ON THE EXISTENCE OF SOLUTIONS TO A FOURTH-ORDER QUASILINEAR RESONANT PROBLEM

SHIBO LIU AND MARCO SQUASSINA

Received 7 November 2001

By means of Morse theory we prove the existence of a nontrivial solution to a superlinear p-harmonic elliptic problem with Navier boundary conditions having a linking structure around the origin. Moreover, in case of both resonance near zero and nonresonance at $+\infty$ the existence of two nontrivial solutions is shown.

1. Introduction and main results

Let $p>1$ and $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded domain with $n \geqslant 2 p+1$. We are concerned with the existence of nontrivial solutions to the p-harmonic equation

$$
\begin{equation*}
\Delta\left(|\Delta u|^{p-2} \Delta u\right)=g(x, u) \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

with Navier boundary conditions

$$
\begin{equation*}
u=\Delta u=0 \quad \text { on } \partial \Omega, \tag{1.2}
\end{equation*}
$$

where $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for some $C>0$,

$$
\begin{equation*}
|g(x, s)| \leqslant C\left(1+|s|^{q-1}\right) \tag{1.3}
\end{equation*}
$$

for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$, being $1 \leqslant q<p_{*}$ and $p_{*}=n p /(n-2 p)$.
It is well known that the functional $\Phi: W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$

$$
\begin{equation*}
\Phi(u)=\frac{1}{p} \int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} G(x, u) d x, \tag{1.4}
\end{equation*}
$$

with $G(x, s)=\int_{0}^{s} g(x, t) d t$, is of class C^{1} and

$$
\begin{equation*}
\left\langle\Phi^{\prime}(u), \varphi\right\rangle=\int_{\Omega}|\Delta u|^{p-2} \Delta u \Delta \varphi d x-\int_{\Omega} g(x, u) \varphi d x \tag{1.5}
\end{equation*}
$$

for each $\varphi \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. Moreover, the critical points of Φ are weak solutions for (1.1). Notice that for the eigenvalue problem

$$
\begin{equation*}
\Delta\left(|\Delta u|^{p-2} \Delta u\right)=\lambda|u|^{p-2} u \quad \text { in } \Omega \tag{1.6}
\end{equation*}
$$

with boundary data (1.2), as for the p-Laplacian eigenvalue problem with Dirichlet boundary data,

$$
\begin{equation*}
\lambda_{n}=\inf _{A \in I_{n}} \sup _{u \in A} \int_{\Omega}|\Delta u|^{p} d x, \quad n=1,2, \ldots \tag{1.7}
\end{equation*}
$$

is the sequence of eigenvalues, where

$$
\begin{equation*}
\Gamma_{n}=\left\{A \subseteq W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\}: A=-A, \gamma(A) \geqslant n\right\} \tag{1.8}
\end{equation*}
$$

being $\gamma(A)$ the Krasnoselski's genus of the set A. This follows by the LjusternikSchnirelman theory for C^{1}-manifolds proved in [13] applied to the functional

$$
\begin{gather*}
\left.J\right|_{\mathcal{M}}(u)=\int_{\Omega}|\Delta u|^{p} d x \tag{1.9}\\
\mathcal{M}=\left\{u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega): \int_{\Omega}|u|^{p} d x=1\right\},
\end{gather*}
$$

since \mathcal{M} is a C^{1}-manifold with tangent space

$$
\begin{equation*}
T_{u} \mathcal{M}=\left\{w \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega): \int_{\Omega}|u|^{p-2} u w d x=0\right\} . \tag{1.10}
\end{equation*}
$$

The next remark is the starting point of our paper.
Remark 1.1. It has been recently proved by Drábek and Ôtani [4] that (1.6) with boundary data (1.2) has the least eigenvalue

$$
\begin{equation*}
\lambda_{1}(p)=\inf \left\{\int_{\Omega}|\Delta u|^{p} d x: u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega),\|u\|_{p}^{p}=1\right\} \tag{1.11}
\end{equation*}
$$

which is simple, positive, and isolated in the sense that the solutions of (1.6) with $\lambda=\lambda_{1}(p)$ form a one-dimensional linear space spanned by a positive eigenfunction $\phi_{1}(p)$ associated with $\lambda_{1}(p)$ and there exists $\delta>0$ so that $\left(\lambda_{1}(p), \lambda_{1}(p)+\delta\right)$ does not contain other eigenvalues. The situation is actually more involved with Dirichlet boundary conditions

$$
\begin{equation*}
u=\nabla u=0 \quad \text { on } \partial \Omega \tag{1.12}
\end{equation*}
$$

and, to our knowledge, it is not clear whether the first eigenspace has the previous good properties; the fact is that while Navier boundary conditions allow to reduce the fourth-order problem into a system of two second-order problems, Dirichlet boundary conditions do not. Some pathologies are indeed known, for instance, the first eigenfunction of $\Delta^{2} u=\lambda u$ with boundary data (1.12) may change sign [12].

Remark 1.2. Let $V=\operatorname{span}\left\{\phi_{1}\right\}$ be the eigenspace associated with λ_{1}, where $\left\|\phi_{1}\right\|_{2, p}=1$. Taking a subspace $W \subset W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ complementing V, that is, $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)=V \oplus W$, there exists $\hat{\lambda}>\lambda_{1}$ with

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{p} d x \geqslant \hat{\lambda} \int_{\Omega}|u|^{p} d x \tag{1.13}
\end{equation*}
$$

for each $u \in W$ (in case $p=2$, one may take $\hat{\lambda}=\lambda_{2}$).
We may now assume the following conditions:
$\left(\mathscr{H}_{1}\right)$ there exist $R>0$ and $\left.\bar{\lambda} \in\right] \lambda_{1}, \hat{\lambda}[$ such that

$$
\begin{equation*}
|s| \leqslant R \Longrightarrow \lambda_{1}|s|^{p} \leqslant p G(x, s) \leqslant \bar{\lambda}|s|^{p} \tag{1.14}
\end{equation*}
$$

for a.e. $x \in \Omega$ and each $s \in \mathbb{R}$;
$\left(\mathscr{H}_{2}\right)$ there exist $\vartheta>p$ and $M>0$ such that

$$
\begin{equation*}
|s| \geqslant M \Longrightarrow 0<\vartheta G(x, s) \leqslant \operatorname{sg}(x, s) \tag{1.15}
\end{equation*}
$$

for a.e. $x \in \Omega$ and each $s \in \mathbb{R}$.
Assumption $\left(\mathscr{H}_{1}\right)$ corresponds to a resonance condition around the origin while $\left(\mathscr{H}_{2}\right)$ is the standard condition of Ambrosetti-Rabinowitz type.

Theorem 1.3. Assume that conditions (\mathscr{H}_{1}) and (\mathscr{H}_{2}) hold. Then problem (1.1) with boundary conditions (1.2) admits a nontrivial solution in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.

Now replace $\left(\mathscr{H}_{2}\right)$ with a nonresonance condition at $+\infty$.
Theorem 1.4. Assume that condition $\left(\mathscr{H}_{1}\right)$ holds and that for a.e. $x \in \Omega$

$$
\begin{equation*}
\lim _{|s| \rightarrow+\infty} \frac{p G(x, s)}{|s|^{p}}<\lambda_{1} . \tag{1.16}
\end{equation*}
$$

Then problem (1.1) with boundary conditions (1.2) admits two nontrivial solutions in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.

We use variational methods to prove Theorems 1.3 and 1.4. Usually, one uses a minimax type argument of mountain pass type to prove the existence of solutions of equations with a variational structure. However, it seems difficult to use minimax theorems in our situation. Thus we will adopt an approach based on Morse theory. Notice that there were a few works using Morse theory to treat p-Laplacian problems with Dirichlet boundary conditions (see [9] and the references therein). Moreover, to the authors' knowledge, (1.1) has a very poor literature; the only papers in which a p-harmonic equation is mentioned are [1, Section 8] and [4].

The existence of multiple solutions depends mainly on the behaviour of $G(x, s)$ near 0 and at $+\infty$. Without the above resonant or nonresonant conditions to obtain multiple solutions seems hard even in the semilinear case $p=2$.

Remark 1.5. Arguing as in [9], it is possible to prove Theorem 1.4 by replacing assumption (1.16) with the following conditions:

$$
\begin{equation*}
\lim _{|s| \rightarrow+\infty} \frac{p G(x, s)}{|s|^{p}}=\lambda_{1}, \quad \lim _{|s| \rightarrow+\infty}\{g(x, s) s-p G(x, s)\}=+\infty \tag{1.17}
\end{equation*}
$$

for a.e. $x \in \Omega$ (resonance condition at $+\infty$).
Remark 1.6. The existence of solutions $u \in W_{0}^{2, p}(\Omega)$ of the quasilinear problem

$$
\begin{align*}
\Delta\left(|\Delta u|^{p-2} \Delta u\right) & =g(x, u) & & \text { in } \Omega, \tag{1.18}\\
u & =\nabla u=0 & & \text { on } \partial \Omega
\end{align*}
$$

under the previous assumptions $\left(\mathscr{H}_{j}\right)$ is, to our knowledge, an open problem.

2. Proofs of Theorems 1.3 and 1.4

In this section, we give the proof of our main results. It is readily seen that

$$
\begin{equation*}
\|u\|_{2, p}=\left(\int_{\Omega}|\Delta u|^{p} d x\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

is an equivalent norm of the standard space norm of $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. For Φ a continuously Fréchet differentiable map, let Φ^{\prime} denote its Fréchet derivative.
Lemma 2.1. The functional Φ satisfies the Palais-Smale condition.
Proof. Let $\left(u_{h}\right) \subset W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ be such that $\left|\Phi\left(u_{h}\right)\right| \leqslant B$, for some $B>0$ and $\Phi^{\prime}\left(u_{h}\right) \rightarrow 0$ as $h \rightarrow+\infty$. Let $d=\sup _{h \geqslant 0} \Phi\left(u_{h}\right)$. Then we have

$$
\begin{align*}
\vartheta d+\left\|u_{h}\right\|_{2, p} \geqslant & \vartheta \Phi\left(u_{h}\right)-\left\langle\Phi^{\prime}\left(u_{h}\right), u_{h}\right\rangle \\
= & \left(\frac{\vartheta}{p}-1\right)\left\|u_{h}\right\|_{2, p}^{p}-\int_{\left\{\left|u_{h}\right| \geqslant M\right\}}\left[\vartheta G\left(x, u_{h}\right)-g\left(x, u_{h}\right) u_{h}\right] d x \\
& -\int_{\left\{\left|u_{h}\right| \leqslant M\right\}}\left[\vartheta G\left(x, u_{h}\right)-g\left(x, u_{h}\right) u_{h}\right] d x \tag{2.2}\\
\geqslant & \left(\frac{\vartheta}{p}-1\right)\left\|u_{h}\right\|_{2, p}^{p}-\int_{\left\{\left|u_{h}\right| \leqslant M\right\}}\left[\vartheta G\left(x, u_{h}\right)-g\left(x, u_{h}\right) u_{h}\right] d x \\
\geqslant & \left(\frac{\vartheta}{p}-1\right)\left\|u_{h}\right\|_{2, p}^{p}-D,
\end{align*}
$$

for some $D \in \mathbb{R}$. Thus (u_{h}) is bounded and, up to a subsequence, we may assume that $u_{h} \rightharpoonup u$ is, for some u, in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. Since the embedding $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact, then a standard argument shows that $u_{h} \rightarrow u$ strongly and the proof is complete.

Now recall the notion of "Local Linking," which was initially introduced by Liu and $\mathrm{Li}[8]$ and has been used in a vast amount of literature (cf. [2, 5, 6, 11]).

Definition 2.2. Let E be a real Banach space such that $E=V \oplus W$, where V and W are closed subspaces of E. Let $\Phi: E \rightarrow \mathbb{R}$ be a C^{1}-functional. We say that Φ has a local linking near the origin 0 (with respect to the decomposition $E=V \oplus W$), if there exists $\varphi>0$ such that

$$
\begin{align*}
& u \in V:\|u\| \leqslant \varrho \Longrightarrow \Phi(u) \leqslant 0 \\
& u \in W: 0<\|u\| \leqslant \varrho \Longrightarrow \Phi(u)>0 \tag{2.3}
\end{align*}
$$

We now show that our functional Φ has a local linking near the origin with respect to the space decomposition $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)=V \oplus W$, according to Remark 1.2.

Lemma 2.3. There exists $\varphi>0$ such that conditions (2.3) hold with respect to the decomposition $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)=V \oplus W$.

Proof. For $u \in V$, the condition $\|u\|_{2, p} \leqslant \rho$ implies $u(x) \leqslant R$ for a.e. $x \in \Omega$ if $\varrho>0$ is small enough, being $R>0$ as in assumption $\left(\mathscr{H}_{1}\right)$. Thus for $u \in V$,

$$
\begin{align*}
\Phi(u) & =\frac{1}{p} \int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} G(x, u) d x \\
& =\frac{\lambda_{1}}{p} \int_{\Omega}|u|^{p} d x-\int_{\Omega} G(x, u) d x=\int_{\{|u| \leqslant R\}}\left[\frac{\lambda_{1}}{p}|u|^{p}-G(x, u)\right] d x \leqslant 0 \tag{2.4}
\end{align*}
$$

provided that $\|u\|_{2, p} \leqslant \rho$ and ρ is small.
To prove the second assertion, take $u \in W$. In view of (1.3) and (1.13) we have

$$
\begin{align*}
\Phi(u)= & \frac{1}{p} \int_{\Omega}|\Delta u|^{p} d x-\int_{\Omega} G(x, u) d x \\
= & \frac{1}{p} \int_{\Omega}\left(|\Delta u|^{p}-\bar{\lambda}|u|^{p}\right) d x \\
& -\left(\int_{\{|u| \leqslant R\}}+\int_{\{|u| \geqslant R\}}\right)\left(G(x, u)-\frac{\bar{\lambda}}{p}|u|^{p}\right) d x \tag{2.5}\\
\geqslant & \frac{1}{p}\left(1-\frac{\bar{\lambda}}{\hat{\lambda}}\right)\|u\|_{2, p}^{p}-c \int_{\Omega}|u|^{s} d x \geqslant \frac{1}{p}\left(1-\frac{\bar{\lambda}}{\hat{\lambda}}\right)\|u\|_{2, p}^{p}-C\|u\|_{2, p}^{s},
\end{align*}
$$

where $p<s \leqslant p_{*}$ and c, C are positive constants. Since $s>p$, it follows that $\Phi(u)>0$ for $\varphi>0$ sufficiently small.

Assume that u is an isolated critical point of Φ such that $\Phi(u)=c$. We define the critical group of Φ at u by setting for each $q \in \mathbb{Z}$

$$
\begin{equation*}
C_{q}(\Phi, u)=H_{q}\left(\Phi_{c}, \Phi_{c} \backslash\{u\}\right), \tag{2.6}
\end{equation*}
$$

being $H_{q}(X, Y)$ the q th homology group of the topological pair (X, Y) over the ring \mathbb{Z} and Φ_{c} the c-sublevel of Φ. For the detail of Morse theory and critical groups, we refer the reader to [3].

Since $\operatorname{dim} V=1<+\infty$, by combining Lemma 2.3 and [7, Theorem 2.1], we obtain the following result.

Lemma 2.4. The point 0 is a critical point of Φ and $C_{1}(\Phi, 0) \neq\{0\}$.
We now investigate the behavior of Φ near infinity.
Lemma 2.5. There exists a constant $A>0$ such that

$$
\begin{equation*}
a<-A \Longrightarrow \Phi_{a} \simeq S^{\infty} \tag{2.7}
\end{equation*}
$$

where $S^{\infty}=\left\{u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega):\|u\|_{2, p}=1\right\}$.
Proof. By integrating inequality (1.15), we obtain a constant $C_{1}>0$ with

$$
\begin{equation*}
|s| \geqslant M \Longrightarrow G(x, s) \geqslant C_{1}|s|^{9} \tag{2.8}
\end{equation*}
$$

a.e. in Ω and for each $s \in \mathbb{R}$. Thus, for $u \in S^{\infty}$, we have $\Phi(t u) \rightarrow-\infty$, as t goes to $+\infty$. Set

$$
\begin{equation*}
A=\left(1+\frac{1}{p}\right) M \mathscr{L}^{n}(\Omega) \max _{\Omega \times[-M, M]}|g(x, s)|+1 \tag{2.9}
\end{equation*}
$$

being \mathscr{L}^{n} the Lebesgue measure. As in the proof of [10, Lemma 2.4] we obtain

$$
\begin{align*}
\int_{\Omega} G(x, u) & d x-\frac{1}{p} \int_{\Omega} g(x, u) u d x \\
& \leqslant\left(\frac{1}{9}-\frac{1}{p}\right) \int_{\{|u| \geqslant M\}} g(x, u) u d x+A-1 \tag{2.10}
\end{align*}
$$

For $a<-A$ and

$$
\begin{equation*}
\Phi(t u)=\frac{|t|^{p}}{p}-\int_{\Omega} G(x, t u) d x \leqslant a \quad\left(u \in S^{\infty}\right) \tag{2.11}
\end{equation*}
$$

in view of (2.8) and (2.10), arguing as in the proof of [10, Lemma 2.4],

$$
\begin{equation*}
\frac{d}{d t} \Phi(t u)<0 \tag{2.12}
\end{equation*}
$$

By the implicit function theorem, there is a unique $T \in C\left(S^{\infty}, \mathbb{R}\right)$ such that

$$
\begin{equation*}
\forall u \in S^{\infty}, \quad \Phi(T(u) u)=a . \tag{2.13}
\end{equation*}
$$

For $u \neq 0$, set $\tilde{T}(u)=\left(1 /\|u\|_{2, p}\right) T\left(u /\|u\|_{2, p}\right)$. Then $\tilde{T} \in C\left(W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\}\right.$, \mathbb{R}) and

$$
\begin{equation*}
\forall u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\}, \quad \Phi(\tilde{T}(u) u)=a . \tag{2.14}
\end{equation*}
$$

We define now a functional $\hat{T}: W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\} \rightarrow \mathbb{R}$ by setting

$$
\hat{T}(u)= \begin{cases}\tilde{T}(u) & \text { if } \Phi(u) \geqslant a \tag{2.15}\\ 1 & \text { if } \Phi(u) \leqslant a\end{cases}
$$

Since $\Phi(u)=a$ implies $\tilde{T}(u)=1$, we conclude that

$$
\begin{equation*}
\hat{T} \in C\left(W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\}, \mathbb{R}\right) . \tag{2.16}
\end{equation*}
$$

Finally, let $\eta:[0,1] \times W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\} \rightarrow W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\}$,

$$
\begin{equation*}
\eta(s, u)=(1-s) u+s \hat{T}(u) u \tag{2.17}
\end{equation*}
$$

It results that η is a strong deformation retract from $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\}$ to Φ_{a}. Thus $\Phi_{a} \simeq W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\} \simeq S^{\infty}$.

Remark 2.6. A result similar to Lemma 2.5 has been proved for the Laplacian $-\Delta$ in [3, 14], under the additional conditions

$$
\begin{equation*}
g \in C^{1}(\Omega \times \mathbb{R}, \mathbb{R}), \quad g_{t}(x, 0)=\left.\frac{\partial g(x, t)}{\partial t}\right|_{t=0}=0 . \tag{2.18}
\end{equation*}
$$

We recall the following topological result due to Perera [11].
Lemma 2.7. Let $Y \subset B \subset A \subset X$ be topological spaces and $q \in \mathbb{Z}$. If

$$
\begin{equation*}
H_{q}(A, B) \neq\{0\}, \quad H_{q}(X, Y)=\{0\} \tag{2.19}
\end{equation*}
$$

then it results that

$$
\begin{equation*}
H_{q+1}(X, A) \neq\{0\} \quad \text { or } \quad H_{q-1}(B, Y) \neq\{0\} . \tag{2.20}
\end{equation*}
$$

Proof of Theorem 1.3. By Lemma 2.1, Φ satisfies the Palais-Smale condition. Note that $\Phi(0)=0$, by [3, Chapter I, Theorem 4.2], there exists $\varepsilon>0$ with

$$
\begin{equation*}
H_{1}\left(\Phi_{\varepsilon}, \Phi_{-\varepsilon}\right)=C_{1}(\Phi, 0) \neq\{0\} . \tag{2.21}
\end{equation*}
$$

If A is as in Lemma 2.5, for $a<-A$ we have $\Phi_{a} \simeq S^{\infty}$, which yields

$$
\begin{equation*}
H_{1}\left(W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega), \Phi_{a}\right)=H_{1}\left(W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega), S^{\infty}\right)=\{0\} \tag{2.22}
\end{equation*}
$$

Therefore, being $\Phi_{a} \subset \Phi_{-\varepsilon} \subset \Phi_{\varepsilon}$, Lemma 2.7 yields

$$
\begin{equation*}
H_{2}\left(W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega), \Phi_{\varepsilon}\right) \neq\{0\} \quad \text { or } \quad H_{0}\left(\Phi_{-\varepsilon}, \Phi_{a}\right) \neq\{0\} \tag{2.23}
\end{equation*}
$$

It follows that Φ has a critical point u for which

$$
\begin{equation*}
\Phi(u)>\varepsilon \quad \text { or } \quad-\varepsilon>\Phi(u)>a \text {. } \tag{2.24}
\end{equation*}
$$

Therefore, $u \neq 0$ and (1.1), (1.2) possess a nontrivial solution.

Recall from [9] the following three-critical point theorem.
Lemma 2.8. Let X be a real Banach space and let $\Phi \in C^{1}(X, \mathbb{R})$ be bounded from below and satisfying the Palais-Smale condition. Assume that Φ has a critical point u which is homologically nontrivial, that is, $C_{j}(\Phi, u) \neq\{0\}$ for some j, and it is not a minimizer for Φ. Then Φ admits at least three critical points.

Proof of Theorem 1.4. By Lemma 2.8, taking into account Lemma 2.4, it suffices to show that Φ is bounded from below. Indeed, by (1.16) there exist $\varepsilon>0$ small and $C>0$ such that

$$
\begin{equation*}
G(x, s) \leqslant \frac{\lambda_{1}-\varepsilon}{p}|s|^{p}+C \tag{2.25}
\end{equation*}
$$

for a.e. $x \in \Omega$ and each $s \in \mathbb{R}$. This, by (1.11), immediately yields

$$
\begin{align*}
\Phi(u) & \geqslant \frac{1}{p}\|u\|_{2, p}^{p}-\frac{1}{p}\left(\lambda_{1}-\varepsilon\right)\|u\|_{p}^{p}-C \mathscr{L}^{n}(\Omega) \\
& \geqslant \frac{1}{p}\left(1-\frac{\lambda_{1}-\varepsilon}{\lambda_{1}}\right)\|u\|_{2, p}^{p}-C \mathscr{L}^{n}(\Omega) \longrightarrow+\infty \tag{2.26}
\end{align*}
$$

as $\|u\|_{2, p} \rightarrow+\infty$. Then Φ is coercive and satisfies the Palais-Smale condition. In particular Lemma 2.8 provides the existence of at least two nontrivial critical points of Φ.

Acknowledgment

The authors wish to thank Prof. Pavel Drábek for his useful comments about the spectrum of the p-harmonic eigenvalue problem.

References

[1] F. Bernis, J. García Azorero, and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations 1 (1996), no. 2, 219-240.
[2] H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 939-963.
[3] K.-C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and Their Applications, vol. 6, Birkhäuser, Massachusetts, 1993.
[4] P. Drábek and M. Ôtani, Global bifurcation result for the p-biharmonic operator, Electron. J. Differential Equations (2001), no. 48, 1-19.
[5] S. J. Li and J. Q. Liu, Nontrivial critical points for asymptotically quadratic function, J. Math. Anal. Appl. 165 (1992), no. 2, 333-345.
[6] S. J. Li and M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl. 189 (1995), no. 1, 6-32.
[7] J. Q. Liu, The Morse index of a saddle point, Systems Sci. Math. Sci. 2 (1989), no. 1, 32-39.
[8] J. Q. Liu and S. J. Li, An existence theorem for multiple critical points and its application, Kexue Tongbao (Chinese) 29 (1984), no. 17, 1025-1027.
[9] J. Q. Liu and J. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl. 258 (2001), no. 1, 209-222.
[10] S. Liu, Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equations (2001), no. 66, 1-6.
[11] K. Perera, Critical groups of critical points produced by local linking with applications, Abstr. Appl. Anal. 3 (1998), no. 3-4, 437-446.
[12] G. Sweers, When is the first eigenfunction for the clamped plate equation of fixed sign?, Electron. J. Differential Equations, Conf. 6 (2001), 285-296.
[13] A. Szulkin, Ljusternik-Schnirelmann theory on C^{1}-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 2, 119-139.
[14] Z. Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 1, 43-57.

Shibo Liv: Institute of Mathematics, Academy of Mathematics and Systems Sciences, Academia Sinica, Beijing 100080, China

E-mail address: liusb@amss.ac.cn
Marco Squassina: Dipartimento di Matematica, Università Cattolica S.C., Via Musei 41, 25121 Brescia, Italy

E-mail address: squassin@dmf.unicatt.it

