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We derive a nontrivial solution for a Neumann noncoercive hemivariational in-
equality using the critical point theory for locally Lipschitz functionals. We use
the Mountain-Pass theorem due to Chang (1981).

1. Introduction

The problem under consideration is a hemivariational inequality of Neumann
type. Let Z ⊆ R

N be a bounded domain with a C1-boundary Γ. We have

−div
(∥∥Dx(z)

∥∥p−2
Dx(z)

)
∈ ∂ j1

(
z,x(z)

)
a.e. on Z,

− ∂x

∂np
∈ ∂ j2

(
z,τ

(
x(z)

))
a.e. on Γ, 2 ≤ p <∞.

(1.1)

Here the boundary condition is in the sense of Kenmochi [7] and τ is the
trace operator (see Kenmochi [7, page 123]).

The study of hemivariational inequalities has been initiated and developed by
Panagiotopoulos [8]. Such inequalities arise in physics when we have nonconvex,
nonsmooth energy functionals. For applications, one can see [9].

Many authors studied Dirichlet hemivariational inequalities (cf. Gasiński and
Papageorgiou [5], Goeleven et al. [6], and others). Here we are interested in
finding nontrivial solutions for Neumann hemivariational inequalities.

In Section 2, we recall some facts and definitions from the critical point the-
ory for locally Lipschitz functionals and the subdifferential of Clarke.

2. Preliminaries

Let X be a Banach space and let Y be a subset of X . A function f : Y → R is
said to satisfy a Lipschitz condition (on Y) provided that, for some nonnegative
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scalar K , we have

∣∣ f (y)− f (x)
∣∣ ≤ K‖y−x‖ (2.1)

for all points x, y ∈ Y . Let f be a Lipschitz function near a given point x, and let
v be any other vector in X . The generalized directional derivative of f at x in the
direction v, denoted by f o(x;v) is defined as follows:

f o(x;v) = limsup
y→x
t↓0

f (y+ tv)− f (y)
t

, (2.2)

where y is a vector in X and t a positive scalar. If f is a Lipschitz function of
rank K near x, then the function v→ f o(x;v) is finite, positively homogeneous,
subadditive, and satisfies | f o(x;v)| ≤ K‖v‖. In addition, f o satisfies f o(x;−v) =
(− f )o(x;v). Now we are ready to introduce the generalized gradient which is
denoted by ∂ f (x) as follows:

∂ f (x) =
{
w ∈ X∗ : f o(x;v) ≥ 〈w,v〉 ∀v ∈ X}. (2.3)

Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) ∂ f (x) is a nonempty, convex, weakly compact subset ofX∗ and ‖w‖∗ ≤ K
for every w in ∂ f (x);

(b) for every v in X , we have

f o(x;v) = max
{〈w,v〉 : w ∈ ∂ f (x)

}
. (2.4)

If f1, f2 are locally Lipschitz functions then

∂
(
f1 + f2

) ⊆ ∂ f1 +∂ f2. (2.5)

Recall the Palais-Smale condition ((PS)-condition) introduced by Chang [2].

Definition 2.1. We say that a Lipschitz function f satisfies the (PS)-condition
if for any sequence {xn}, | f (xn)| is bounded and λ(xn) = minw∈∂ f (xn) ‖w‖X∗ → 0
possesses a convergent subsequence.

The (PS)-condition can also be formulated as follows (see [4]).
(PS)∗c,+: whenever (xn) ⊆ X , (εn),(δn) ⊆ R+ are sequences with εn → 0, δn → 0,

and such that

f
(
xn
) −→ c, f

(
xn
) ≤ f (x)+εn

∥∥x−xn∥∥ if
∥∥x−xn∥∥ ≤ δn, (2.6)

then (xn) possesses a convergent subsequence xn′ → x̂.
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Similarly, we define the (PS)∗c condition from below, (PS)∗c,−, by interchanging
x and xn in inequality (2.6). And finally we say that f satisfies (PS)∗c provided
that it satisfies (PS)∗c,+ and (PS)∗c,−. Note that these two definitions are equivalent
when f is a locally Lipschitz functional.

The following theorem is the Mountain-Pass theorem for locally Lipschitz
functionals.

Theorem 2.2. If a locally Lipschitz functional f : X → R on the reflexive Banach
space X satisfies the (PS)-condition and the hypotheses:

(i) there exist positive constants ρ and a such that

f (u) ≥ a ∀x ∈ X with ‖x‖ = ρ; (2.7)

(ii) f (0) = 0 and there exists a point e ∈ X such that

‖e‖ > ρ, f (e) ≤ 0, (2.8)

then there exists a critical value c ≥ a of f determined by

c = inf
g∈G

max
t∈[0,1]

f
(
g(t)

)
, (2.9)

where

G =
{
g ∈ C([0,1],X

)
: g(0) = 0, g(1) = e

}
. (2.10)

In what follows, we will use the well-known inequality

N∑
j=1

(
aj(η)−aj

(
η

′))(
ηj −η′

j

) ≥ C∣∣η−η′∣∣p (2.11)

for η,η
′ ∈ R

N , with aj(η) = |η|p−2ηj .

3. Existence theorem

Let X =W1,p(Z). Our hypotheses on j1, j2 are the following:
H( j1): the map j1 : Z ×R → R is such that z → j1(z,x) is measurable and

x→ j1(z,x) is locally Lipschitz;

(i) for almost all z ∈ Z, all x ∈ R, and all v ∈ ∂ j1(z,x), we have |v(z)| ≤
c1|x|p−1 +c2|x|p∗−1;

(ii) there exists θ > p and ro > 0 such that for all |x| ≥ ro, and v ∈ ∂ j1(z,x), we
have 0 < θ j1(z,x) ≤ vx, and moreover, there exists some a ∈ L1(Z) such
that j1(z,x) ≥ c3|x|θ −a(z) for every x ∈ R;

(iii) uniformly for almost all z ∈ Z, we have

limsup
x→0

j1(z,x)
|x|p ≤ θ(z) (3.1)

with θ(z) ∈ L∞ and θ(z) ≤ 0 with strict inequality in a set of positive
measure.
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H( j2): the map j2(z,x) is such that z→ j2(z,x) is measurable and j2(z, ·) is a
locally Lipschitz function such that for almost all z ∈ Z, x ∈ R, and v ∈ ∂ j2(z,x)
we have |v(z)| ≤ α1(z)+c1|x|µ, 0 ≤ µ < p−1 with α1 ∈ L∞, c1 > 0, j2(·,0) ∈ L∞(Z),
and finally j2(z, ·) ≥ 0 for almost all z ∈ Z.

Theorem 3.1. If hypotheses H( j1) and H( j2) hold, then problem (1.1) has a non-
trivial solution x ∈W1,p(Z).

Proof. Let Φ : W1,p(Z) → R and ψ : W1,p(Z) → R+ be defined by

Φ(x) = −
∫
Z
j1
(
z,x(z)

)
dz, ψ(x) =

1
p
‖Dx‖pp +

∫
Γ
j2
(
z,τ

(
x(z)

))
dσ. (3.2)

Clearly, Φ is locally Lipschitz (see Chang [2]), while we can check that ψ is
locally Lipschitz too. Set R =Φ+ψ.

Claim 3.2. The function R(·) satisfies the (PS)-condition (in the sense of Costa and
Gonçalves).

We start with (PS)c,+ first. Let {xn}n≥1 ⊆ W1,p(Z) such that R(xn) → c when
n→∞ and

R
(
xn
) ≤ R(x)+εn

∥∥x−xn∥∥ with
∥∥x−xn∥∥ ≤ δn. (3.3)

The above inequality is equivalent to the following:

R(x)−R(xn) ≥ −εn
∥∥x−xn∥∥ with

∥∥x−xn∥∥ ≤ δn (3.4)

where εn,δn → 0. Choose x = xn +δxn with δ‖xn‖ ≤ δn. Divide by δ. So, if δ → 0
we have

lim
δ→0

R
(
xn+δxn

)−R(xn)
δ

≤ Ro(xn;xn
)
. (3.5)

Then we obtain

Ro
(
xn;xn

) ≥ −εn
∥∥xn∥∥. (3.6)

For the (PS)c,− we have the following: let {xn}n≥1 ⊆W1,p(Z) such that R(xn) →
c when n→∞ and

R(x) ≤ R(xn)+εn
∥∥x−xn∥∥ with

∥∥x−xn∥∥ ≤ δn. (3.7)

The above inequality is equivalent to the following:

0 ≤ (−R)(x)−(−R)
(
xn
)

+εn
∥∥x−xn∥∥ with

∥∥x−xn∥∥ ≤ δn. (3.8)

Choose here x = xn−δxn with δ‖xn‖ ≤ δn. We obtain

0 ≤ (−R)
(
xn+δ

(−xn))−(−R)
(
xn
)

+εnδ
∥∥xn∥∥. (3.9)
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Divide this by δ. In the limit, we have

0 ≤ lim
δ→0

(−R)
(
xn+δ

(−xn))−(−R)
(
xn
)

δ
+εn

∥∥xn∥∥. (3.10)

Note that

lim
δ→0

(−R)
(
xn+δ

(−xn))−(−R)
(
xn
)

δ
≤ (−R)o

(
xn;−xn

)
= Ro

(
xn;xn

)
. (3.11)

So finally we obtain again (3.6).
Also,

1
p

∥∥D(xn+δxn
)∥∥p

p−
1
p

∥∥Dxn∥∥ = − 1
p

∥∥Dxn∥∥pp(1−(1+δ)p
)
. (3.12)

So if we divide this by δ and let δ → 0, we have that it is equal to ‖Dxn‖pp.
Finally, there exists vn(z) ∈ ∂Φ(xn) such that 〈vn,xn〉 = Φo(xn;xn) and wn ∈
∂ j2(z,τ(xn(z))) such that

〈
wn,xn

〉
Γ = ψ

o
1

(
xn;xn

)
with ψ1(x) =

∫
Γ
j2
(
z,τ

(
x(z)

))
dσ. (3.13)

Note that

vn ∈ ∂
(
−
∫
Z
j1
(
z,xn(z)

)
dz

)
= −∂

∫
Z
j1
(
z,xn(z)

)
dz. (3.14)

So, from (3.6), it follows that
∫
Z
vnxn(z)dz−∥∥Dxn∥∥pp−

∫
Γ
wnxn dσ ≤ εn

∥∥xn∥∥, (3.15)

for some vn ∈ ∂(
∫
Z j1(z,xn(z))dz).

Suppose that {xn} ⊆ W1,p(Z) was unbounded. Then (at least for a sub-
sequence), we may assume that ‖xn‖ → ∞. Let yn = xn/(‖xn‖), n ≥ 1, and it is
easy to see that ‖yn‖ = 1. By passing to a subsequence if necessary, we may as-
sume that

yn
w−−−→ y in W1,p(Z),

yn −→ y in Lp(Z),

yn(z) −→ y(z) a.e. on Z as n −→∞,

|yn(z)| ≤ k(z) a.e. on Z with k ∈ Lp(Z).

(3.16)

Recall that from the choice of the sequence {xn}, we have |R(xn)| ≤ M1 for
some M1 > 0 and all n ≥ 1,

θ

p

∥∥Dxn∥∥pp +θ
∫
Γ
j2
(
z,τ

(
xn(z)

))
dσ −θ

∫
Z
j1
(
z,xn(z)

)
dz ≤ θM1. (3.17)
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On the other hand, we have
∫
Z
vnxn(z)dz−∥∥Dxn∥∥pp−

∫
Γ
wnxn dσ ≤ εn

∥∥xn∥∥. (3.18)

Adding inequalities (3.17) and (3.18) we obtain

(
θ

p
−1

)∥∥Dxn∥∥pp +
∫
Z

(
vn(z)xn(z)−θ j1

(
z,xn(z)

))
dz

+
∫
Γ

(
j2
(
z,τ

(
xn(z)

))−wn(z)xn(z)
)
dσ

≤ θM1 +εn
∥∥xn∥∥.

(3.19)

From H( j1)(ii), we have that for all |x| > M and v ∈ ∂ j1(z,x), 0 < θ j1(z,x) ≤
vx. From H( j1)(i), we know that |v| ≤ c1|x|p−1 + c2|x|p∗−1. Using Lebourg mean
value theorem (see Clarke [3, Theorem 2.3.7, page 41]) we have that for all x ∈ R

j1(z,x)− j1(z,0) = wx (3.20)

with w ∈ ∂ j1(z, s) where s ∈ (0,x). Recall that j1(z,0) ∈ L∞(Z). So

∣∣ j1(z,x)
∣∣ ≤ c1 +c2|x|p +c3|x|p∗ . (3.21)

So for |x| ≤M, we have that |v| ≤ C and | j1(z,x)| ≤ C for all v ∈ ∂ j1(z,x) for
some C > 0. Thus, there exists some M > 0 such that vx−θ j1(z,x)+M ≥ 0 for all
x ∈ R.

Therefore, (3.19) becomes

(
θ

p
−1

)∥∥Dxn∥∥pp +
∫
Γ

(
j2
(
z,τ

(
xn(z)

))−wn(z)xn(z)
)
dσ ≤ θM1 +εn

∥∥xn∥∥+M.

(3.22)
Dividing by ‖xn‖p, we get

∫
Γ

(
j2
(
z,τ

(
xn(z)

))−wn(z)xn(z)
)
dσ∥∥xn∥∥p −→ 0. (3.23)

Indeed, from the Lebourg mean value theorem, we have that for any x ∈ R,

j2(z,x)− j2(z,0) = wx, (3.24)

with w ∈ ∂ j2(z, s) where s ∈ (0,x). From H( j2), we have that for every w ∈
∂ j2(z, s), |w| ≤ c1 +c2|s|µ. Moreover, note that j2(z,0) ∈ L∞. So,

∣∣ j2(z,x)
∣∣ ≤ c1|x|+c2|x|µ+1 +c3. (3.25)
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Thus, ∫
Γ

(
j2
(
z,τ

(
xn(z)

))−wn(z)xn(z)
)
dσ∥∥xn∥∥p

≤
∫
Γ

c1
∣∣xn(z)

∣∣∥∥xn∥∥p dσ +
∫
Γ

c2
∣∣xn(z)

∣∣µ+1

∥∥xn∥∥p dσ +
c4∥∥xn∥∥p

≤ c1

∥∥xn∥∥L1(Γ)∥∥xn∥∥p +c2

∥∥xn∥∥µ+1
Lµ+1(Γ)∥∥xn∥∥p +

c4∥∥xn∥∥p .

(3.26)

Note that ∥∥xn∥∥L1(Γ) ≤ K
∥∥xn∥∥1/q,1,Γ ≤ C

∥∥xn∥∥1,p,Z ,∥∥xn∥∥µ+1
Lµ+1(Γ)

≤ K∥∥xn∥∥µ+1
1/q,p,Γ ≤ C

∥∥xn∥∥µ+1
1,p,Z ,

(3.27)

(see Adams [1, page 217]), recall that µ+1 < p. Now we have finished the claim.
Going back to (3.22) we have that ‖Dyn‖ → 0. From the weak lower semicon-

tinuity of the norm functional, we have that ‖Dy‖≤ liminf ‖Dyn‖≤ limsup‖Dyn‖
→ 0. Therefore, we infer that yn → y in W1,p(Z) (recall that yn → y weakly in
W1,p(Z) and ‖Dyn‖ → ‖Dy‖ = 0). So, y = ξ ∈ R. But, ‖yn‖ = 1, so ‖y‖ = 1, thus
y = ξ �= 0. Suppose that ξ > 0, then xn(z) →∞. From H( j1)(ii) we have that, for
all x ∈ R, j1(z,x) ≥ c1|x|θ −a(z). So it is clear that

R
(
xn
)

∥∥xn∥∥θ
≤ 1
p

∥∥Dyn∥∥pp 1∥∥xn∥∥θ−p
−c1

∫
Z

∣∣yn(z)
∣∣θ dz

+
∫
Z

a(z)∥∥xn∥∥θ
dz+

∫
Γ j2

(
z,τ

(
xn(z)

))
dσ∥∥xn∥∥θ

.

(3.28)

Recall that from the choice of the sequence we have that

R
(
xn
)

∥∥xn∥∥θ
≥ − M1∥∥xn∥∥θ

. (3.29)

As before it is easy to see that∫
Γ
j2
(
z,τ

(
xn(z)

))
dσ

∥∥xn∥∥θ
−→ 0,

1
p

∥∥Dyn∥∥pp 1∥∥xn∥∥θ−p
−→ 0. (3.30)

So from (3.28) we have that 0 ≤ −c1|ξ|θ |Z|. But this is a contradiction. So
{xn} ⊆W1,p(Z) is bounded.

From the properties of the subdifferential of Clarke, we have

∂R
(
xn
) ⊆ ∂Φ(

xn
)

+∂ψ
(
xn
)

⊆ ∂Φ(
xn
)

+∂
(

1
p

∥∥Dxn∥∥pp
)

+
∫
Γ
∂ j2

(
z,τ

(
xn(z)

))
dσ

(3.31)
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(see Clarke [3, page 83]). So we have

〈
wn, y

〉
=
〈
Axn, y

〉
+
〈
τ
(
rn
)
, y
〉
Γ−

∫
Z
vn(z)y(z)dz (3.32)

with rn(z) ∈ ∂ j2(z,τ(xn(z))), vn(z) ∈ ∂ j1(z,xn(z)), and wn the element with min-
imal norm of the subdifferential of R and A : W1,p(Z) → W1,p(Z)∗ such that
〈Ax, y〉 =

∫
Z(‖Dx(z)‖p−2(Dx(z),Dy(z))RN )dz. But xn

w→ x in W1,p(Z), so xn →
x in Lp(Z) and xn(z) → x(z) a.e. on Z by virtue of the compact embedding
W1,p(Z) ⊆ Lp(Z).

Note that the trace of xn belongs to W1/q,p(Γ), thus, from H( j2), the trace of
rn ∈ Lq(Γ). Recall that there exists some K > 0 such that ‖xn‖1/q,p,Γ ≤ K‖xn‖1,p,Z .
Therefore, rn is bounded in Lq(Γ) and moreover, in (W1/q,p(Γ))∗ (the dual space
of W1/q,p(Γ)). Choose y = xn−x, then we obtain

∣∣∣〈τ(rn),xn−x〉Γ
∣∣∣ −→ 0. (3.33)

With 〈·, ·〉Γ we denote the natural pairing of (W1/q,p(Γ),(W1/q,p(Γ))∗).
Then in the limit we have that limsup〈Axn,xn−x〉=0 (note that vn is bounded

in Lp
∗
(Z)). By virtue of inequality (2.11), we have that Dxn → Dx in Lp(Z). So

we have xn → x in W1,p(Z). The claim is proved. �

For every ξ ∈ R, ξ �= 0, we have

R(ξ) =
∫
Γ
j2(z,ξ)dσ −

∫
Z
j1(z,ξ)dz =⇒ 1

|ξ|θ R(ξ)

≤ 1

|ξ|θ
∫
Γ
j2(z,ξ)dσ − 1

|ξ|θ
∫
Z
j1(z,ξ)dz.

(3.34)

As before we show that

− 1

|ξ|θ
∫
Z
j1(z,ξ)dz ≤ −c1

|ξ|θ
|ξ|θ ,

1

|ξ|θ
∫
Γ
j2(z,ξ)dσ −→ 0. (3.35)

Thus R(ξ) →−∞ as |ξ| →∞.
In order to use the Mountain-Pass theorem, it remains to show that there

exists ρ > 0 such that for ‖x‖ = ρ, R(x) ≥ a > 0. In fact, we will show that for
every sequence {xn} ⊆ W1,p(Z) with ‖xn‖ = ρn ↓ 0, R(xn) > 0. Indeed, suppose
not. Then there exists some sequence {xn} such that R(xn) ≤ 0. Thus,

1
p

∥∥Dxn∥∥pp ≤
∫
Z
j1
(
z,xn(z)

)
dz, (3.36)

recall that j2 ≥ 0. Dividing this inequality by ‖xn‖p and letting yn(z) = xn(z)/‖xn‖,
then

∥∥Dyn∥∥pp ≤
∫
Z
p
j1
(
z,xn(z)

)
∥∥xn∥∥p dz. (3.37)
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From H( j1)(iii) we have that for almost all z ∈ Z, for any ε > 0, we can find δ > 0
such that for |x| ≤ δ,

p j1(z,x) ≤ (
θ(z)+ε

)|x|p. (3.38)

On the other hand, as before for almost all z ∈ Z and all |x| ≥ δ, we have

p
∣∣ j1(z,x)

∣∣ ≤ c1|x|p +c2|x|p∗ . (3.39)

Thus we can always find γ > 0 such that p| j1(z,x)| ≤ (θ(z)+ε)|x|p +γ|x|p∗ for all
x ∈ R. Indeed, choose γ ≥ c2 + |θ(z)+ε−c1||δ|p−p∗ , we obtain

∥∥Dyn∥∥pp ≤
∫
Z

(
θ(z)+ε

)∣∣yn(z)
∣∣pdz+γ

∫
Z

∣∣xn(z)
∣∣p∗∥∥xn∥∥p dz

≤
∫
Z

(
θ(z)+ε

)∣∣yn(z)
∣∣pdz+γ1

∥∥xn∥∥p∗−p.
(3.40)

Here we have used the fact that W1,p(Z) embeds continuously in Lp
∗
(Z). So

0 ≤ ∥∥Dyn∥∥pp ≤ ε
∥∥yn∥∥pp +γ1

∥∥xn∥∥p∗−p. (3.41)

Therefore, in the limit we have that ‖Dyn‖p → 0. Recall that yn → y weakly in
W1,p(Z). So ‖Dy‖p ≤ liminf ‖Dyn‖p ≤ limsup‖Dyn‖p → 0. So ‖Dy‖p = 0, thus
y = ξ ∈ R. Note thatDyn →Dy weakly in Lp(Z) and ‖Dyn‖p → ‖Dy‖p so yn → y
in W1,p(Z). Since ‖yn‖ = 1, ‖y‖ = 1 so ξ �= 0. Suppose that ξ > 0. Going back to
(3.40), we have

0 ≤
∫
Z

(
θ(z)+ε

)
y
p
n (z)dz+γ1

∥∥xn∥∥p∗−p. (3.42)

In the limit we have

0 ≤
∫
Z

(
θ(z)+ε

)
ξ p dz ≤ εξ p|Z|, (3.43)

recall that θ(z) ≤ 0. Thus
∫
Z θ(z)ξ p dz = 0. But this is a contradiction. So the

claim is proved.
By Theorem 2.2, there exists x ∈ W1,p(Z) such that 0 ∈ ∂R(x). That is, 0 ∈

∂Φ(x)+∂ψ(x). So, we can say that
∫
Z
w(z)y(z) =

∫
Z

∥∥Dx(z)
∥∥p−2(

Dx(z),Dy(z)
)
dz+

∫
Γ
v(z)x(z)dσ (3.44)

for some w ∈ Lq∗(Z) such that w(z) ∈ ∂ j1(z,x(z)) for some v ∈ ∂ j2(z,τ(x(z)))
and for every y ∈W1,p(Z). Choose now y = s ∈ C∞

o (Z), we obtain
∫
Z
w(z)s(z) =

∫
Z

∥∥Dx(z)
∥∥p−2(

Dx(z),Ds(z)
)
dz. (3.45)
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But div(‖Dx(z)‖p−2Dx(z))∈Lq∗(Z) becausew∈Lq∗(Z) (see Kenmochi [7, Propo-
sition 3.1, page 132]).

Going back to (3.44) and letting y = C∞(Z) and finally using [7, the Green
formula 1.6], we have that −∂x/∂np ∈ ∂ j2(z,τ(x(z))).
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