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We study the location of the peaks of solution for the critical growth problem
−ε2∆u+ u = f (u) + u2∗−1, u > 0 in Ω, u = 0 on ∂Ω, where Ω is a bounded do-
main; 2∗ = 2N/(N − 2), N ≥ 3, is the critical Sobolev exponent and f has a be-
havior like up, 1 < p < 2∗ − 1.

1. Introduction

In this paper, we will study the location of the peaks of least-energy solution for
the problem

−ε2∆u+u= f (u) +u2∗−1 in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN , ε > 0, and f is a function satisfying some
subcritical conditions. Here 2∗ = 2N/(N − 2), N ≥ 3, is the critical Sobolev ex-
ponent.

By least-energy solution for problem (1.1) we mean a critical point at the
Mountain-Pass level of the associated energy functional

Jε(u)= 1
2

∫
Ω

(
ε2|∇u|2 +u2)dz−∫

Ω

[
F(u) +

1
2∗
(
u+)2∗

]
dz, (1.2)

(where u+ =max{u,0}), defined on the Hilbert space H1
o (Ω) endowed with the

norm

‖u‖2
ε =

∫
Ω

(
ε2|∇u|2 +u2)dz. (1.3)
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The Mountain-Pass level of Jε is defined by

cε = inf
g∈Γ

max
0≤t≤1

Jε
(
g(t)

)
, (1.4)

where Γ is the set of all continuous paths joining the origin and a fixed nonzero
element e in H1

o (Ω), such that e �= 0 and Jε(e) ≤ 0. Under suitable hypothesis
(e.g., (f1), (f4), (f5) below), it is not hard to check that cε > 0 does not depend on
the element 0 �= v ∈H1

o (Ω) and u is a least-energy solution if and only if Jε(u)= c
and J ′ε (u)= 0, and Jε(u)≤ Jε(v) for all v �= 0 such that J ′ε (v)= 0.

The existence of least-energy solution of problem (1.1) was given in Brézis
and Nirenberg in [3, Theorem 2.1] (see Lemma 2.4 in this paper).

In this paper, we will study some properties of the least-energy solution uε of
problem (1.1) when ε is small. In order to describe these properties, we introduce
the hypotheses on the function f .

Suppose that f : R+ →R+ is a C1,α function such that

(f1) f (0)= f ′(0)= 0;
(f2) there is q1 ∈ (1,(N + 2)/(N − 2)) such that

lim
s→∞

f (s)
sq1

= 0; (1.5)

(f3) there are q2 ∈ (1,(N + 2)/(N − 2)) and λ > 0 such that

f (s)≥ λsq2 , ∀s > 0 (1.6)

(whenN = 3, we need q2 > 2, otherwise we require a sufficiently large λ);
(f4) if F(s)= ∫ so f (t)dt, for some θ ∈ (2,q1 + 1) we have

0 < θF(s)≤ f (s)s, ∀s > 0; (1.7)

(f5) the function f (s)/s is increasing for s > 0.

Since our interest is on positive solutions we define f (s)= 0, in s≤ 0.
Now we will state our main result.

Theorem 1.1. Suppose that Ω is a bounded domain in RN ; f satisfies (f1), (f2),
(f3), (f4), (f5); and let uε be the least-energy solution of (1.1). Then, there is a εo > 0
such that

(i) uε attains only one local maximum at some zε ∈ Ω (hence global maxi-
mum), for all ε ∈ (0, εo];

(ii) uε converges uniformly to zero over compact subsets of Ω \ {zε} as ε→ 0;
(iii) dist(zε,∂Ω)→maxz∈Ω dist(z,∂Ω) .
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This statement is analogous to the one given by Ni and Wei in [8], in the
subcritical case

−ε2∆u+u= h(u), in Ω,

u= 0, on ∂Ω,
(1.8)

where h satisfies the following hypothesis:

(i) (f1), (f2), (f4), and (f5) hold;
(ii) the global problem

−∆u+u= h(u), in R
N (1.9)

has a unique positive solution in H1(RN );
(iii) this solution is nondegenerate in the sense that

−∆v+ v = h′(u)v, in R
N (1.10)

has no nontrivial spherically symmetric solution in L2(RN ).

In [8], Ni and Wei also have described the asymptotic profile (in ε) of uε,
giving a detailed description for ε small. Here in the critical case, the solutions
have the same profile.

In this work we will show that a ground state solution of the critical problem
(1.1) is also solution of a subcritical problem (1.8) by showing that for small ε
we have a uniform bound for the L∞ norm of uε.

The difficulty here lies in finding an upper bound for ‖uε‖L∞(Ω) by obtaining
a bound for uε in Lp(Ω) norm, for all p ≥ 2. In the subcritical case this bound-
edness is obtained since the family uε is bounded in H1(Ω) but this argument
does not work in the critical case. Here, we obtain an L∞-bound for uε through
the estimate below, which is based on Moser’s iteration technique (see [11]) and
is essentially due to Brézis and Kato [2].

Proposition 1.2. Let Λ be an open subset and q ∈ LN/2(Λ). Suppose that g : Λ×
R→R is a Caratheodory function satisfying∣∣g(x,s)

∣∣≤ (q(x) +Cg
)|s|, ∀s∈R, x ∈Λ and for some Cg > 0. (1.11)

Then, if v ∈H1
o (Λ) is such that

−∆v = g(x,v), in Λ (1.12)

we have v ∈ Lp(Λ) for all 2 ≤ p <∞. Moreover, there is a positive constant Cp =
C(p,Cg ,q) such that

‖v‖L2∗(p+1)(Λ) ≤ Cp‖v‖L2(p+1)(Λ). (1.13)

Remark 1.3. The dependence on q of Cp can be given uniformly on a family of
functions {qε}ε>0 such that qε converges in LN/2 (see the appendix).
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We have organized this paper as follows: the next section contains the proof
of Theorem 1.1. This proof consists in a series of lemmas which show the L∞-
bound for uε, where these functions are solutions of a class of subcritical prob-
lems (1.8). The third section is an appendix proving Proposition 1.2, for the sake
of completeness.

2. Proof of Theorem 1.1

Before proving Theorem 1.1, let us fix some notation and preliminaries.

Remark 2.1. Throughout this section, we use the equivalent characterization
of cε, which is more adequate to our purposes, given by

cε = inf
v∈H1

o (Ω)\{0}
max
t≥0

Jε(tv). (2.1)

(see Willem [13, Theorem 4.2]).

We denote by J :H1(RN )→R the functional given by

J(u)= 1
2
‖u‖2−

∫
RN

[
F(u) +

1
2∗
(
u+
)2∗
]
dx, (2.2)

where

‖u‖2 =
∫

RN

(|∇u|2 +u2)dx, (2.3)

associated with the problem

−∆u+u= f (u) + |u|2∗−2u, in R
N . (2.4)

It is known that under assumptions (f1), (f2), (f3), (f4), (f5), and (2.4) pos-
sesses a ground state solution ω in the level

c = J(ω)= inf
v∈H1(RN )\{0}

max
t≥0

J(tv), (2.5)

(see [1]).

Remark 2.2. It is easy to check that for each nonzero v in H1(RN ), there is
a unique to = t(v) such that

J
(
tov
)=max

t≥0
J(tv). (2.6)

Indeed, since

J(tv)= t2

2
‖v‖2−

∫
RN

[
F(tv)− t2

∗

2∗
(
v+)2∗

]
dx, for t ≥ 0, (2.7)
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the maximum point to of J(tv) is given by

‖v‖2 =
∫

RN

[
t−1
o v f

(
tov
)

+ t2
∗−2
o

(
v+)2∗

]
dx. (2.8)

We assume, without loss of generality that 0∈Ω. Set Ωε = {x ∈RN ; εx ∈Ω}.
The restriction of J to H1

o (Ωε) is the energy functional,

J(u)= 1
2

∫
Ωε

(|∇u|2 +u2)dx−∫
Ωε

[
F
(
u+
)

+
1

2∗
u2∗

+

]
dx, u∈H1

o

(
Ωε
)
, (2.9)

associated with the problem

−∆u+u= f (u) +u2∗−1 in Ωε,

u= 0 on ∂Ωε.
(2.10)

If uε is a critical point of Jε, the family

vε(x)= uε(z)= uε(εx), z = εx (2.11)

is such that each vε is a critical point of functional J restricted to H1
o (Ωε) at the

level

bε = J
(
vε
)= inf

v∈H1
o (Ωε)\{0}

max
t≥0

J(tv). (2.12)

It is easy to check that bε = ε−Ncε and from the definition of c it follows that
bε ≥ c for all ε > 0.

We will start with the following property of {bε}ε>0.

Lemma 2.3. For {bε}ε>0, limε→0 bε = c.
Proof. Fix ω a ground state solution of problem (2.4) and let ψε(x)= ϕ(εx)ω(x),
where ϕ is a C1-function such that

ϕ(x)=
1 if x ∈ B1,

0 if x /∈ B2,
(2.13)

B1 = Bρ(0), B2 = B2ρ(0) ⊂Ω. Observe that ψε → ω in H1(RN ) and the support
of ψε is in Ωε. By definition of bε, we have tε > 0 such that

bε ≤max
t>0

J
(
tψε
)= J(tεψε). (2.14)
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From (2.8) and condition (f3) it follows that

∥∥ψε∥∥2 =
∫

RN

[
t−1
ε ψε f

(
tεψε

)
+ t2

∗−2
ε ψ2∗

ε

]
dx

≥
∫

RN

[
λt
q2−1
ε ψ

q2+1
ε + t2

∗−2
ε ψ2∗

ε

]
dx,

(2.15)

so that, tε is bounded. Equality (2.15) and Remark 2.2 show that tε → t(ω) = 1,
as ε→ 0. Then we have tεψε → ω in H1(RN ) and

lim
ε→0

J
(
tεψε

)= J(ω)= c. (2.16)

Combining (2.14), (2.16), and the inequality bε ≥ c, for all ε > 0, we have proved
this lemma. �

Lemma 2.4. The inequality c < (1/N)SN/2 holds, where S is the best Sobolev con-
stant for the embedding D1,2(RN )↩L2∗(RN ).

Proof. For each h > 0, consider the function

φh(x)=
[
N(N − 2)h

](N−2)/4(
h+ |x|2)(N−2)/2 . (2.17)

We recall that φh satisfies the problem

−∆u= u2∗−1 in R
N ,

u(x) > 0,
∫

RN
|∇u|2dx <∞,∫

RN

∣∣∇φh∣∣2
dx =

∫
RN
φ2∗
h dx = SN/2 (see Talenti [12]).

(2.18)

Now, consider ψh(x)= ϕφh(x)/‖ϕφh‖L2∗ (RN ), where ϕ is the function defined in
the proof of Lemma 2.3. From condition (f3) we have

J
(
tψh
)≤ t2

2

∫
B2

(∣∣∇ψh∣∣2
+ψ2

h

)
dx− λtq2+1

q2 + 1

∫
B2

ψ
q2+1
h dx− t2

∗

2∗
. (2.19)

Using arguments as in [7], there exists h > 0 such that

max
t≥0

{
t2

2

∫
B2

(∣∣∇ψh∣∣2
+ψ2

h

)
dx− λtq2+1

q2 + 1

∫
B2

ψ
q2+1
h dx− t2

∗

2∗

}
<

1
N
SN/2. (2.20)
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Therefore, from (2.19) and (2.20) we have that

max
t≥0

J
(
tψh
)
<

1
N
SN/2, (2.21)

and the proof of the lemma is completed. �

Notice that the same proof of Lemma 2.4 can be used to show that bε <
(1/N)SN/2, for all ε > 0. Using [3, Theorem 2.1], this inequality implies the exis-
tence of vε and then the existence of uε.

Lemma 2.5. There are εo > 0; a family {yε}{0<ε≤εo} ⊂RN , yε ∈Ωε ; constants R > 0
and β > 0 such that ∫

BR(yε)
v2
ε dx ≥ β > 0, ∀0 < ε ≤ εo, (2.22)

lim
ε→o d

(
yε,∂Ωε

)=∞. (2.23)

Proof. Start by showing that there is a family satisfying inequality (2.22). Argu-
ing to the contrary, there is εn ↘ 0 such that for all R > 0

lim
n→∞

sup
x∈RN

∫
BR(x)

v2
εn dx = 0. (2.24)

Using (Lions [6, Lemma I.1]) we have∫
RN
v
q
εn dx = on(1), as n−→∞, ∀2 < q < 2∗, (2.25)

and, from (f1) and (f2),∫
RN
F
(
vεn
)
dx =

∫
RN
vεn f

(
vεn
)
dx = on(1). (2.26)

Since J ′(vεn) · vεn = 0, we conclude from (2.26) that

∥∥vεn∥∥2 =
∫

RN
v2∗
εn dx+ on(1). (2.27)

Let � ≥ 0 be such that ‖vεn‖2 → �. Passing to the limit in J(vεn) = bεn and using
(2.26) we have

� =Nc (2.28)

and hence � > 0. Now, using the definition of the constant S, we have

∥∥vεn∥∥2 ≥ S
(∫

RN
v2∗
εn dx

)2/2∗

. (2.29)
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Taking the limit in the above inequalities, as n→∞, we achieve that

� ≥ S�2/2∗ , (2.30)

and by (2.28), that

c ≥ 1
N
SN/2 (2.31)

which contradicts Lemma 2.4 and then (2.22) holds.
Finally, to establish (2.23), suppose the contrary. That is, there exist εn → 0

and R > 0 such that dist(yεn ,∂Ωεn)≤ R, hence dist(εnyεn ,∂Ω)≤ εnR. Without loss
of generality, we have εnyεn → yo for some yo ∈ ∂Ω. The arguments that follow
can be found in [8].

Let ν be the unit interior normal to ∂Ω at yo, and δ > 0 such that Bδ(yo +
δν)⊂Ω and Bδ(yo− δν)∩Ω=∅. Let Ωn = {x ∈RN : yo + εnx ∈Ω} and wn(x)
= uεn(yo + εnx). This sequence wn is bounded in H1(RN ), −∆wn +wn = f (wn) +
w2∗−1
n in Ωn, ∫

B2R(0)
w2
n dx ≥

∫
BR(yεn )

v2
εn dx ≥ β > 0, ∀n, (2.32)

and we have that wn converges weakly to some w in H1(RN ).
Let RN

+,ν be the half space {x ∈RN : x · ν > 0}. Notice that Bε−1
n δ(ε−1

n δν)⊂Ωn

and Bε−1
n δ(−ε−1

n δν)∩Ωn =∅ and then we can prove that for all compacts K+ ⊂
RN

+,ν and K− ⊂RN−,ν =RN \R
N
+,ν, we have K+ ⊂Ωn and K− ∩Ωn =∅, for n large.

Then for each φ∈ C∞o (RN
+,ν) such that suppφ ⊂Ωn, we have∫

R
N
+,ν

(∇wn∇φ+wnφ
)
dx =

∫
R
N
+,ν

(
f
(
wn
)

+w2∗−1
n

)
φdx. (2.33)

From (2.33), usual arguments show that w ∈ H1(RN )∩ C2(RN
+ ) and satisfies

−∆w + w = f (w) + w2∗−1, in RN
+,ν, and w ≡ 0 in RN−,ν. Theorem I.1, due to

Esteban and Lions in [4], shows that w ≡ 0 which contradicts∫
B2R(0)∩R

N
+,ν

w2dx ≥ β > 0. (2.34)

This completes the proof of the lemma. �

Now we will consider the translation of vε, defined by ωε(x) = vε(x + yε) =
uε(εyε + εx) in Ω̃ε = {x ∈RN ;εyε + εx ∈Ω} and ωε = 0 outside Ω̃ε. From (2.23),
any compact subset of RN is contained in Ω̃ε, for ε sufficiently small.

From Lemma 2.5, ∫
BR(0)

ω2
ε dx ≥ β > 0, ∀0 < ε ≤ εo. (2.35)
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Consider a sequence εn ↘ 0 and set Ω̃n = Ω̃εn , ωn = ωεn , vn = vεn , yε = yεn .
We will prove that ωn is bounded in the L∞ norm. In that case, uε is also

bounded in L∞(Ω) norm and the proof of Theorem 1.1 follows from the sub-
critical case, as Lemma 2.8 will show.

Since the sequence ωn a translation of vn, we have a uniform bound for ‖ωn‖
and there is a ωo ∈H1(RN ) which is weak limit of ωn in H1(RN ). From (2.35)
we have ωo �= 0. We can write limit (2.23) in the following form

lim
n→∞d

(
0,∂Ω̃n

)=∞. (2.36)

Then for each φ∈ C∞o (RN ) and large n such that suppφ ⊂ Ω̃n, we have

∫
RN

(∇ωn∇φ+ωnφ
)
dx =

∫
RN

(
f
(
ωn
)

+ω2∗−1
n

)
φdx, ∀n. (2.37)

From (2.37), usual arguments show that ωo is a solution of problem (2.4), hence
a critical point of J , and J(ωo)≥ c.
Lemma 2.6. The sequence ωn converges to ωo in H1(RN ) and J(ωo)= c.
Proof. This fact comes from Lemma 2.5 and Fatou’s lemma applied in the posi-
tive sequence ωn f (ωn)− θF(ωn). Observe that

bεn = J
(
vn
)− 1

θ
J ′
(
vn
)
vn

=
(
θ− 2

2θ

)∥∥vn∥∥2
+

1
θ

∫
RN

[
vn f

(
vn
)− θF(vn)]+

(
2∗ − θ

2∗θ

)∫
RN
v2∗
n

=
(
θ− 2

2θ

)∥∥ωn∥∥2
+

1
θ

∫
RN

[
ωn f

(
ωn
)− θF(ωn)]+

(
2∗ − θ

2∗θ

)∫
RN
ω2∗
n .

(2.38)

From (2.38)

c ≤ J(ωo)= J(ωo)− 1
θ
J ′
(
ωo
)
ωo

=
(
θ− 2

2θ

)∥∥ωo∥∥2
+

1
θ

∫
RN

[
ωo f

(
ωo
)− θF(ωo)]+

(
2∗ − θ

2∗θ

)∫
RN
ω2∗
o

≤ liminf
(
θ− 2

2θ

)∥∥ωn∥∥2
+

1
θ

∫
RN

[
ωn f

(
ωn
)− θF(ωn)]+

(
2∗ − θ

2∗θ

)∫
RN
ω2∗
n

= lim
n→∞bεn = c.

(2.39)

We have proved that J(ωo)= c and then (2.39) becomes an equality.



556 Location of the peaks of solutions to critical growth problems

Combining (2.39) with the three following inequalities:

∥∥ωo∥∥2 ≤ liminf
∥∥ωn∥∥2

,∫
RN

[
ωo f

(
ωo
)− θF(ωo)]dx ≤ liminf

∫
RN

[
ωn f

(
ωn
)− θF(ωn)]dx,∫

RN
ω2∗
o dx ≤ liminf

∫
RN
ω2∗
n dx,

(2.40)

we conclude that ‖ωn‖→ ‖ωo‖ and then ωn→ ωo in H1(RN ). �

We are ready to conclude the proof of our main result. From Proposition 1.2
and Remark 1.3 with q(x)= ω2∗−2

n ∈ LN/2; g(x,s)= f (s) + s2
∗ − s, we have ωn ∈

Lt for all t ≥ 2 and

∥∥ωn∥∥Lt ≤ Ct, (2.41)

where Ct does not depend on n.
Now we will make use of a very particular version of [5, Theorem 8.17], due

to Trudinger.

Proposition 2.7. Suppose that t > N , g ∈ Lt/2(Λ), and u ∈ H1
o (Λ) satisfies (in

the weak sense)

−∆u+u≤ g̃(x), (2.42)

where Λ is an open subset of RN . Then for any ballB2R(y)⊂Λ,

sup
BR(y)

u≤ C(∥∥u+
∥∥
L2(B2R(y)) +‖g‖Lt/2(B2R(y))

)
, (2.43)

where C depends on N , t, and R.

We know that each ωn satisfies

−∆ωn +ωn = ω2∗−1
n + f

(
ωn
)
, in Ω̃n (2.44)

and this implies that

−∆ωn +ωn ≤ gn(x)= ω2∗−1
n + f

(
ωn
)
, in R

N (2.45)

in the weak sense.
Since (2.41) holds, ‖gn‖Lt is bounded from above for some t > N . Using

Proposition 2.7 in (2.45) we have

sup
B1(y)

ωn ≤ C
(∥∥ωn∥∥L2(B2R(y)) +

∥∥gn∥∥Lt(B2R(y))

)
(2.46)
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for all y ∈ RN , which implies that there is a constant a > 0, independent of n,
such that

ωn(x)≤ a, ∀x ∈R
N . (2.47)

It follows that there is a εo > 0 such that

uε(z)≤ a, ∀z ∈Ω, ∀ε < εo. (2.48)

To conclude the proof observe that uε becomes a solution of the subcritical
case (1.8) with h given by

h(s)=

f (s) + s2

∗−1, if s≤ a,
f (s) +

(2∗ − 1)
(θ− 1)

a2∗−θsθ−1− (2∗ − θ)
(θ− 1)

a2∗−1, if s > a,
(2.49)

where θ > 2 is that one fixed in condition ( f4). It is easy to check that h is a C1,α

function, h andH(s)= ∫ so h(τ)dτ satisfy (f1), (f2), (f3), (f4), and (f5). Let J̃ε be the
C1-functional on H1

o (Ω) given by

J̃ε(u)= 1
2

∫
Ω

(
ε2|∇u|2 +u2)dz−∫

Ω
H(u)dz. (2.50)

Since f (s) + s2
∗−1 ≥ h(s) for all s > 0, we have that

Jε(u)≤ J̃ε(u), ∀u∈H1
o (Ω), (2.51)

Jε(uε)= J̃ε(uε), J ′ε (uε)= J̃ ′ε (uε)= 0. We conclude that uε is a least-energy solution
of the subcritical problem (1.8).

Lemma 2.8. (i) If c̃ε is the minimax level of J̃ε, then c̃ε = cε;
(ii) each uε is a critical point of J̃ε in the minimax level and satisfies (1.8).

Since global problem (1.9) has a unique nondegenerate positive solution
(cf. [9, 10]), Theorem 1.1 comes from [8, Theorem 2.2] applied to the func-
tional J̃ε, and the asymptotic profile comes from [8, Theorem 2.3].

Appendix

Let Λ be some general domain in RN (bounded or unbounded). We will start
with the following lemma due to Brézis and Kato [2].

Lemma A.1. Let q ∈ LN/2(Λ) be a nonnegative function. Then, for every ε > 0,
there is a constant σε = σ(ε,q) > 0 such that∫

Λ
q(x)u2dx ≤ ε

∫
Λ
|∇u|2dx+ σε

∫
Λ
u2dx, ∀u∈H1

o (Λ). (A.1)



558 Location of the peaks of solutions to critical growth problems

Remark A.2. If qk → q in LN/2(Λ), we can choose a constant σε independent of k.
That is, σ(ε,qk)= σε and∫

Λ
qk(x)u2dx ≤ ε

∫
Λ
|∇u|2dx+ σε

∫
Λ
u2dx, ∀u∈H1

o (Λ), k ∈N. (A.2)

Proof. Let σε = σ(ε,q) > 0 be such that

‖q‖LN/2({q≥σε}) ≤ εS , (A.3)

where S is a best constant in the Sobolev immersion H1
o (Λ)↩ L2∗(Λ), where

2∗ = 2N/(N − 2). For all u∈H1
o (Λ), we have∫

Λ
q(x)u2dx =

∫
{q≥σε}

q(x)u2dx+
∫
{q≤σε}

q(x)u2dx

≤ σε
∫
{q≤σε}

u2dx+
∫
{q≥σε}

q(x)u2dx

≤ σε
∫
Λ
u2dx+‖q‖LN/2({q≥σε})‖u‖2

L2∗ ({q≥σε}).

(A.4)

Inequality (A.1) follows from Sobolev estimate and the choice of σε. �

Remark 1.3 follows from the proof of Lemma A.1 and the inequality∫
Λ
qk(x)u2dx ≤

∫
Λ
q(x)u2dx+

∥∥qk − q∥∥LN/2(Λ)‖u‖2
L2∗ (Λ). (A.5)

Proof of Proposition 1.2. For any n∈N and p > 0, consider An = {x ∈Λ : |v|p ≤
n}, Bn =Λ \An, and define vn by

vn = v|v|2p in An, vn = n2v in Bn. (A.6)

Observe that vn ∈H1
o (Λ), vn ≤ |v|2p+1 and

∇vn = (2p+ 1)|v|2p∇v in An, ∇vn = n2∇v in Bn. (A.7)

So, using vn as a test function∫
Λ
∇v∇vn dx =

∫
Λ
g(x,v)vn dx. (A.8)

Using (A.7), we have

(2p+ 1)
∫
An
|v|2p|∇v|2dx+n2

∫
Bn
|∇v|2dx

≤
∫
Λ

∣∣g(x,v)vn
∣∣dx ≤ ∫

Λ

(
q(x) +Cg

)∣∣vvn∣∣dx. (A.9)
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Now consider

ωn = v|v|p in An, ωn = nv in Bn. (A.10)

Notice that ω2
n = vvn ≤ |v|2(p+1) and

∇ωn = (p+ 1)|v|p∇v in An, ∇vn = n∇v in Bn. (A.11)

Therefore,∫
Λ

∣∣∇ωn∣∣2
dx = (p+ 1)2

∫
An
|v|2p|∇v|2dx+n2

∫
Bn
|∇v|2dx. (A.12)

Combining (A.9) and (A.12), we obtain

2p+ 1
(p+ 1)2

∫
Λ

∣∣∇ωn∣∣2
dx ≤

∫
Λ

(
q(x) +Cg

)
ω2
n dx. (A.13)

Let σp be given by Lemma A.1 with ε = (2p+ 1)/2(p+ 1)2. Then∫
Λ

∣∣∇ωn∣∣2
dx ≤ C̃p

∫
Λ
ω2
n dx, (A.14)

where C̃n = (2(p+ 1)2/(2p+ 1))(Cg + σp). Suppose that v ∈ L2(p+1)(Λ) for some
p ≥ 2. Applying Sobolev immersion in inequality (A.14) we have

[∫
An
ω2∗
n dx

]2/2∗

≤
[∫

Λ
ω2∗
n dx

]2/2∗

≤ SC̃p

∫
Λ
|v|2(p+1)dx (A.15)

that is,

[∫
An
|v|2∗(p+1)dx

]2/2∗

dx ≤ Cp

∫
Λ
|v|2(p+1)dx, (A.16)

where

Cp = 2(p+ 1)2

2p+ 1
S
(
Cg + σp

)
. (A.17)

Now, passing to the limit in (A.16) we have v ∈ L2∗(p+1)(Λ) and

‖v‖L2∗(p+1)(Λ) ≤ Cp‖v‖L2(p+1)(Λ). (A.18)

The proof follows from the following iteration argument: let p1 a positive
such that 2(p1 + 1) = 2∗. It is easy to see that 0 < p1 and v ∈ L2(p1+1)(Λ). Using
inequality (A.18) we have

v ∈ L2∗(p1+1)(Λ). (A.19)
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Now choose p2 such that 2(p2 + 1) = 2∗(p1 + 1). It is easy to see that 0 <
p1 < p2 and v ∈ Lp2+1(Λ). Using inequality (A.18) we have

v ∈ L2∗(p2+1)(Λ). (A.20)

Continuing with this iteration we obtain an increasing sequence pk given by
2(pk+1 + 1)= 2∗(pk + 1) such that v ∈ L2(pk+1+1)(Λ) for all k ∈N. From

pk+1 + 1= N

N − 2
(pk + 1), (A.21)

it follows that

pk+1 + 1=
[

N

N − 2

]k
2∗. (A.22)

This shows that pk goes to∞ and therefore,

v ∈ Lp(Λ), ∀p ≥ 2. (A.23)
�

Remark A.3. Proposition 1.2 is valid for positive subsolutions of problem (1.12)
as we can check in its proof.
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