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We introduce the notion of L1-completeness for a stochastic flow on manifold
and prove a necessary and sufficient condition for a flow to be L1-complete.
L1-completeness means that the flow is complete (i.e., exists on the given time
interval) and that it belongs to some sort of L1-functional space, natural for
manifolds where no Riemannian metric is specified.

1. Introduction

The main goal of the paper is to investigate the conditions under which solutions
of stochastic differential equations are well posed up to infinity, that is, complete.
At the moment it is a well-known fact that partial differential equations of para-
bolic type are related to stochastic differential equations. Thus, the completeness
results for stochastic differential equations are useful for parabolic equations.

Stochastic differential equations may be considered as a special generalization
of ordinary differential equations, and for the latter a necessary and sufficient
condition for completeness was found in [5] (see also [6]). Consider a smooth
vector field (right-hand side of the equation) on a finite-dimensional manifold
M. It was proved that all solutions are well posed for t ∈ (−∞,∞) if and only if
on the manifold R×M there exists a complete Riemannian metric such that the
vector field (1,X) is uniformly bounded with respect to it. Recall that the char-
acteristic feature of the complete Riemannian metric is that its distance function
is proper (see Definition 2.3 below).

For stochastic differential equations a certain role of the vector filed X , men-
tioned above, is played by the second order differential operator called the gen-
erator of equation. We cannot apply the technique of Riemannian metrics to
second order operators but we try to replace it by Elworthy’s methods from [3],
where a certain sufficient condition for completeness of a stochastic differential
equation in terms of values of the generator on proper functions was found.
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We introduce the notion of L1-completeness for a stochastic flow on a mani-
fold that is a certain modification of ordinary stochastic completeness providing
the property that the flow lives in some sort of L1-functional space, natural for
manifolds where no Riemannian metric is specified. We prove that for this sort
of completeness a certain condition of Elworthy’s type on R+×M becomes nec-
essary and sufficient. As well as for ordinary differential equation, the use of
product R+×M is essential. As a corollary we obtain a necessary and sufficient
condition of L1-stochastic completeness for a Riemannian manifold in terms of
L1-completeness of Wiener process on the manifold.

In Section 2, we discuss our notion of L1-completeness and give general defi-
nitions. Section 3 is devoted to the proof of the main results.

2. Discussion and general definitions

Let M be a finite-dimensional manifold. Consider a stochastic dynamical system
(SDS) on M (see [3]) with the generator �(t,x). In local coordinates it is de-
scribed in terms of a stochastic differential equation with smooth coefficients in
Itô or in Stratonovich form. Since the coefficients are smooth we can pass from
Stratonovich to Itô equation and vice versa. Denote by ξ(s) : M→M, s∈ [0,T],
the stochastic flow of the SDS. For any point x ∈M and time t the trajectory
ξt,x(s), s ∈ [t,T], of this flow is the unique solution of the above equation with
initial conditions ξt,x(t)= x. As the coefficients of equation are smooth, this is a
strong solution and a Markov diffusion process given on a certain random time
interval. Below we denote the probability space, where the flow is defined by
(Ω,�,P) and suppose that it is complete. We also deal with separable realiza-
tions of all processes.

Definition 2.1. The flow ξ(s) is complete on [0,T] if ξt,x(s) exists for any couple
(t,x) and for all s∈ [t,T].

Definition 2.2. The flow ξ(s) is complete if it is complete on any interval [0,T]⊂
R.

Let the flow ξ(s) be given on the vector space Rn. In this case it is natural to
say that the flow ξ(s) is L1-complete on [0,T] if the following assumptions hold:

(i) ξ(s) is complete on [0,T];
(ii) E‖ξt,x(s)‖ <∞ for all t, x, and s∈ [t,T] (i.e., ξt,x(s) belongs to the space

L1 for any s);
(iii) property (ii) holds for any s ∈ [t,T] if it holds for at least one s, for

example, for initial instant t or final instant T (i.e., if E‖ξt,x(t)‖ = ‖x‖ <
∞ or E‖ξt,x(T)‖ <∞);

(iv) for any s the trajectory ξt,x(s) is smooth enough in mean (i.e., in L1)
with respect to initial values t, x, that is E‖ξt,x(s)‖ is smooth enough in
t and in x. Some conditions providing such a smoothness are described,
for example, in [1, 4].
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On an arbitrary finite-dimensional manifold M, in the definition of L1-
completeness the norm should be replaced by another object, satisfying the
properties of norm in Rn such as its properness and smoothness.

Definition 2.3. The function f : M →R is called proper if the preimage f −1(A)
of any compact set A⊂R is compact in M.

Let M be a complete Riemannian manifold. Denote by ρ the distance function
generated by the Riemannian metric of manifold. Specify a certain point x0 ∈
M. For an arbitrary point x ∈M, the distance ρ(x0,x) is a natural analogue of
the norm in vector space. Since M is complete, it follows from the Hopf-Rinow
theorem (see, e.g., [2]) that the function ρ(x0,·) is proper. Then an analogue of,
for example, (ii) takes the form

Eρ
(
x0, ξt,x(s)

)
<∞. (2.1)

Unlike the norm in Rn, the function ρ may not be smooth at the points of cut
locus. Nevertheless ρ can be approximated by a smooth function with similar
properties as follows.

Take ε > 0 small enough and denote by Ux(ε) a neighborhood of x ∈M that
is the intersection of the metric ball with radius ε (with respect to distance ρ),
centered at x, and of some chart containing x. Since M is paracompact, we can
select a countable locally finite subcovering {Uxi(ε)} from the covering {Ux(ε)}.
Let {ϕi}∞i=1 be partition of unity adapted to this subcovering. Introduce the func-
tion ρε(x) =∑∞

i=1ϕi(x)ρ(x0,xi). By the construction, function ρε(x) is smooth
(unlike the distance ρ(x0,x)).

Show that

∣∣ρ(x0,x
)− ρε(x)

∣∣ < ε, (2.2)

where x is an arbitrary point in M. Indeed, from the triangle inequality we get
|ρ(x0,x)− ρ(x0,xi)| < ρ(xi,x) < ε for any i and from the fact that the covering is
locally finite it follows that

∣∣ρ(x0,x)− ρε(x)
∣∣=

∣∣∣∣∣ρ(x0,x)−
m∑
i=p

ϕi(x)ρ(x0,xi)

∣∣∣∣∣
≤
∣∣∣∣∣ρ(x0,x)− max

p≤i≤m
ρ(x0,xi)

m∑
i=p

ϕi(x)

∣∣∣∣∣
=
∣∣∣∣ρ(x0,x)− max

p≤i≤m
ρ(x0,xi)

∣∣∣∣ < ε.

(2.3)

From (2.2) one can easily see that the function ρε(x) is also proper. Moreover,
from (2.2) it follows that ρε(x) < ρ(x0,x) + ε, so Eρε(ξ) < Eρ(x0, ξ) + ε for any
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random element ξ such that Eρ(x0, ξ) exists. Thus, if (2.1) holds,

Eρε
(
ξt,x(s)

)
<∞. (2.4)

So, if a complete Riemannian metric is given on a manifold M and inequal-
ity (2.1) holds for the distance, there exists a smooth proper function on M
for which (2.4) holds. Thus, it is more natural (and more general since a met-
ric may not be given on the manifold a priori) to introduce the notion of L1-
completeness using some proper function on M with values in R instead of the
distance so that the function has some additional properties leading to require-
ments analogous to (i), (ii), (iii), and (iv).

Definition 2.4. A flow ξ(s) on a finite-dimensional manifold M is called L1-
complete on [0,T] if the following conditions are fulfilled:

(i) ξ(s) is complete on [0,T];
(ii) there exists a smooth proper positive function v : M → R1 such that

Ev(ξt,x(T)) <∞ for all x ∈M, t ∈ [0,T];
(iii) for any K > 0 there exists a compact CK,T ⊂M, depending on K and T ,

such that the inequality Ev(ξt,x(T)) < K yields x ∈ CK,T ;
(iv) the function f (t,x)= Ev(ξt,x(T)) is smooth.

Notice that the conditions of Definition 2.4 are weakened analogues of re-
quirements (i), (ii), (iii), and (iv). Namely, (ii) and (iii) together mean a reduced
form of assumption, analogous to (ii) and (iii) together, and smoothness, pos-
tulated in (iv), is analogous to that of (iv).

Definition 2.5. The flow ξ(s) is L1-complete if it is L1-complete on any finite
interval [0,T]⊂R+ = [0,∞).

3. Main statements

Consider the direct product MT = [0,T]×M and denote by πT : MT →M the
natural projection: πT(t,x) = x. On the manifold MT consider the flow η(s) =
(s,ξ(s)). Obviously, for any point (t,x) ∈MT the trajectory of η(t,x)(s) satisfies
the relation πT(η(t,x)(s)) = ξt,x(s). It is clear that η(s) is the flow generated by
SDS with generator �T determined by the formula

�T
(t,x) =�(t,x) +

∂

∂t
. (3.1)

Let u : MT → R be a proper function. Consider the sequence of compacts
Wn = u−1([0,n]) in MT . Specify a point (t,x)∈MT and for n such that (t,x)∈
Wn denote by τn the first exit time of η(t,x)(s) from Tn.

Theorem 3.1. The flow ξ(s) on M is L1-complete on [0,T], T > 0 if and only if
there exists a smooth proper positive function u on MT such that for all (t,x)∈MT ,



Yu. E. Gliklikh and L. A. Morozova 631

the equality �T
(t,x)u= C holds where C is a certain constant, and for all (t,x)∈MT

the random variables u(η(t,x)(T ∧ τn)) are uniformly integrable.

Proof

Sufficiency. Without loss of generality, we can suppose that C = 0. Indeed, let
C > 0, then construct f (t,x) : M→R, by the formula f (t,x)= u(t,x)−Ct+CT .
Evidently f (t,x) > 0 for all (t,x)∈MT , f (t,x) is smooth, proper, and �T

(t,x) f =
0. If C < 0 construct f (t,x)= u(t,x)−Ct.

So, let there exist a smooth proper positive function u(t,x) on MT such that
�T

(t,x)u = 0 at all points of MT . Then from [3, Theorem IX. 6A] it follows that
η(s) is complete, that is, the trajectories η(t,x)(s)= (s,ξt,x(s)) do exist for all points
(t,x)∈MT and for all s∈ [t,T]. Obviously this means that the flow ξ(s) is also
complete.

Consider the sequence of compacts Wn = u−1([0,n]) in MT and the corre-
sponding sequence of first exit times τn introduced above.

Taking into account Itô formula and the definition of generator and applying
the machinery of [3] (see Corollary III.7C and the proof of Theorem IX. 6A
there) one easily obtains that

Eu
(
η(t,x)

(
T ∧ τn

))= u(t,x) +E
1
2

∫ T∧τn

t
�T

η(t,x)(s)uds. (3.2)

Since �T
η(t,x)(s)u= 0 by the hypothesis, we have

Eu
(
η(t,x)

(
T ∧ τn

))= u(t,x). (3.3)

Immediately from the construction, it follows that the random variables
u(η(t,x)(T ∧ τn)) a.s. converge to u(η(t,x)(T)). Since by the hypothesis the vari-
ables u(η(t,x)(T ∧ τn)) are uniformly integrable, this means that

Eu
(
η(t,x)(T)

)= u(t,x). (3.4)

Consider the function

v(x)= u(T,x). (3.5)

From (3.4) and (3.5) it follows that

Ev
(
ξt,x(T)

)= Eu
(
T,ξt,x(T)

)= Eu
(
η(t,x)(T)

)= u(t,x). (3.6)

Thus, Ev(ξt,x(T)) <∞ and Ev(ξt,x(T)) is smooth as a function of variables (t,x).
Suppose that Ev(ξt,x(T)) < K , then Eu(η(t,x)(T))= u(t,x) < K . Since u is pos-

itive, this means that the value u(t,x) belongs to the compact [0,K] ⊂ R and
since u is proper, the set u−1([0,K])⊂MT is compact. Thus if Ev(ξt,x(T)) < K ,
the point x belongs to the compact πT(u−1([0,K])).
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So, conditions (i), (ii), (iii), and (iv) of Definition 2.4 are fulfilled and the flow
ξ(s) is L1-complete. This proves the sufficiency.

Necessity. Let the flow ξ(s) on M be L1-complete on [0,T]. Denote by v : M→R

the smooth proper positive function from Definition 2.4. Consider the function
u(t,x)= Ev(ξt,x(T)). By (iv) of Definition 2.4 it is smooth.

Since v is proper, the sets W̃n = v−1([0,n]) are compact. Denote by τ̃n the first
exit time of ξt,x(s) from W̃n. Consider

Eu
(
(t+∆t)∧ τ̃n,ξt,x

(
(t+∆t)∧ τ̃n

))= Eu
(
η(t,x)

(
(t+∆t)∧ τ̃n

))
. (3.7)

Since the sample trajectories of ξ(t,x) are considered up to the first exit time from
compact W̃n, we can apply Itô formula. Hence, since the expectation of Itô inte-
gral here is equal to zero,

Eu
(
(t+∆t)∧ τ̃n,ξt,x

(
(t+∆t)∧ τ̃n

))= u(t,x) +E
∫ (t+∆t)∧τ̃n

t
�Tu

(
η(t,x)(s)

)
ds.

(3.8)

Notice that Eu((t+∆t)∧ τ̃n,ξt,x((t+∆t)∧ τ̃n))= u(t,x). Indeed,

Eu
(
(t+∆t)∧ τ̃n,ξt,x

(
(t+∆t)∧ τ̃n

))= E
(
Ev
(
ξ(t+∆t)∧τ̃n,ξt,x((t+∆t)∧τ̃n)(T)

))
= E

(
Ev
(
ξt,x(T)

))= Ev
(
ξt,x(T)

)
= u(t,x).

(3.9)

Then, taking into account (3.8), we obtain

0= Eu
(
(t+∆t)∧ τ̃n,ξt,x

(
(t+∆t)∧ τ̃n

))−u(t,x)

= E
∫ (t+∆t)∧τ̃n

t
�Tu

(
η(t,x)(s)

)
ds.

(3.10)

Multiply the equality (3.10) by 1/∆t and pass to the limit as ∆t→ 0. Then, taking
into account (3.1), we get

0= lim
∆t→0

1
∆t

E
∫ (t+∆t)∧τ̃n

t
�Tu

(
η(t,x)(s)

)
ds

= lim
∆t→0

1
∆t

E
∫ (t+∆t)∧τ̃n

t

(
∂u
(
s,ξt,x(s)

)
∂s

+ �u
(
s,ξt,x(s)

))
ds.

(3.11)

Recall again that in the case under consideration the process ξt,x(s) belongs to the
compact W̃n, hence the function u is considered on compact [0,T]× W̃n and so
its values are bounded. This means that we can apply Lebesgue’s theorem on
passing to limit under integral (i.e., expectation) and that there exists a random
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variable s′ ∈ [t,(t+∆t)∧ τ̃n] such that

∫ (t+∆t)∧τ̃n

t

(
∂u
(
s,ξt,x(s)

)
∂s

+ �u
(
s,ξt,x(s)

))
ds

=
[
∂u
(
s′, ξt,x(s′)

)
∂s

+ �u
(
s′, ξt,x(s′)

)](
(t+∆t)∧ τ̃n− t

)
.

(3.12)

One can easily see that (t+∆t)∧ τ̃n− t = ((t+∆t)− t)∧ (τ̃n− t)= ∆t∧ (τ̃n− t).
Thus

0= lim
∆t→0

1
∆t

E

(
∂u
(
s′, ξt,x(s′)

)
∂s

+ �u
(
s′, ξt,x(s′)

))(
∆t∧ (τ̃n− t

))

= E lim
∆t→0

(
∂u
(
s′, ξt,x(s′)

)
∂s

+ �u
(
s′, ξt,x(s′)

))∆t∧ (τ̃n− t
)

∆t
.

(3.13)

Notice that τ̃n− t > 0 a.s., since at t the process ξt,x takes the value x and so t
cannot be the first exit time from W̃n, and that τ̃n− t is bounded and does not
depend on ∆t. Hence

lim
∆t→0

τ̃n− t

∆t
=∞, (3.14)

and so

lim
∆t→0

∆t∧ (τ̃n− t
)

∆t
= 1∧ lim

∆t→∞
τ̃n− t

∆t
= 1. (3.15)

From s′ ∈ [t,(t +∆t)∧ τ̃n] and from Lebesgue’s theorem it follows that s′ → t as
∆t→ 0. So, equality (3.13) takes the form

∂u
(
t,ξt,x(t)

)
∂t

+ �u
(
t,ξt,x(t)

)= 0. (3.16)

This means that

�Tu(t,x)= 0. (3.17)

Lemma 3.2. The function u on MT is proper.

Proof. Suppose that u is not proper. Then there exists a sequence of points (tk,xk)
∈MT such that 0 < u(tk,xk) < K for all k, where K > 0 is a certain real number,
while v(xk)→∞ as k→∞. Since v is proper this means that xk leaves any speci-
fied compact in M.

However, if 0 < u(tk,xk) < K , then Ev(ξtk,xk (T)) < K and since the flow ξ(s)
is L1-complete, it follows from (iii) of Definition 2.4 that xk belong to a certain
compact CK,T .

Introduce compact sets Wn = u−1([0,n]) and denote by τn the first exit time
of η(t,x)(s) from Wn. Consider the random variables u(η(t,x)(T ∧ τn)). Taking into
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account the Itô formula, the properties of mathematical expectation and the
equality �Tu(t,x)= 0 proved above, we obtain

Eu
(
η(t,x)

(
T ∧ τn

))= u(t,x) (3.18)

for each n.
From the construction of function u and flow η we also get

Eu
(
η(t,x)(T)

)= Ev
(
ξt,x(T)

)= u(t,x). (3.19)

As well as in the proof of sufficiency one can easily see that the sequence
u(η(t,x)(T ∧ τn)) tends a.s. to u(η(t,x)(T)). Thus, from (3.18) and (3.19) it follows
that

E lim
n→∞u

(
η(t,x)

(
T ∧ τn

))= Eu
(
η(t,x)(T)

)= u(t,x) (3.20)

and this means that the random variables u(η(t,x)(T ∧ τn)) are uniformly inte-
grable. This completes the proof of necessity. The theorem follows. �

Corollary 3.3. The flow ξ(s) on M is L1-complete if and only if for any finite
interval [0,T] there exists a smooth proper positive function uT on MT such that for
any (t,x) ∈MT , the equality �T

(t,x)uT = CT holds, where CT is a certain constant
that can depend on T and for each T the random variables uT(η(t,x)(T ∧ τn)) are
uniformaly integrable.

Recall the following definition.

Definition 3.4. A Riemannian manifold M is called stochastically complete if the
flow of SDS with generator (1/2)∆ (Laplace-Beltrami operator) is complete.

Denote the above-mentioned flow by w(s). For any x ∈M, the corresponding
w0,x(s) is a Wiener process on M starting at x.

Definition 3.5. A Riemannian manifold M is called L1-stochastically complete if
the flow w(s) is L1-complete.

Introduce the operator ∆T = ∆+ ∂/∂t on MT = [0,T]×M.

Theorem 3.6. A Riemannian manifold M is L1-stochastically complete if and only
if for any T > 0 on the manifold MT = [0,T]×M, there exists a smooth proper
positive function uT such that for all (t,x)∈MT , the values ∆T

(t,x)uT are equal to a
certain constant that may depend on T , and such that the random variables u(T ∧
τn,wt,x(T ∧ τn)) are uniformly integrable.

Theorem 3.6 follows from Corollary 3.3.
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