z1
∥∥2 + β

∥∥D1/2
0 N∗

0 AN z1
∥∥2 +
∥∥�1/2v1

∥∥2
]

≤
[
|ω|
(

1 +
C2

ε1

)
+ ε

][∥∥z2
∥∥2 +
∥∥v2
∥∥2
]

+ Cε‖ f ‖2
Yβ

.

(6.21)

From (6.19), with mε = min{d2 − ε/2,kα(ρ − ε/2)} > 0, kα = 1/‖A−α/2‖2, we ob-
tain a fortiori, for all 0 ≤ α ≤ 1:

∥∥z2
∥∥2 +
∥∥v2
∥∥2 ≤ ε

2mε

[∥∥A1/2
N z1
∥∥2 + β

∥∥D1/2
0 N∗

0 AN z1
∥∥2 +
∥∥�1/2v1

∥∥2
]

+
Cε

mε
‖ f ‖2

Yβ
.

(6.22)
Using (6.22) on the right-hand side of (6.21) yields[

|ω|(1− δε

)− aε

][∥∥A1/2
N z1
∥∥2 + β

∥∥D1/2
0 N∗

0 AN z1
∥∥2 +
∥∥�1/2v1

∥∥2
]
≤ Cε‖ f ‖2

Yβ
,

(6.23)
where by taking, say ε1 =

√
ε we have δε = ε1 + ε/2mε + εC2/2mεε1 =

√
ε +

ε/2mε + (
√
ε/2mε)C2 → 0, and aε = ε/2 + ε2/2mε → 0, as ε↘ 0. So aε/(1− δε) →

0 as ε↘ 0, as desired. Thus, (6.23) shows estimate (6.5) for the terms ‖A1/2
N z1‖2,

β‖D1/2
0 N∗

0 AN z1‖2, and ‖�1/2v1‖2. Finally, using (6.23) on the right-hand side of
(6.19) show the desired estimate (6.5) also for the terms ‖z2‖2 and ‖v2‖2; and
indeed, for ‖D1/2

0 N∗
0 AN z2‖2 as well. The proof of part (i) is complete. The above

proof is valid also for α = 0 and D0 = 0.
(ii) This part follows at once via the quoted references, whenever λ = 0 is in

the resolvent set of Aβ, and Aβ is a generator of a s.c. semigroup eAβt on Yβ (see
Theorem 1.6, under Hypotheses 1.1 and 1.3); but this is true also for D0 = 0 and
α = 0. �
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Appendices

A. Proof of Theorem 1.6 (well-posedness)

The goal of this Appendix A is to establish semigroup well-posedness of system
(1.2), or (2.40), when ũ ≡ 0, F ≡ 0. As a preliminary step, we provide the proof
of Lemma 2.4 on the semigroup well-posedness of the z-problem (1.2a), (1.2b),
and (1.2c), equivalently of problem (2.7a) with f ≡ 0 and vt set equal to zero in
(1.2c) or (2.7b). We have seen that it is the high damping term D0zt in (1.2c),
hence the term AN N0D0N∗

0 AN on the second coordinate that makes this problem
non-standard. In particular, the present result is not contained in the generation
theorem in [19, Proposition 7.6.2.1, Chapter 7, page 664].
Step 1 (Proof of Lemma 2.4). It is easily verified that A1 and A∗

1 defined in (2.12)
and (2.14), respectively, are densely defined and dissipative on Y1 = Zβ × L2(Ω)
defined by (2.10). Dissipativity is critically dependent on the choice of the norm
(inner product) which was made in (2.9) for Zβ precisely to achieve dissipativity
via a cancellation:

Re
(

A1x,x
)

Y1
= Re
(

A∗
1x,x
)

Y1
= −∥∥D1/2

0 N∗
0 AN x2

∥∥2
L2(Γ0) − d2

∥∥x2
∥∥2

L2(Ω) ≤ 0,

x =
[
x1,x2

] ∈ �
(

A1
)
= �
(

A∗
1

)
.

(A.1)

Thus, all we need to show is that A1 is (not only closable but in fact) closed, and
then invoke a corollary of Lumer-Phillips theorem (cf. [32, page 14]) and obtain
Lemma 2.4. To show that A1 is closed, let via (2.12b)

zn ≡ [zn
1 , zn

2

] ∈ �
(

A1
) ⊂ Zβ ×Zβ; (A.2a)

zn −→ z =
[
z1, z2
]

in Y1 = Zβ ×L2(Ω); (A.2b)

A1

[
zn

1

zn
2

]
−→ w =

[
w1

w2

]
in Y1 ≡ Zβ ×L2(Ω). (A.2c)

We must show that z ∈ �(A1) and A1z = w. We rewrite (A.2c) explicitly via
(2.12a), namely

A1

[
zn

1

zn
2

]
=

[
zn

2

−AN
(

zn
1 + βN0D0N∗

0 AN zn
1 + N0D0N∗

0 AN zn
2

)− d2zn
2

]
−→
[

w1

w2

]
. (A.3)

Without loss of generality, we may take d2 = 0. From (A.2a) and (A.2b), it follows
that zn

1 → z1 in Zβ, hence by (2.8) and (2.9),

A1/2
N zn

1 −→ A1/2
N z1, D1/2

0 N∗
0 AN zn

1 −→ D1/2
0 N∗

0 AN z1 in L2(Ω). (A.4)
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Next, from (A.3), we have zn
2 → w1 in Zβ, which combined with (A.2b) implies

via the Zβ-norm (2.9):

z2 ≡ w1 ∈ Zβ, A1/2
N zn

2 −→ A1/2
N z2, D1/2

0 N∗
0 AN zn

2 −→ D1/2
0 N∗

0 AN z2 in L2(Ω).
(A.5)

We set

Q0 ≡ D1/2
0 N∗

0 A1/2
N : L2(Ω) ⊃ �

(
Q0
) −→ L2

(
Γ0
)

. (A.6)

We will show below that �(A1/4
N ) ⊂ �(Q0) by virtue of assumption (1.5) on D0,

so that Q0 is densely defined on L2(Ω). Moreover, Q0 = D1/2
0 N∗

0 A1/2
N is closed be-

ing the composition of the closed boundedly invertible operator D1/2
0 —again as

a consequence of (1.4)—with the bounded operator N∗
0 A1/2

N ∈ �(L2(Ω);L2(Γ0))
(see (2.4) and (2.5) (cf. [15, page 164])). Thus, the adjoint Q∗

0 = A1/2
N N0D1/2

0 is
well defined and closed, as an operator L2(Γ0) ⊃ �(Q∗

0) → L2(Ω). After these
preliminaries, we multiply by A−1/2

N across the second line in (A.3) with d2 = 0,
and obtain with w2 ∈ L2(Ω) and (A.3):

A1/2
N zn

1︸︷︷︸
s1,n

+βQ∗
0D1/2

0 N∗
0 AN zn

1︸ ︷︷ ︸
s2,n

+Q∗
0D1/2

0 N∗
0 AN zn

2︸ ︷︷ ︸
s3,n

−→ −A−1/2
N w2 in L2(Ω). (A.7)

Next, invoking the convergence properties in (A.4) (right), (A.5), we then obtain
for the closed operator Q∗

0 via (A.7) that

D1/2
0 N∗

0 AN zn
1 , D1/2

0 N∗
0 AN zn

2 ∈ �
(

Q∗
0

)
,

s2,n + s3,n −→ βQ∗
0D1/2

0 N∗
0 AN z1 + Q∗

0D1/2
0 N∗

0 AN z2.
(A.8)

This then implies via (A.4) (left)

A1/2
N z1 + βQ∗

0D1/2
0 N∗

0 AN z1 + Q∗
0D1/2

0 N∗
0 AN z2 = −A−1/2

N w2 ∈ L2(Ω), (A.9)

and therefore recalling Q∗
0 = A1/2

N N0D1/2
0 :

z1 + βN0D0N∗
0 AN z1 + N0D0N∗

0 AN z2 ∈ �
(

AN
)

,

AN
(

z1 + βN0D0N∗
0 AN z1 + N0D0N∗

0 AN z2
)
= −w2 ∈ L2(Ω).

(A.10)

Thus, (A.4), (A.5), and (A.10) show z ∈ �(A1) and A1z = w, as desired.
It remains to show that �(A1/4

N ) ⊂ �(Q0) as claimed below (A.6), and so the
operator Q0 is densely defined on L2(Ω). Indeed, let φ ∈ �(A1/4

N ), so that ψ =
A−1/2

N φ ∈ �(A3/4
N ) ⊂ H3/2(Ω) and by (2.6) and trace theory,

N∗
0 A1/2

N φ = N∗
0 AN ψ = ψ|Γ0 ∈ H1(Γ0

)
. (A.11)
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Consequently, by (A.6), Q0φ ≡ D1/2
0 N∗

0 A1/2
N φ = D1/2

0 (ψ|Γ0 ) ∈ L2(Γ0), as desired,
since D1/2

0 is continuous from H1(Γ0) → L2(Γ0), as it follows from (1.5) of
Hypothesis 1.3. Lemma 2.4 is proved. �

Proof of Theorem 1.6. Under Assumptions 1.1, 1.2, and 1.3, we want to show
that, for all d2, β ≥ 0, the operator A defined by (2.37) and (2.38) is the gen-
erator of a strongly continuous semigroup eAt of contractions on the space Y ,
t ≥ 0 defined in (2.10) or (2.36).

As in the previous Lemma 2.4, we likewise have that A in (2.37) and (2.38)
and the corresponding Y-adjoint A∗ are densely defined and dissipative on the
space Y , due to the critical choice (2.8) and (2.9) of the norm of the component
space Zβ. It is thus sufficient to show that A is a closed operator. Let

ζn ≡ [zn
1 , zn

2 , vn
1 , vn

2

] ∈ �(A) ⊂ Zβ ×Zβ ×�
(
�1/2)×�

(
�1/2);

ζn −→ ζ =
[
z1, z2, v1, v2

]
in Y ;

Aζn −→ l =
[
l1, l2, l3, l4

]
in Y = Zβ ×L2(Ω)×�

(
�1/2)×L2

(
Γ0
)

.

(A.12)

We must show that ζ ∈ �(A) and Aζ = l. Explicitly, (A.12) reads via (2.37) and
(2.38) as


zn
2

−AN
(

zn
1 + βN0D0N∗

0 AN zn
1 + N0D0N∗

0 AN zn
2

)− d2zn
2 + AN N0vn

2

vn
2

−N∗
0 AN zn

2 −�vn
1 − ρ�αvn

2


−→



l1
l2
l3
l4


 .

(A.13)
Again, without loss of generality we will set d2 = 0. From (A.13) it follows that
zn

2 → l1 in Zβ, which combined with (A.12) yields via the Zβ-norm (2.9),

z2 = l1 ∈ Zβ, A1/2
N zn

2 −→ A1/2
N z2,

D1/2
0 N∗

0 AN zn
2 −→ D1/2

0 N∗
0 AN z2 in L2(Ω).

(A.14)

Analogously, from (A.13) it also follows that vn
2 → l3 in �(�1/2), which com-

bined with (A.12) yields

l3 = v2 ∈ �
(
�1/2), �1/2vn

2 −→ �1/2v2 in L2
(

Γ0
)

. (A.15)

Next, proceeding as in the preceding proof of Lemma 2.4, we deduce first that
(for d2 = 0):

A1/2
N zn

1 + βQ∗
0D1/2

0 N∗
0 AN zn

1 + Q∗
0D1/2

0 N∗
0 AN zn

2 −A1/2
N N0vn

2

−→ A1/2
N z1 + βQ∗

0D1/2
0 N∗

0 AN z1 + Q∗
0D1/2

0 N∗
0 AN z2 −A1/2

N N0v2

= −A−1/2
N l2,

(A.16)
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so that by (A.16) and Q∗
0 = A1/2

N N0D1/2
0 ,

z1 + βN0D0N∗
0 AN z1 + N0D0N∗

0 AN z2 −N0v2 ∈ �
(

AN
)

,

AN
[
z1 + βN0D0N∗

0 AN z1 + N0D0N∗
0 AN z2 −N0v2

]
= −l2.

(A.17)

Finally, we consider the last convergence statement in (A.13), namely that

−N∗
0 AN zn

2 −�vn
1 − ρ�αvn

2 −→ l4. (A.18)

We have already seen in (A.14) that A1/2
N zn

2 → A1/2
N z2 in L2(Ω), and since N∗

0 A1/2
N

is bounded by (2.5), then it follows that

N∗
0 AN zn

2 −→ N∗
0 AN z2 in L2(Ω). (A.19)

We also have seen in (A.15) that �1/2vn
2 → �1/2v2 in L2(Γ0), while �1/2vn

1 →
�1/2v1 in L2(Γ0) holds by (A.12). Hence, since 1−α ≤ 1/2 by assumption, then

�1−αvn
1 + ρvn

2 −→ �1−αv1 + ρv2 in L2
(

Γ0
)

. (A.20)

Note that by (A.12)—recalling the definition of �(A) in (2.38)—we have �1−αvn
1

+ ρvn
2 ∈ �(�α). Furthermore, (A.18) and (A.20) imply since z2 = �1 in (A.14):

−�vn
1 − ρ�αvn

2 = −�α(�1−αvn
1 + ρvn

2

) −→ l4 + N∗
0 AN l1. (A.21)

Therefore, since �α is closed, it follows from (A.21) that �1−αv1 + ρv2 ∈ �(�α)
and −N∗

0 AN z2 −�v1 − ρ�αv2 = l4, which concludes the proof. �

B. Second proof of Lemma 3.3

Proof of estimate (3.11) for α− 2r ≥ −2r0

Step 1. Our starting point is again (3.2b), which this time, however, we
rewrite as [

v(t)
vt(t)

]
= eA2t

[
0
v2

]
−
∫ t

0
eA2(t−τ)

[
0

N∗
0 AN zτ(τ)

]
dτ (B.1)

in view of (2.13) (see also (3.26) and (3.27)). We next proceed as in the proof
of Proposition 3.5, the part that follows (3.27), except that we work with differ-
ent exponents.

Step 2. We will show that there exists a constant CT such that

∥∥�−r0 vt(t)
∥∥2

L2(Γ0) ≤ cT

[∥∥∥∥A−r0/α
2 eA2t

[
0
v2

]∥∥∥∥2

Y2

+
∥∥z0
∥∥2

Zβ

]

+ CT

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ, 0 ≤ t ≤ T.

(B.2)
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Proof of (B.2). We apply A−r0/α
2 to (B.1) and obtain

A−r0/α
2

[
v(t)
vt(t)

]
= A−r0/α

2 eA2t

[
0
v2

]
−
∫ t

0
A−2r0/α

2 eA2(t−τ)Ar0/α
2

[
0

N∗
0 AN zτ(τ)

]
dτ. (B.3)

From (B.3), recalling (2.25) with s = r0/α ≤ 1/2 (since r0 ≤ 1/4 by Assumption
1.3, and 1/2 ≤ α), we in turn deduce that

∥∥�−r0 vt(t)
∥∥2

L2(Γ0) ≤
∥∥∥∥A−r0/α

2

[
v(t)
vt(t)

]∥∥∥∥2

Y2

≤ 2
∥∥∥∥A−r0/α

2 eA2t

[
0
v2

]∥∥∥∥2

Y2

+ 2T2
∫ t

0

∥∥∥∥A−2r0/α
2 eA2(t−τ)Ar0/α

2

[
0

N∗
0 AN zτ(τ)

]∥∥∥∥2

Y2

dτ

≤ 2
∥∥∥∥A−r0/α

2 eA2t

[
0
v2

]∥∥∥∥2

Y2

+ cT

∫ t

0

∥∥∥∥Ar0/α
2

[
0

N∗
0 AN zτ(τ)

]∥∥∥∥2

Y2

dτ,

(B.4)

after using the Schwarz inequality on the integral term of (B.3). Recalling this
time (2.23) with s = r0/α ≤ 1/2 in the integrand term of (B.4), we then obtain
from (B.4),

∥∥�−r0 vt(t)
∥∥2

L2(Γ0) ≤ 2
∥∥∥∥A−r0/α

2 eA2t

[
0
v2

]∥∥∥∥2

Y2

+ cT

∫ t

0

∥∥�r0 N∗
0 AN zτ(τ)

∥∥2
L2(Γ0) dτ

(B.5)

(by (3.10)) ≤
[

2
∥∥∥∥A−r0/α

2 eA2t

[
0
v2

]∥∥∥∥2

Y2

+ cT

∥∥z0
∥∥2

Zβ

]

+ CT

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ,

(B.6)

where in the last step we have used estimate (3.10). Then, (B.6) proves estimate
(B.2), as desired.

Step 3. Integrating inequality (B.2) in t yields

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ ≤
{

cT

∫ t

0

∥∥∥∥A−r0/α
2 eA2τ

[
0
v2

]∥∥∥∥2

Y2

+ cT t
∥∥z0
∥∥2

Zβ

}

+ CT

∫ t

0

∫ τ

0

∥∥�−r0 vs(s)
∥∥2

L2(Γ0) dsdτ.

(B.7)

Applying now the Gronwall inequality [37, Lemma 2.1, page 92] to inequality
(B.7) for the unknown

F(t) =
∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ (B.8)
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(notice that the assumption in [37, Lemma 2.1] that the function �(t) = term { }
in (B.7) be nondecreasing is satisfied), or else [29, page 205], we obtain

F(t) =
∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ

≤ eCT t

{
cT

∫ t

0

∥∥∥∥A−r0/α
2 eA2τ

[
0
v2

]∥∥∥∥2

Y2

+ cT t
∥∥z0
∥∥2

Zβ

}
.

(B.9)

Step 4. We now claim that the following estimate holds true for any 0 < T0 <
∞: ∫T0

0

∥∥∥(−A2
)s

eA2t y2

∥∥∥2

Y2

≤ CT0

∥∥y2
∥∥2

Y2
, 0 ≤ s ≤ 1

2
. (B.10)

Indeed, if s = 1/2− ε, ε > 0, estimate (B.10) trivially follows from the analyticity
estimate ‖(−A2)1/2−ε exp(A2t)‖ ≤ C/t1/2−ε, 0 < t ≤ T0 guaranteed by the property
of Lemma 2.7 that eA2t is an s.c. analytic semigroup on Y2 (which, moreover,
is uniformly (exponentially) stable here). To push the validity of (B.10) to the
case ε = 0, or s = 1/2, we use, from [6, Appendix A], stronger spectral properties
enjoyed by A2. These, in turn, provide an explicit spectral representation of eA2t

which a fortiori shows that eA2t is analytic and uniformly stable. Indeed, it turns
out that A2 is, in fact, the direct (nonorthogonal) sum of two normal operators
on Y2 except for some exceptional values of ρ, α, where then A2 is still a spectral
operator. As a consequence of the explicit spectral expansion representation of
the two components of eA2t, it follows that estimate (B.10) holds true in the
case s = 1/2 as well. ([6, Appendix A] is written explicitly in the case where A2

has compact resolvent, but this property can be dispensed with.) The Claim is
established.

Next, we apply estimate (B.10) for the first term on the right-hand side of
(B.9), with s = (r − r0)/α ≤ 1/2 as assumed in the statement of Lemma 3.3, to
obtain∫ t

0

∥∥∥∥A−r0/α
2 eA2τ

[
0
v2

]∥∥∥∥2

Y2

dτ ≤
∫T

0

∥∥∥∥(−A2
)(r−r0)/α

eA2t(−A2
)−r/α

[
0
v2

]∥∥∥∥2

Y2

dt

≤ CT

∥∥∥∥A−r/α
2

[
0
v2

]∥∥∥∥2

Y2

= CT

∥∥�−r v2
∥∥2

L2(Γ0),

(B.11)

where in the last step we have also used (2.26). Substituting (B.11) in the first
term on the right-hand side of (B.9) yields∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ ≤ cT eCT t
[∥∥�−r v2

∥∥2
L2(Γ0) +

∥∥z0
∥∥2

Zβ

]
, (B.12)

and (B.12) proves estimates (3.11), as desired. �
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Remark B.1. If (r − r0)/α < 1/2 (i.e., if we exclude the limit case (r − r0)/α = 1/2),
then the following alternative proof may be given. Rewrite and estimate, just by
analyticity, the first term on the right-hand side of (B.6) as follows:

∥∥∥∥A−r0/α
2 eA2t

[
0
v2

]∥∥∥∥
Y2

=
∫T

0

∥∥∥∥A(r−r0)/α
2 eA2tA−r/α

2

[
0
v2

]∥∥∥∥
Y2

dτ

≤ CT

t(r−r0)/α

∥∥∥∥A−r/α
2

[
0
v2

]∥∥∥∥
Y2

≤ CT

t(r−r0)/α

∥∥�−r v2
∥∥

L2(Γ0),

(B.13)

where, in the last step, we have used (2.26) with s = (r − r0)/α ≤ 1/2 (at this stage
we could allow also the limit case s = 1/2). We now use (B.13) in (B.6) and obtain

∥∥�−r0 v2
∥∥2

L2(Γ0) ≤
CT

t2s

∥∥�−r v2
∥∥2

L2(Γ0) + cT

∥∥A1/2
N z0
∥∥2

L2(Ω)

+ cT

∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ,

(B.14)

with s = (r − r0)/α ≤ 1/2. We now apply the Gronwall’s inequality for 2s < 1 (crit-
ical) as in [12, Section 1.2.1, page 6], with α = 2s < 1, β = 0 to obtain

∥∥�−r0 vt(t)
∥∥2

L2(Γ0) ≤
CT

t2s

∥∥�−r v2
∥∥2

L2(Γ0) + c′T
∥∥A1/2

N z0
∥∥2

L2(Ω). (B.15)

Finally from (B.15), using again critically that s = (r − r0)/α < 1/2, we obtain∫ t

0

∥∥�−r0 vτ(τ)
∥∥2

L2(Γ0) dτ ≤ CT

(∫ t

0

1
τ2s

dτ
)∥∥�−r v2

∥∥2
L2(Γ0) + c′T

∥∥A1/2
N z0
∥∥2

L2(Ω)

≤ CT

1− 2s
t1−2s
[∥∥�−r v2

∥∥2
L2(Γ0) +

∥∥A1/2
N z0
∥∥2

L2(Ω)

]
,

(B.16)

with 1− 2s > 0, thus re-proving (B.12) = (3.11). �

C. Numerical graphs of the spectrum of the operator A in (2.37) and (2.38)
with α = 1/2, β = 0, when Ω is a 2-dimensional square. Contrast between
the case D0 = −d2/dx2 and the case D0 = 0 along an edge of the square

At our request, the numerical graphs below were kindly computed in the spring
of 2001 by Catherine Lebiedzik while at the University of Virginia. We wish to
thank her for permission to include them here. These graphs are part of a larger
collection of graphs, computed by her, which refer to various combinations of
the acoustic model (1.2). Individually and cumulatively, these graphs support
the theoretical conclusions of the present paper.

Case D0 = −d2/dx2 along an edge: Figures C.1 and C.2. Let Ω be a 2-dimensional
square, as indicated below. Figures C.1 and C.2 refer to the (static) operator A in
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Figure C.1. Viscous damping, d2 = 1; D0 = −d2/dx2.

(2.37) and (2.38), corresponding to the following structural acoustic problem:

ztt = ∆z − d2zt in (0,T]×Ω,

∂z

∂ν
+ z = 0 on (0,T]× Γ1,

∂z

∂ν
− d2

dx2
zt − vt = 0 on (0,T]× Γ0,

vtt + ∆2v −∆vt + zt = 0 on (0,T]× Γ0,

v = ∆v = 0 on (0,T]× ∂Γ0,

Γ̃3

Γ̃2

Γ̃1

Γ0

Ω

(C.1)

where Γ1 = Γ̃1 ∪ Γ̃2 ∪ Γ̃3, and d = 1. This problem corresponds to the case α = 1/2,
β = 0, and D0 = −d2/dx2 in model (1.1). Figure C.1 and its expanded version,
Figure C.2, on an enlarged scale show two main branches of eigenvalues of A:
one corresponding to the parabolic component and one corresponding to the
hyperbolic component. In particular, the sub-branch of eigenvalues on the neg-
ative real axis appear to accumulate to the origin λ = 0. From Proposition 4.3(i),
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Figure C.2. Viscous damping, d2 = 1; D0 = −d2/dx2.
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Figure C.3. Viscous damping, d2 = 1; D0 = 0.

(4.12), combined with Remark 4.4, we know that λ = 0 is a point (unique) of the
continuous spectrum of (A1 and) A, since D0 is presently of order s = 2.

On the other hand, the spectrum of A outside the real axis appears bounded
away from the imaginary axis; more precisely on the left of the vertical line Reλ =
−d/2 = −1/2, in agreement with Proposition 4.5(i), (4.32).

Case D0 = 0 along an edge: Figures C.3 and C.4. Let Ω be a 2-dimensional square,
as indicated below. Figures C.3 and C.4 refer to the static operator A in (2.37)
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Figure C.4. Viscous damping, d2 = 1; D0 = 0.

and (2.38), corresponding to the following structural acoustic problem:

ztt = ∆z − d2zt in (0,T]×Ω,

∂z

∂ν
+ z = 0 on (0,T]× Γ1,

∂z

∂ν
− vt = 0 on (0,T]× Γ0,

vtt + ∆2v −∆vt + zt = 0 on (0,T]× Γ0,

v = ∆v = 0 on (0,T]× ∂Γ0,

Γ̄3

Γ̄2

Γ̄1

Γ0

Ω

(C.2)

where Γ1 = Γ̃1 ∪ Γ̃2 ∪ Γ̃3, and d = 1. This problem corresponds to the case α = 1/2,
β = 0, and D0 = 0 in model (1.1). Figure C.3 and its expanded version, Figure C.4,
on an enlarged scale share with Figures C.1 and C.2 the same macroscopic pat-
tern of the eigenvalues of A (with two main branches: one corresponding to the
parabolic component and one corresponding to the hyperbolic component),
except for one main difference: now, with D0 = 0, the sub-branch of eigenval-
ues on the negative real axis does not appear to converge to the origin, in line
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with Proposition 4.5(iii), (4.37). Moreover, λ = 0 is the resolvent set of (A1 and
of) A in this case, in line with Proposition 4.3(i), (4.11). On the other hand, as
for Figures C.1 and C.2, the spectrum outside the real axis appears bounded
away from the imaginary axis; more precisely, on the left of the vertical line
Reλ = −d/2 = −1/2, in agreement with Proposition 4.5(i), (4.32).

Acknowledgments

Bucci’s research performed while this author was visiting the University of Vir-
ginia, Mathematics Department, under a NATO-CNR senior fellowship.

Triggiani’s research partially supported by the National Science Foundation
(NSF) under grant DMS-9804056, and by the Army Research Office, under grant
AAH04-96-1-0059.

References

[1] G. Avalos, Optimal control for a coupled hyperbolic-parabolic system in arising struc-
tural acoustics, Ph.D. thesis, University of Virginia, 1995.

[2] , Sharp regularity estimates for solutions of the wave equation and their traces
with prescribed Neumann data, Appl. Math. Optim. 35 (1997), no. 2, 203–219.

[3] G. Avalos and I. Lasiecka, Differential Riccati equation for the active control of a prob-
lem in structural acoustics, J. Optim. Theory Appl. 91 (1996), no. 3, 695–728.

[4] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation and
Control of Infinite-Dimensional Systems, Vol. II, Birkhäuser, Massachusetts, 1993.
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