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We obtain a positive solution, a negative solution, and a sign-changing solu-
tion for a class of p-Laplacian problems with jumping nonlinearities using vari-
ational and super-subsolution methods.

1. Introduction

Let Ω⊂RN , N ≥ 1, be a bounded domain with a smooth boundary ∂Ω. In this
paper, we consider the quasilinear elliptic boundary value problem

u∈W
1,p
0 (Ω) :−∆pu= f (x,u) in W−1,p(Ω), (1.1)

where ∆pu= div(|∇u|p−2∇u) is the p-Laplacian, 1 < p <∞. By W1,p(Ω) we de-

note the usual Sobolev space with dual space (W1,p(Ω))∗, and W
1,p
0 (Ω) denotes

its subspace whose elements have generalized homogeneous boundary values
and whose dual space is given by W−1,p(Ω). We assume the following growth
and asymptotic behaviour of the nonlinear right-hand side f of (1.1):

(H1) f : Ω×R→R is a Carathéodory function satisfying∣∣ f (x, t)
∣∣≤ C

(|t|p−1 + 1
)
,

f (x, t)= a
(
t+)p−1− b

(
t−
)p−1

+ g(x, t),
(1.2)

where

lim
t→0

g(x, t)
|t|p−1 = 0 uniformly in x. (1.3)

Here C denotes some generic positive constants.
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The set Σp of those points (a,b)∈R2 for which the asymptotic problem

u∈W
1,p
0 (Ω) :−∆pu= a

(
u+)p−1− b

(
u−
)p−1

in W−1,p(Ω) (1.4)

has a nontrivial solution, is called the Fučı́k spectrum of the p-Laplacian on
Ω, where u+ =max{u,0} and u− =max{−u,0}. The Fučı́k spectrum was intro-
duced in the semilinear case p = 2 by Dancer [8] and Fučı́k [14] who recognized
its significance for the solvability of problems with jumping nonlinearities. In
the semilinear ODE case p = 2, N = 1, Fučı́k [14] showed that Σ2 consists of
a sequence of hyperbolic-like curves passing through the points (λl,λl), where
{λl}l∈N are the eigenvalues of −d2/dx2, with one or two curves going through
each point. Drábek [12] has recently shown that Σp has this same general shape
for all p > 1 in the ODE case.

In the PDE case N ≥ 2, much of the work to date on Σp has been done
for the semilinear case p = 2. It is now known that Σ2 consists, at least lo-
cally, of curves emanating from the points (λl,λl) (see, e.g., [2, 7, 8, 10, 14,
25]). Schechter [28] has shown that Σ2 contains two continuous and strictly
decreasing curves through (λl,λl), which may coincide, such that the points in
the square (λl−1,λl+1)2 that are either below the lower curve or above the upper
curve are not in Σ2, while the points between them may or may not belong to Σ2

when they do not coincide.
In the quasilinear PDE case p 	= 2, N ≥ 2, it is known that the first eigen-

value λ1 of −∆p is positive, simple, and admits a positive eigenfunction ϕ1 (see
Lindqvist [20]), so Σp clearly contains the two lines λ1×R and R× λ1. In addi-
tion, σ(−∆p) has an unbounded sequence of variational eigenvalues {λl} satis-
fying a standard min-max characterization, and Σp contains the corresponding
sequence of points {(λl,λl)}. A first nontrivial curve � in Σp through (λ2,λ2)
asymptotic to λ1 ×R and R× λ1 at infinity was recently constructed and vari-
ationally characterized by a mountain-pass procedure by Cuesta et al. [6] (see
Figure 1.1). More recently, unbounded sequences of curves (analogous to the
lower and upper curves of Schechter) have been constructed and variationally
characterized by min-max procedures by Micheletti and Pistoia [26] for p ≥ 2
and by the second author [27] for all p > 1.

The main goal of this paper is to identify the set of points (a,b) relative to
the Fučı́k spectrum which ensure the existence of sign-changing solutions of
(1.1). More precisely, assuming the existence of a positive supersolution u and
a negative subsolution u of (1.1) and (a,b) located above the curve �, we prove
the existence of at least three nontrivial solutions within the order interval [u,u];
a positive solution, a negative solution, and a sign-changing solution.

There are many existence and multiplicity results for (1.1) in the literature
(see, e.g., [5, 6, 9, 13, 23, 27]). However, to the best of our knowledge, the first
results on sign-changing solutions were obtained only recently by Li and Zhang
[17]. In their paper the authors assume that p > N and f is independent of x
and locally Lipschitz in t. All these assumptions can be relaxed by our approach
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Figure 1.1

which is very different from that of Li and Zhang. Our main result, which will
be proved in Section 3 (Theorem 3.1), improves upon their results.

2. Preliminaries

We denote the norm in W1,p(Ω) and Lp(Ω) by ‖ · ‖ and ‖ · ‖p, respectively, and
recall the notion of sub- and supersolutions.

Definition 2.1. A function u∈W1,p(Ω) is a supersolution of (1.1) if the following
holds:

(i) u≥ 0 on ∂Ω,
(ii)

∫
Ω |∇u|p−2∇u ·∇ϕdx ≥ ∫Ω f (x,u)ϕdx for all ϕ∈W

1,p
0 (Ω)∩L

p
+(Ω).

Similarly, u is a subsolution of (1.1) if the reversed inequalities of Definition
2.1 hold with u replaced by u. Here L

p
+(Ω) stands for the positive cone of Lp(Ω).

Consider the boundary value problem

u∈W
1,p
0 (Ω) :−∆pu= h in W−1,p(Ω). (2.1)

Besides the hypothesis (H1) we will assume the following hypotheses to hold
throughout the rest of the paper.

(H2) There exist a positive supersolution u and a negative subsolution u of
(1.1), and the point (a,b)∈R2 is above the curve � of the Fučı́k spec-
trum.

(H3) Any solution u of (2.1) with h∈ L∞(Ω) belongs to C1(Ω).

Remark 2.2. (i) Assuming the existence of super- and subsolutions as in hy-
pothesis (H2) is a weaker assumption than the usual condition on the jumping
nonlinearity at infinity.
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(ii) By (H3) we impose C1(Ω)-regularity of the solution of (2.1). As for reg-
ularity results up to the boundary (C1,α-regularity) we refer, for example, to Gi-
aquinta and Giusti [16], Giaquinta [15], Liu and Barrett [21, 22], Lieberman
[18, 19], or Manfredi [24].

Lemma 2.3. If u≥ (resp.,≤) 0 is a solution of (1.1), then either u > (resp., <) 0 or
u≡ 0. Moreover, if u > 0, then there is an ε > 0 such that u≥ εϕ1, where ϕ1 is the
eigenfunction of the first eigenvalue of −∆p.

Proof. First, we note that by the results of Anane [1] and DiBenedetto [11] any
solution u of (1.1) belongs to L∞(Ω)∩C1(Ω), and thus the right-hand side of
(1.1) yields a function h ∈ L∞(Ω), which by (H2) implies that u ∈ C1(Ω). If
u ≥ 0 is a solution of (1.1) which is not identically zero, then by means of the
Harnack inequality (Trudinger [29, Theorem 1.1]) u must be positive in Ω. For
� > 0, let Ω� = {x ∈Ω : dist(x,∂Ω)≤ �}. Then for � sufficiently small, we have
f (x,u(x))≥ 0 for all x ∈Ω� by (H1) and (H2). This allows us to apply the strong
maximum principle due to Vázquez [30] to get the strict inequality ∂u/∂ ν (x) >
0 for all x ∈ ∂Ω, where ν is the interior normal at x. The eigenfunction ϕ1 of
the first eigenvalue of −∆p is positive, is of class C1,α(Ω) for α∈ (0,1), and also
satisfies ∂ϕ1/∂ ν (x) > 0 (see [1, 20]). Therefore, for ε sufficiently small, we obtain
u≥ εϕ1 in Ω. �

Lemma 2.4. Given a bounded sequence {un} ⊂W
1,p
0 (Ω) and a sequence of positive

reals {εn} with εn→ 0 as n→∞, for a subsequence,

1

ε
p−1
n

∫
Ω

∣∣g(x,εnun(x)
)∣∣dx −→ 0 as n−→∞. (2.2)

Further, if G is the primitive of g, that is, G(x, t)= ∫ t0 g(x,s)ds, then

1

ε
p
n

∫
Ω

∣∣G(x,εnun(x)
)∣∣dx −→ 0 as n−→∞ (2.3)

for a subsequence.

Proof. Passing to a subsequence (again denoted by (un)), we may assume that
un → u a.e. and in Lp(Ω). By Egoroff ’s theorem, for any µ > 0 there is a measur-
able subset Ωµ of Ω such that |Ω \Ωµ| ≤ µ and un → u uniformly on Ωµ. Thus
εnun→ 0 a.e. in Ωµ. We have

1

ε
p−1
n

∫
Ω

∣∣g(x,εnun(x)
)∣∣dx

=
∫
Ωµ

∣∣g(x,εnun(x)
)∣∣

ε
p−1
n
∣∣un(x)

∣∣p−1

∣∣un(x)
∣∣p−1

dx

+
∫
Ω\Ωµ

∣∣g(x,εnun(x)
)∣∣

ε
p−1
n
∣∣un(x)

∣∣p−1

∣∣un(x)
∣∣p−1

dx.

(2.4)
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By (1.2) and (1.3), ∣∣g(x, t)
∣∣

|t|p−1 ≤ C. (2.5)

The first integral on the right-hand side of (2.4) tends to zero by the asymptotic
behavior (1.3) of g, (2.5), and Lebesgue’s dominated convergence theorem (ob-
serve that the integrand is majorized by C(|u(x)|+ δ)p−1 for any δ > 0 due to the
uniform convergence in Ωµ). The second integral is bounded by

C
∣∣Ω \Ωµ

∣∣1/p∥∥un∥∥(p−1)/p ≤ Cµ1/p −→ 0 as µ−→ 0, (2.6)

which proves (2.2). Observing that the elementary inequality∣∣G(x,εnun(x)
)∣∣≤ εn

∣∣un(x)
∣∣∣∣g(x,τn(x)εnun(x)

)∣∣ (2.7)

holds, where 0≤ τn(x)≤ 1, which yields

1

ε
p
n

∫
Ω

∣∣G(x,εnun(x)
)∣∣dx ≤ ∫

Ω

∣∣g(x,τn(x)εnun(x)
)∣∣

τn(x)p−1ε
p−1
n
∣∣un(x)

∣∣p−1

∣∣un(x)
∣∣pdx, (2.8)

we see that (2.3) follows similarly. �

Lemma 2.5. Problem (1.1) has a positive solution u > 0 within the order interval
[0,u] and a negative solution u < 0 within the order interval [u,0].

Proof. In the proof we focus on the existence of a positive solution only since the
existence of a negative solution can be shown in a similar way.

As is well known, solutions of (1.1) are the critical points of

Φ(u)=
∫
Ω

(|∇u|p− pF(x,u)
)
dx, u∈W

1,p
0 (Ω), (2.9)

where F(x, t)= ∫ t0 f (x,s)ds. Let f be the following truncated nonlinearity:

f (x, t)=


0, t ≤ 0,

f (x, t), 0 < t < u(x),

f
(
x,u(x)

)
, t ≥ u(x),

(2.10)

and F its associated primitive given by

F(x, t)=
∫ t

0
f (x,s)ds. (2.11)

Consider the functional

Φ(u)=
∫
Ω

(|∇u|p− pF(x,u)
)
dx (2.12)
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whose critical points are the solutions of the auxiliary boundary value problem

u∈W
1,p
0 (Ω) :−∆pu= f (x,u) in W−1,p(Ω). (2.13)

Obviously, Φ : W
1,p
0 (Ω)→R is bounded from below, weakly lower semicontin-

uous, and coercive. Thus, there is a global minimizer, that is, a critical point u of
Φ

0= 〈Φ′
(u),ϕ

〉= ∫
Ω

(|∇u|p−2∇u ·∇ϕ− f (x,u)ϕ
)
dx. (2.14)

We will show that this global minimizer is in fact a positive solution of (1.1)
within [0,u]. Taking in (2.14) the special test function ϕ= u− :=max(−u,0) we
get in view of the definition of f the equation

0=
∫
Ω

(|∇u|p−2∇u ·∇u− − f (x,u)u−
)
dx = ∥∥u−∥∥p, (2.15)

which shows that u− = 0, and thus u ≥ 0. Since u is a supersolution, ϕ = (u−
u)+ ∈W

1,p
0 (Ω)∩L

p
+(Ω), so by Definition 2.1 and (2.14) we obtain

0≥
∫
Ω

[(|∇u|p−2∇u−|∇u|p−2∇u) ·∇(u−u)+

− ( f (x,u)− f (x,u)
)
(u−u)+

]
dx

=
∫
{u>u}

(|∇u|p−2∇u−|∇u|p−2∇u) · (∇u−∇u)dx ≥ 0,

(2.16)

which implies that ∇(u− u)+ = 0, and thus u ≤ u. This shows that the global
minimizer u of the functional Φ satisfies u ∈ [0,u], and thus u is a solution of
(1.1) due to the definition of f . Since a > λ1, we get by hypothesis (H1) that

Φ
(
εϕ1
)
< 0, ε > 0 small. (2.17)

As u is a global minimizer of Φ, it follows Φ(u)≤Φ(εϕ) < 0, and thus u must be
a positive solution of (1.1). �

Definition 2.6. A solution u+ is called the least positive solution of (1.1) if any
other positive solution u of problem (1.1) satisfies u ≥ u+. Similarly, u− is the
greatest negative solution of (1.1) if any other negative solution u satisfies u≤ u−.

Lemma 2.7. Problem (1.1) has a least positive solution u+ and a greatest negative
solution u−.

Proof. We are going to prove the existence of the least positive solution only,
since the proof of the existence of the greatest negative solution is analogous.
In view of Lemma 2.5, there exists a positive solution u ∈ [0,u], and applying
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Lemma 2.3 there is a ε > 0 small enough such that εϕ1 ≤ u, where ϕ1 is the eigen-
function that belongs to the first eigenvalue λ1 of −∆p. Since a > λ1, one readily
verifies that εϕ1 is a subsolution of problem (1.1) for sufficiently small ε > 0.
Thus there is an ε0 > 0 such that ε0ϕ1 and u forms an ordered pair of sub- and
supersolutions. Applying [3, Corollary 5.1.2] on the existence of extremal solu-
tions for general quasilinear elliptic problems, we obtain the existence of a least
and greatest solution of (1.1) with respect to the order interval [ε0ϕ1,u]. We de-
note the least solution within this interval by u0. Now let (εn)∞n=0 be a decreasing
sequence with εn → 0 as n→∞, and denote by un the corresponding least solu-
tion of (1.1) with respect to the order interval [εnϕ1,u]. Then obviously (un) is
a decreasing sequence of least positive solutions of (1.1) which converges to its
nonnegative pointwise limit u∗ in Lp(Ω). We will show that u∗ is in fact the least
positive solution, that is, u∗ = u+. First we verify that u∗ is a solution of (1.1).
Since the un are solutions of (1.1) we get from the equation

∥∥un∥∥p = ∫
Ω

∣∣∇un∣∣p−2∇un ·∇un dx =
∫
Ω
f
(
x,un

)
un dx, (2.18)

which by the growth condition (H1) and the boundedness in Lp(Ω) of the se-

quence (un) implies its boundedness in W
1,p
0 (Ω), that is, ‖un‖ ≤ c. Thus there

exists a subsequence weakly convergent in W
1,p
0 (Ω), and due to the strong con-

vergence of (un) in Lp(Ω) even the entire sequence is weakly convergent in

W
1,p
0 (Ω) with weak limit u∗. From (1.1) with the test function un−u∗, we ob-

tain

〈−∆pun,un−u∗
〉= ∫

Ω

∣∣∇un∣∣p−2∇un ·∇
(
un−u∗

)
dx

=
∫
Ω
f
(
x,un

)(
un−u∗

)
dx,

(2.19)

which implies

limsup
n

〈−∆pun,un−u∗
〉≤ 0. (2.20)

The weak convergence of (un) and (2.20) along with the S+-property of the oper-

ator−∆p (see, e.g., [3, Chapter D]) yield its strong convergence in W
1,p
0 (Ω). This

allows the passage to the limit in (1.1) with u replaced by un, and hence u∗ is a
solution of problem (1.1). To show that u∗ > 0, our argument is by contradic-

tion. Suppose u∗ = 0, that is, un → 0 in W
1,p
0 (Ω). Since un > 0 we may consider

ũn := un/‖un‖ which satisfies

∫
Ω

∣∣∇ũn∣∣p−2∇ũn ·∇ϕdx =
∫
Ω

[
aũ

p−1
n +

g
(
x,un

)∥∥un∥∥p−1

]
ϕdx. (2.21)
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By definition ‖ũn‖ = 1, so there is a subsequence (ũn) that converges weakly in

W
1,p
0 (Ω) and strongly in Lp(Ω) to ũ due to the compact embedding of W

1,p
0 (Ω)

⊂ Lp(Ω). Taking in (2.21) as special test function ϕ= ũn− ũ, we get for the right-
hand side of (2.21)

∫
Ω

[
aũ

p−1
n +

g
(
x,un

)∣∣un(x)
∣∣p−1

∣∣ũn(x)
∣∣p−1

](
ũn− ũ

)
dx −→ 0, (2.22)

as n→∞, because the terms in parentheses are Lq(Ω)-bounded. Hence (2.21)
implies

limsup
n

〈−∆pũn, ũn− ũ
〉≤ 0, (2.23)

which due to the S+-property of −∆p implies the strong convergence of ũn → ũ

in W
1,p
0 (Ω). Moreover, the third integral term on the right-hand side of (2.21)

converges to zero by Lemma 2.4, so we may pass to the limit to get∫
Ω
|∇ũ|p−2∇ũ ·∇ϕdx =

∫
Ω
aũp−1ϕdx ∀ϕ∈ C∞0 (Ω), (2.24)

that is, ũ satisfies the boundary value problem

ũ∈W
1,p
0 (Ω) :−∆pũ= aũp−1 in W−1,p(Ω). (2.25)

Since ‖ũn‖ = 1 and ũn > 0, by Lemma 2.3 we have the same properties for ũ,
which, however, contradicts the fact that a nontrivial solution of (2.25) changes
sign. So far we have shown that the limit u∗ of the least solutions un ∈ [εnϕ1,u] is
a positive solution of (1.1). Finally, to prove that u∗ is the least positive solution,
let w be any positive solution of (1.1). Then by Lemma 2.3 there is a εn > 0 for n
sufficiently large such that εnϕ1 ≤ w which by definition of the sequence of least
solutions (un) yields u∗ ≤ un ≤ w, which proves that u∗ = u+ is in fact the least
positive one. �

3. Main result

Theorem 3.1. Let hypotheses (H1), (H2), and (H3) be satisfied. Then the bound-
ary value problem (1.1) has at least three nontrivial solutions: a positive solution, a
negative solution, and a sign-changing solution.

Proof. Let

f̃+(x, t)=


0, t ≤ 0,

f (x, t), 0 < t < u+(x), F̃+(x, t)= ∫ t0 f̃+(x,s)ds,

f
(
x,u+(x)

)
, t ≥ u+(x),

(3.1)
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and consider

Φ̃+(u)=
∫
Ω

(|∇u|p− pF̃+(x,u)
)
dx. (3.2)

Arguments similar to those in the proof of Lemma 2.5 show that critical points
of Φ̃+ are solutions of (1.1) in the order interval [0,u+], so 0 and u+ are the only
critical points of Φ̃+ by Lemmas 2.3 and 2.7. Now, Φ̃+ is bounded from below
and coercive, and

Φ̃+
(
εϕ1
)
< 0, ε > 0 small (3.3)

since a > λ1, so Φ̃+ has a global minimizer at a negative critical level. It follows
that u+ is the (strict) global minimizer of Φ̃+ and Φ̃+(u+) < 0.

Now let

f̃ (x, t)=


f
(
x,u−(x)

)
, t ≤ u−(x),

f (x, t), u−(x) < t < u+(x), F̃(x, t)= ∫ t0 f̃ (x,s)ds,

f
(
x,u+(x)

)
, t ≥ u+(x),

Φ̃(u)=
∫
Ω

(|∇u|p− pF̃(x,u)
)
dx.

(3.4)

As before, critical points of Φ̃ are solutions of (1.1) in the order interval [u−,u+],
so it follows from Lemmas 2.3 and 2.7 that any nontrivial critical point other
than u± is a sign-changing solution.

Lemma 3.2. The solutions u± are strict local minimizers of Φ̃, and Φ̃(u±) < 0.

Proof. We only consider u+ as the argument for u− is similar. Suppose that there

is a sequence uj → u+ in W
1,p
0 (Ω), uj 	= u+ with Φ̃(uj) ≤ Φ̃(u+). By (1.2) and

(1.3) we have

∣∣F̃(x, t)
∣∣≤ C|t|p, (3.5)

so

Φ̃
(
uj
)= ∫

Ω

(∣∣∇u+
j

∣∣p− pF̃
(
x,u+

j

))
dx+

∫
Ω

(∣∣∇u−j ∣∣p− pF̃
(
x,u−j

))
dx

≥ Φ̃+
(
u+
j

)
+
∥∥u−j ∥∥p−C

∥∥u−j ∥∥pp. (3.6)

If u−j = 0, then u+
j 	= u+ and

Φ̃+
(
u+
j

)≤ Φ̃
(
uj
)≤ Φ̃

(
u+
)= Φ̃+

(
u+
)
, (3.7)
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contradicting the fact that u+ is the unique global minimizer of Φ̃+, so u−j 	= 0.
We will show that

∥∥u−j ∥∥p > C
∥∥u−j ∥∥pp, j large. (3.8)

Assuming this for the moment, we have the contradiction Φ̃+(u+
j ) < Φ̃+(u+).

To see that (3.8) holds, we first note that the measure of the set Ω j = {x ∈Ω :
uj(x) < 0} goes to zero. To see this, given ε > 0, take a compact subset Ωε of Ω
such that |Ω \Ωε| < ε and let Ωε

j =Ωε∩Ω j . Then

∥∥uj −u+
∥∥p
p ≥

∫
Ωε

j

∣∣uj −u+
∣∣pdx ≥ ∫

Ωε
j

u
p
+dx ≥ cp

∣∣Ωε
j

∣∣, (3.9)

where c =minΩε u+ > 0, so |Ωε
j| → 0. Since Ω j ⊂Ωε

j ∪ (Ω \Ωε) and ε > 0 is arbi-
trary, the claim follows.

If (3.8) does not hold, setting ũ j = u−j /‖u−j ‖p, ‖ũ j‖ is bounded for a subse-
quence, so ũ j → ũ in Lp(Ω) and a.e. for a further subsequence, where ‖ũ‖p = 1
and ũ ≥ 0. But then Ωµ = {x ∈Ω : ũ(x) ≥ µ} has positive measure for all suffi-
ciently small µ > 0 and

∥∥ũ j − ũ
∥∥p
p ≥

∫
Ωµ\Ω j

∣∣ũ j − ũ
∣∣p dx = ∫

Ωµ\Ω j

ũp dx ≥ µp
(∣∣Ωµ

∣∣−∣∣Ω j

∣∣), (3.10)

a contradiction. �

Now a standard deformation argument gives a mountain-pass point u1 at the
critical value

c := inf
γ∈Γ

max
u∈γ([−1,1])

Φ̃(u) > Φ̃
(
u±
)
, (3.11)

where Γ = {γ ∈ C([−1,1],W
1,p
0 (Ω)) : γ(±1) = u±} is the class of paths join-

ing u±. To show that u1 	= 0, we will construct a path that lies in Φ̃0 := {u ∈
W

1,p
0 (Ω) : Φ̃(u) < 0}.
First we show that, for all sufficiently small ε > 0,±εϕ1 can be joined by a path

γε in Φ̃0. We have

Φ̃(u)= I(a,b)(u)−
∫
Ω
G̃(x,u)dx, (3.12)
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where

I(a,b)(u)=
∫
Ω

(
|∇u|p− a

(
u+)p− b

(
u−
)p)

dx (3.13)

is the functional associated with (1.4) and

G̃(x, t)= F̃(x, t)− a
(
t+)p− b

(
t−
)p = o

(|t|p) as t −→ 0. (3.14)

Since (a,b) is above �, there is a path γ0 in {u∈W
1,p
0 (Ω) : I(a,b)(u) < 0, ‖u‖p =

1} joining ±ϕ1 by the construction of � [6]. For u∈ γ0([−1,1]),

Φ̃(εu)≤ εp
[

max I(a,b)
(
γ0
(
[−1,1]

))
+
∫
Ω

∣∣G̃(x,εu)
∣∣

εp
dx

]
, (3.15)

and the last integral goes to 0 uniformly on the compact set γ0([−1,1]) as ε→ 0
by Lemma 2.4, so we can take γε = εγ0.

We complete the proof by showing that ±εϕ1 and u± can be joined by paths
in Φ̃0. Again we only consider εϕ1 and u+. Setting α = inf Φ̃+ = Φ̃+(u+) and
β = Φ̃+(εϕ1) = Φ̃(εϕ1) < 0, by the second deformation lemma (see, e.g., Chang

[4]), the sublevel set Φ̃α
+ := {u∈W

1,p
0 (Ω) : Φ̃+(u)≤ α} = {u+} is a strong defor-

mation retract of Φ̃
β
+, that is, there is an η ∈ C([0,1]× Φ̃

β
+,Φ̃

β
+) such that

(i) η(0,u)= u for all u∈ Φ̃
β
+,

(ii) η(t,u+)= u+ for all t ∈ [0,1],

(iii) η(1,u)= u+ for all u∈ Φ̃
β
+.

In particular, γ = η(·, εϕ1) is a path in Φ̃
β
+ joining εϕ1 and u+. Now the path γ+

defined by γ+(t)= γ(t)+ also joins εϕ1 and u+, and

Φ̃
(
γ+(t)

)= Φ̃+(γ(t))−
∫
Ω

∣∣∇γ(t)−
∣∣p ≤ β. (3.16)

�
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