DECAY RATES FOR SOLUTIONS OF A TIMOSHENKO SYSTEM WITH A MEMORY CONDITION
 AT THE BOUNDARY

MAURO DE LIMA SANTOS

Received 2 March 2002

We consider a Timoshenko system with memory condition at the boundary and we study the asymptotic behavior of the corresponding solutions. We prove that the energy decay with the same rate of decay of the relaxation functions, that is, the energy decays exponentially when the relaxation functions decays exponentially and polynomially when the relaxation functions decays polynomially.

1. Introduction

The main purpose of this work is to study the asymptotic behavior of the solutions of a Timoshenko system with boundary conditions of memory type. To formalize this problem, take Ω an open bounded set of \mathbb{R}^{n} with smooth boundary Γ and assume that Γ can be divided into two parts

$$
\begin{equation*}
\Gamma=\Gamma_{0} \cup \Gamma_{1} \quad \text { with } \bar{\Gamma}_{0} \cap \bar{\Gamma}_{1}=\varnothing \text {. } \tag{1.1}
\end{equation*}
$$

Denote by $v(x)$ the unit normal vector at $x \in \Gamma$ outside of Ω and consider the following initial boundary value problem:

$$
\begin{gather*}
u_{t t}-\Delta u-\alpha \sum_{i=1}^{n} \frac{\partial v}{\partial x_{i}}+\beta u=0 \quad \text { in } \Omega \times(0, \infty), \tag{1.2}\\
v_{t t}-\Delta v+\alpha \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}}+f(v)=0 \quad \text { in } \Omega \times(0, \infty), \tag{1.3}\\
u=v=0 \quad \text { on } \Gamma_{0} \times(0, \infty), \tag{1.4}
\end{gather*}
$$

$$
\begin{gather*}
u+\int_{0}^{t} g_{1}(t-s) \frac{\partial u}{\partial v}(s) d s=0 \quad \text { on } \Gamma_{1} \times(0, \infty), \tag{1.5}\\
v+\int_{0}^{t} g_{2}(t-s) \frac{\partial v}{\partial v}(s) d s=0 \quad \text { on } \Gamma_{1} \times(0, \infty), \tag{1.6}\\
(u(0, x), v(0, x))=\left(u_{0}(x), v_{0}(x)\right), \quad\left(u_{t}(0, x), v_{t}(0, x)\right)=\left(u_{1}(x), v_{1}(x)\right) \quad \text { in } \Omega . \tag{1.7}
\end{gather*}
$$

Here, u is the deflection of the beam from its equilibrium and v is the total rotatory angle of the beam at x, for those precise physical meaning, see Timoshenko [13]. We will assume in the sequel that α is a sufficiently small positive number, $\beta>n \alpha$, and the relaxation functions g_{i} are positive and nondecreasing and the function $f \in C^{1}(\mathbb{R})$ satisfies

$$
\begin{equation*}
f(s) s \geq 0, \quad \forall s \in \mathbb{R} \tag{1.8}
\end{equation*}
$$

Additionally, we suppose that f is superlinear, that is,

$$
\begin{equation*}
f(s) s \geq(2+\delta) F(s), \quad F(z)=\int_{0}^{z} f(s) d s, \quad \forall s \in \mathbb{R} \tag{1.9}
\end{equation*}
$$

for some $\delta>0$ with the following growth conditions:

$$
\begin{equation*}
|f(x)-f(y)| \leq c\left(1+|x|^{\rho-1}+|y|^{\rho-1}\right)|x-y|, \quad \forall x, y \in \mathbb{R} \tag{1.10}
\end{equation*}
$$

for some $c>0$ and $\rho \geq 1$ such that $(n-2) \rho \leq n$. The integral equations (1.5) and (1.6) describe the memory effects which can be caused, for example, by the interaction with another viscoelastic element. Also, we will assume that there exists $x_{0} \in \mathbb{R}^{n}$ such that

$$
\begin{align*}
& \Gamma_{0}=\left\{x \in \Gamma: v(x) \cdot\left(x-x_{0}\right) \leq 0\right\}, \\
& \Gamma_{1}=\left\{x \in \Gamma: v(x) \cdot\left(x-x_{0}\right)>0\right\} . \tag{1.11}
\end{align*}
$$

As an example of a set Ω satisfying those properties, we can consider the domain shown in Figure 1.1.

Figure 1.1

Let $m(x)=x-x_{0}$. Note that the compactness of Γ_{1} implies that there exists a small positive constant δ_{0} such that

$$
\begin{equation*}
0<\delta_{0} \leq m(x) \cdot v(x), \quad \forall x \in \Gamma_{1} . \tag{1.12}
\end{equation*}
$$

Frictional dissipative boundary condition for the Timoshenko system was studied by several authors, see, for example, $[4,6,11,12]$ among others. Concerning the memory condition at the boundary we can cite the following works: in [1], Ciarletta established theorems of existence, uniqueness, and asymptotic stability for a linear model of heat conduction. In this case the memory condition describes a boundary that can absorb heat and due to the hereditary term, can retain part of it. In [3], Fabrizio and Morro considered a linear electromagnetic model and proved the existence, uniqueness, and asymptotic stability of the solutions. In [7], Muñoz Rivera and Andrade showed exponential stability for a nonhomogeneous anisotropic system when the resolvent kernel of the memory is of exponential type. They used multiplier technics and a compactness argument.

Nonlinear one-dimensional wave equation with memory condition on the boundary was studied by Qin [9]. He showed existence, uniqueness, and stability of global solutions provided the initial data is small in $H^{3} \times H^{2}$. This result was improved by Muñoz Rivera and Andrade [8]. They only supposed small initial data in $H^{2} \times H^{1}$. See also de Lima Santos [2].

In this paper, we show that the solutions of the coupled system (1.2)-(1.7) decays uniformly in time with the same rate of decay of the relaxation functions. More precisely, denoting by k_{1} and k_{2} the resolvent kernels of $-g_{1}^{\prime} / g_{1}(0)$ and $-g_{2}^{\prime} / g_{2}(0)$, respectively, we show that the solution decays exponentially to zero provided k_{1} and k_{2} decays exponentially to zero. When the resolvent kernels k_{1} and k_{2} decays polynomially, we show that the corresponding solution also decays polynomially to zero. The method used is based on the construction of a suitable Lyapunov functional \mathscr{L} satisfying

$$
\begin{equation*}
\frac{d}{d t} \mathscr{L}(t) \leq-c_{1} \mathscr{L}(t)+c_{2} e^{-\gamma t} \tag{1.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d}{d t} \mathscr{L}(t) \leq-c_{1} \mathscr{L}(t)^{1+1 / \alpha}+\frac{c_{2}}{(1+t)^{\alpha+1}} \tag{1.14}
\end{equation*}
$$

for some positive constants c_{1}, c_{2}, γ, and α. Note that, because of condition (1.4) the solution of system (1.2)-(1.7) must belong to the following space:

$$
\begin{equation*}
V:=\left\{v \in H^{1}(\Omega): v=0 \text { on } \Gamma_{0}\right\} . \tag{1.15}
\end{equation*}
$$

The notations we use in this paper are standard and can be found in Lions' book [5]. In the sequel, by c (sometimes c_{1}, c_{2}, \ldots) we denote various positive constants
independent of t and on the initial data. The organization of this paper is as follows. In Section 2, we establish an existence and regularity result. In Section 3, we prove the uniform rate of exponential decay. Finally, in Section 4, we prove the uniform rate of polynomial decay.

2. Existence and regularity

In this section, we study the existence and regularity of solutions for the Timoshenko system (1.2)-(1.7). First, we use (1.5) and (1.6) to estimate the terms $\partial u / \partial v$ and $\partial v / \partial v$ on Γ_{1}. Denoting by

$$
\begin{equation*}
(g * \varphi)(t)=\int_{0}^{t} g(t-s) \varphi(s) d s \tag{2.1}
\end{equation*}
$$

the convolution product operator and differentiating (1.5) and (1.6), we arrive to the following Volterra equations:

$$
\begin{align*}
& \frac{\partial u}{\partial v}+\frac{1}{g_{1}(0)} g_{1}^{\prime} * \frac{\partial u}{\partial v}=-\frac{1}{g_{1}(0)} u_{t} \\
& \frac{\partial v}{\partial v}+\frac{1}{g_{2}(0)} g_{2}^{\prime} * \frac{\partial v}{\partial v}=-\frac{1}{g_{2}(0)} v_{t} \tag{2.2}
\end{align*}
$$

Applying the Volterra's inverse operator, we get

$$
\begin{align*}
& \frac{\partial u}{\partial v}=-\frac{1}{g_{1}(0)}\left\{u_{t}+k_{1} * u_{t}\right\} \\
& \frac{\partial v}{\partial v}=-\frac{1}{g_{2}(0)}\left\{v_{t}+k_{2} * v_{t}\right\} \tag{2.3}
\end{align*}
$$

where the resolvent kernels satisfy

$$
\begin{equation*}
k_{i}+\frac{1}{g_{i}(0)} g_{i}^{\prime} * k_{i}=-\frac{1}{g_{i}(0)} g_{i}^{\prime} \quad \text { for } i=1,2 \tag{2.4}
\end{equation*}
$$

Denoting by $\tau_{1}=1 / g_{1}(0)$ and $\tau_{2}=1 / g_{2}(0)$ the normal derivatives of u and v can be written as

$$
\begin{align*}
& \frac{\partial u}{\partial v}=-\tau_{1}\left\{u_{t}+k_{1}(0) u-k_{1}(t) u_{0}+k_{1}^{\prime} * u\right\} \tag{2.5}\\
& \frac{\partial v}{\partial v}=-\tau_{2}\left\{v_{t}+k_{2}(0) v-k_{2}(t) v_{0}+k_{2}^{\prime} * v\right\}
\end{align*}
$$

Reciprocally, taking initial data such that $u_{0}=v_{0}=0$ on Γ_{1}, identities (2.5) imply (1.5) and (1.6). Since we are interested in relaxation functions of exponential or polynomial type and identities (2.5) involve the resolvent kernels k_{i}, we want to know if k_{i} has the same properties. The following lemma answers this question. Let h be a relaxation function and k its resolvent kernel, that is,

$$
\begin{equation*}
k(t)-k * h(t)=h(t) \tag{2.6}
\end{equation*}
$$

Lemma 2.1. If h is a positive continuous function, then k also is a positive continuous function. Moreover,
(1) if there exist positive constants c_{0} and γ with $c_{0}<\gamma$ such that

$$
\begin{equation*}
h(t) \leq c_{0} e^{-\gamma t}, \tag{2.7}
\end{equation*}
$$

then the function k satisfies

$$
\begin{equation*}
k(t) \leq \frac{c_{0}(\gamma-\epsilon)}{\gamma-\epsilon-c_{0}} e^{-\epsilon t} \tag{2.8}
\end{equation*}
$$

for all $0<\epsilon<\gamma-c_{0}$.
(2) Given $p>1$, denote by $c_{p}:=\sup _{t \in \mathbb{R}^{+}} \int_{0}^{t}(1+t)^{p}(1+t-s)^{-p}(1+s)^{-p} d s$. If there exists a positive constant c_{0} with $c_{0} c_{p}<1$ such that

$$
\begin{equation*}
h(t) \leq c_{0}(1+t)^{-p} \tag{2.9}
\end{equation*}
$$

then the function k satisfies

$$
\begin{equation*}
k(t) \leq \frac{c_{0}}{1-c_{0} c_{p}}(1+t)^{-p} . \tag{2.10}
\end{equation*}
$$

Proof. Note that $k(0)=h(0)>0$. Now, we take $t_{0}=\inf \left\{t \in \mathbb{R}^{+}: k(t)=0\right\}$, so $k(t)>0$ for all $t \in\left[0, t_{0}\left[\right.\right.$. If $t_{0} \in \mathbb{R}^{+}$, from (2.6) we get that $-k * h\left(t_{0}\right)=h\left(t_{0}\right)$ but this is contradictory. Therefore $k(t)>0$ for all $t \in \mathbb{R}_{0}^{+}$. Now, fix ϵ, such that $0<\epsilon<\gamma-c_{0}$ and denote by

$$
\begin{equation*}
k_{\epsilon}(t):=e^{\epsilon t} k(t), \quad h_{\epsilon}(t):=e^{\epsilon t} h(t) . \tag{2.11}
\end{equation*}
$$

Multiplying (2.6) by $e^{\epsilon t}$ we get $k_{\epsilon}(t)=h_{\epsilon}(t)+k_{\epsilon} * h_{\epsilon}(t)$, hence

$$
\begin{align*}
\sup _{s \in[0, t]} k_{\epsilon}(s) & \leq \sup _{s \in[0, t]} h_{\epsilon}(s)+\left(\int_{0}^{\infty} c_{0} e^{(\epsilon-\gamma) s} d s\right) \sup _{s \in[0, t]} k_{\epsilon}(s) \tag{2.12}\\
& \leq c_{0}+\frac{c_{0}}{(\gamma-\epsilon)} \sup _{s \in[0, t]} k_{\epsilon}(s) .
\end{align*}
$$

Therefore,

$$
\begin{equation*}
k_{\epsilon}(t) \leq \frac{c_{0}(\gamma-\epsilon)}{\gamma-\epsilon-c_{0}}, \tag{2.13}
\end{equation*}
$$

which implies our first assertion. To show the second part consider the following notations:

$$
\begin{equation*}
k_{p}(t):=(1+t)^{p} k(t), \quad h_{p}(t):=(1+t)^{p} h(t) \tag{2.14}
\end{equation*}
$$

Multiplying (2.6) by $(1+t)^{p}$, we get

$$
\begin{equation*}
k_{p}(t)=h_{p}(t)+\int_{0}^{t} k_{p}(t-s)(1+t-s)^{-p}(1+t)^{p} h(s) d s \tag{2.15}
\end{equation*}
$$

hence

$$
\begin{equation*}
\sup _{s \in[0, t]} k_{p}(s) \leq \sup _{s \in[0, t]} h_{p}(s)+c_{0} c_{p} \sup _{s \in[0, t]} k_{p}(s) \leq c_{0}+c_{0} c_{p} \sup _{s \in[0, t]} k_{p}(s) . \tag{2.16}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
k_{p}(t) \leq \frac{c_{0}}{1-c_{0} c_{p}}, \tag{2.17}
\end{equation*}
$$

which proves our second assertion.
Remark 2.2. The finiteness of the constant c_{p} can be found in [10, Lemma 7.4].
Due to Lemma 2.1, in the remainder of this paper, we will use (2.5) instead of (1.5) and (1.6). Denote by

$$
\begin{equation*}
(g \square \varphi)(t):=\int_{0}^{t} g(t-s)|\varphi(t)-\varphi(s)|^{2} d s \tag{2.18}
\end{equation*}
$$

The next lemma gives an identity for the convolution product.
Lemma 2.3. For $g, \varphi \in C^{1}([0, \infty[: \mathbb{R})$,

$$
\begin{equation*}
(g * \varphi) \varphi_{t}=-\frac{1}{2} g(t)|\varphi(t)|^{2}+\frac{1}{2} g^{\prime} \square \varphi-\frac{1}{2} \frac{d}{d t}\left[g \square \varphi-\left(\int_{0}^{t} g(s) d s\right)|\varphi|^{2}\right] . \tag{2.19}
\end{equation*}
$$

The proof of this lemma follows by differentiating the term $g \square \varphi$.
The well-posedness of system (1.2)-(1.7) is given by the following theorem.
Theorem 2.4. Let $k_{i} \in C^{2}\left(\mathbb{R}^{+}\right)$be such that

$$
\begin{equation*}
k_{i},-k_{i}^{\prime}, k_{i}^{\prime \prime} \geq 0 \quad \text { for } i=1,2 . \tag{2.20}
\end{equation*}
$$

If $\left(u_{0}, v_{0}\right) \in\left(H^{2}(\Omega) \cap V\right)^{2}$ and $\left(u_{1}, v_{1}\right) \in V \times V$ satisfy the compatibility conditions

$$
\begin{array}{ll}
\frac{\partial u_{0}}{\partial v}+\tau_{1} u_{1}=0 & \text { on } \Gamma_{1} \\
\frac{\partial v_{0}}{\partial v}+\tau_{2} v_{1}=0 & \text { on } \Gamma_{1} \tag{2.21}
\end{array}
$$

then there exists only one strong solution (u, v) of the Timoshenko system (1.2)(1.7) satisfying

$$
\begin{equation*}
u, v \in L^{\infty}\left(0, T ; H^{2}(\Omega) \cap V\right) \cap W^{1, \infty}(0, T ; V) \cap W^{2, \infty}\left(0, T ; L^{2}(\Omega)\right) \tag{2.22}
\end{equation*}
$$

This theorem can be proved using the standard Galerkin method, for this reason we omit it here.

3. Exponential decay

In this section, we study the asymptotic behavior of the solutions of system (1.2)-(1.7) when the resolvent kernels k_{1} and k_{2} are exponentially decreasing, that is, there exist positive constants b_{1} and b_{2} such that

$$
\begin{equation*}
k_{i}(0)>0, \quad k_{i}^{\prime}(t) \leq-b_{1} k_{i}(t), \quad k_{i}^{\prime \prime}(t) \geq-b_{2} k_{i}^{\prime}(t), \quad \text { for } i=1,2 \tag{3.1}
\end{equation*}
$$

Note that these conditions imply that

$$
\begin{equation*}
k_{i}(t) \leq k_{i}(0) e^{-b_{1} t} \quad \text { for } i=1,2 \tag{3.2}
\end{equation*}
$$

Our point of departure will be to establish some inequalities for the strong solution of Timoshenko system (1.2)-(1.7). For this end, we introduce the functional

$$
\begin{align*}
E(t):=E(t, u, v)= & \frac{1}{2} \int_{\Omega}\left|u_{t}\right|^{2}+(\beta-\alpha n)|u|^{2}+|\nabla u|^{2} d x \\
& +\frac{\alpha}{2} \sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial v}{\partial x_{i}}-u\right|^{2} d x+\frac{1}{2} \int_{\Omega}\left|v_{t}\right|^{2}+(1-\alpha)|\nabla v|^{2}+2 F(v) d x \\
& +\frac{\tau_{1}}{2} \int_{\Gamma_{1}}\left(k_{1}(t)|u|^{2}-k_{1}^{\prime} \square u\right) d \Gamma_{1}+\frac{\tau_{2}}{2} \int_{\Gamma_{1}}\left(k_{2}(t)|v|^{2}-k_{2}^{\prime} \square v\right) d \Gamma_{1} . \tag{3.3}
\end{align*}
$$

Lemma 3.1. Any strong solution (u,v) of system (1.2)-(1.7) satisfies

$$
\begin{align*}
\frac{d}{d t} E(t) \leq & -\frac{\tau_{1}}{2} \int_{\Gamma_{1}}\left|u_{t}\right|^{2} d \Gamma_{1}+\frac{\tau_{1}}{2} k_{1}^{2}(t) \int_{\Gamma_{1}}\left|u_{0}\right|^{2} d \Gamma_{1} \\
& +\frac{\tau_{1}}{2} k_{1}^{\prime}(t) \int_{\Gamma_{1}}|u|^{2} d \Gamma_{1}-\frac{\tau_{1}}{2} \int_{\Gamma_{1}} k_{1}^{\prime \prime} \square u d \Gamma_{1} \tag{3.4}\\
& -\frac{\tau_{2}}{2} \int_{\Gamma_{1}}\left|v_{t}\right|^{2} d \Gamma_{1}+\frac{\tau_{2}}{2} k_{2}^{2}(t) \int_{\Gamma_{1}}\left|v_{0}\right|^{2} d \Gamma_{1} \\
& +\frac{\tau_{2}}{2} k_{2}^{\prime}(t) \int_{\Gamma_{1}}|v|^{2} d \Gamma_{1}-\frac{\tau_{2}}{2} \int_{\Gamma_{1}} k_{2}^{\prime \prime} \square v d \Gamma_{1} .
\end{align*}
$$

Proof. Multiplying (1.2) by u_{t} and integrating by parts over Ω, we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left\{\left|u_{t}\right|^{2}+|\nabla u|^{2}+\beta|u|^{2}\right\} d x-\alpha \sum_{i=1}^{n} \int_{\Omega} \frac{\partial v}{\partial x_{i}} u_{t} d x=\int_{\Gamma_{1}} \frac{\partial u}{\partial v} u_{t} d \Gamma_{1} \tag{3.5}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left\{\left|v_{t}\right|^{2}+|\nabla v|^{2}+2 F(v)\right\} d x+\alpha \sum_{i=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{i}} v_{t} d x=\int_{\Gamma_{1}} \frac{\partial v}{\partial v} v_{t} d \Gamma_{1} \tag{3.6}
\end{equation*}
$$

Summing the above identities, substituting the boundary terms by (2.5), and using Lemma 2.3 our conclusion follows.

Let $\theta>0$ be a small constant and define the following functional:

$$
\begin{equation*}
\psi(t)=\int_{\Omega}\left\{m \cdot \nabla u+\left(\frac{n}{2}-\theta\right) u\right\} u_{t} d x+\int_{\Omega}\left\{m \cdot \nabla v+\left(\frac{n}{2}-\theta\right) v\right\} v_{t} d x \tag{3.7}
\end{equation*}
$$

The following lemma plays an important role for the construction of the Lyapunov functional.
Lemma 3.2. For any strong solution of system (1.2)-(1.7),

$$
\begin{align*}
\frac{d}{d t} \psi(t) \leq & \frac{1}{2} \int_{\Gamma_{1}} m \cdot v\left(\left|u_{t}\right|^{2}+\left|v_{t}\right|^{2}\right) d \Gamma_{1}-\theta \int_{\Omega}\left|u_{t}\right|^{2}+\left|v_{t}\right|^{2} d x \\
& -\frac{(1-\theta)}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{(1-\theta)}{2} \int_{\Omega}|\nabla v|^{2} d x \\
& -\left(\frac{n \delta}{2}-\theta(2+\delta)\right) \int_{\Omega} F(v) d x \\
& -c \sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial v}{\partial x_{i}}-u\right|^{2} d x+\int_{\Gamma_{1}} \frac{\partial u}{\partial v} m \cdot \nabla u d \Gamma_{1} \tag{3.8}\\
& +\int_{\Gamma_{1}} \frac{\partial v}{\partial v} m \cdot \nabla v d \Gamma_{1}-\frac{1}{2} \int_{\Gamma_{1}} m \cdot v|\nabla u|^{2} d \Gamma_{1} \\
& -\frac{1}{2} \int_{\Gamma_{1}} m \cdot v|\nabla v|^{2} d \Gamma_{1}-\frac{\beta}{2} \int_{\Gamma_{1}} m \cdot v|u|^{2} d \Gamma_{1} .
\end{align*}
$$

Proof. From (1.2) we obtain

$$
\begin{align*}
\frac{d}{d t} \int_{\Omega} u_{t} & \left\{m \cdot \nabla u+\left(\frac{n}{2}-\theta\right) u\right\} d x \\
= & \int_{\Omega} u_{t} m \cdot \nabla u_{t} d x+\left(\frac{n}{2}-\theta\right) \int_{\Omega}\left|u_{t}\right|^{2} d x+\int_{\Omega} \Delta u m \cdot \nabla u d x \\
& +\left(\frac{n}{2}-\theta\right) \int_{\Omega} \Delta u u d x+\alpha \sum_{i=1}^{n} \int_{\Omega} \frac{\partial v}{\partial x_{i}}\left\{m \cdot \nabla u+\left(\frac{n}{2}-\theta\right) u\right\} d x \tag{3.9}\\
& -\beta \int_{\Omega} u\left\{m \cdot \nabla u+\left(\frac{n}{2}-\theta\right) u\right\} d x .
\end{align*}
$$

Performing an integration by parts, we get

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega} u_{t}\left\{m \cdot \nabla u+\left(\frac{n}{2}-\theta\right) u\right\} d x \\
& \leq \frac{1}{2} \int_{\Gamma_{1}} m \cdot v\left|u_{t}\right|^{2} d \Gamma_{1}-\theta \int_{\Omega}\left|u_{t}\right|^{2} d x+\int_{\Gamma_{1}} \frac{\partial u}{\partial v} m \cdot \nabla u d \Gamma_{1} \\
&-\frac{1}{2} \int_{\Gamma_{1}} m \cdot v|\nabla u|^{2} d \Gamma_{1}-(1-\theta) \int_{\Omega}|\nabla u|^{2} d x+\frac{\alpha c}{2} \int_{\Omega}\left\{|\nabla u|^{2}+|\nabla v|^{2}\right\} d x \\
&+\alpha\left(\frac{n}{2}-\theta\right) \sum_{i=1}^{n} \int_{\Omega} \frac{\partial v}{\partial x_{i}} u d x-\frac{\beta}{2} \int_{\Gamma_{1}} m \cdot|u|^{2} d \Gamma_{1}+\beta \theta \int_{\Omega}|u|^{2} d x \tag{3.10}
\end{align*}
$$

Similarly, using (1.3) instead of (1.2) we get

$$
\begin{align*}
\frac{d}{d t} \int_{\Omega} & v_{t}\left(m \cdot \nabla v+\left(\frac{n}{2}-\theta\right) v\right) d x \\
\leq & \frac{1}{2} \int_{\Gamma_{1}} m \cdot v\left|v_{t}\right|^{2} d \Gamma_{1}-\theta \int_{\Omega}\left|v_{t}\right|^{2} d x+\int_{\Gamma_{1}} \frac{\partial v}{\partial v} m \cdot \nabla v d \Gamma_{1} \\
& -\frac{1}{2} \int_{\Gamma_{1}} m \cdot v|\nabla v|^{2} d \Gamma_{1}-(1-\theta) \int_{\Omega}|\nabla v|^{2} d x-\left(\frac{n}{2}-\theta\right)(2+\delta) \int_{\Omega} F(v) d x \\
& +n \int_{\Omega} F(v) d x+\frac{\alpha c}{2} \int_{\Omega}\left\{|\nabla u|^{2}+|\nabla v|^{2}\right\} d x+\alpha\left(\frac{n}{2}-\theta\right) \sum_{i=1}^{n} \int_{\Omega} \frac{\partial v}{\partial x_{i}} u d x . \tag{3.11}
\end{align*}
$$

Summing these two last inequalities, using Poincaré's inequality and taking θ small enough our conclusion follows.

We introduce the Lyapunov functional

$$
\begin{equation*}
\mathscr{L}(t)=N E(t)+\psi(t) \tag{3.12}
\end{equation*}
$$

with $N>0$. Using Young's inequality and taking N large enough we find that

$$
\begin{equation*}
q_{0} E(t) \leq \mathscr{L}(t) \leq q_{1} E(t) \tag{3.13}
\end{equation*}
$$

for some positive constants q_{0} and q_{1}. We will show later that the functional \mathscr{L} satisfies the inequality of the following lemma.

Lemma 3.3. Let f be a real positive function of class C^{1}. If there exist positive constants γ_{0}, γ_{1}, and c_{0} such that

$$
\begin{equation*}
f^{\prime}(t) \leq-\gamma_{0} f(t)+c_{0} e^{-\gamma_{1} t} \tag{3.14}
\end{equation*}
$$

540 Decay rates for solutions of a Timoshenko system
then there exist positive constants γ and c such that

$$
\begin{equation*}
f(t) \leq(f(0)+c) e^{-\gamma t} . \tag{3.15}
\end{equation*}
$$

Proof. First, suppose that $\gamma_{0}<\gamma_{1}$. Define $F(t)$ by

$$
\begin{equation*}
F(t):=f(t)+\frac{c_{0}}{\gamma_{1}-\gamma_{0}} e^{-\gamma_{1} t} . \tag{3.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
F^{\prime}(t)=f^{\prime}(t)-\frac{\gamma_{1} c_{0}}{\gamma_{1}-\gamma_{0}} e^{-\gamma_{1} t} \leq-\gamma_{0} F(t) . \tag{3.17}
\end{equation*}
$$

Integrating from 0 to t we arrive to

$$
\begin{equation*}
F(t) \leq F(0) e^{-\gamma_{0} t} \Longrightarrow f(t) \leq\left(f(0)+\frac{c_{0}}{\gamma_{1}-\gamma_{0}}\right) e^{-\gamma_{0} t} \tag{3.18}
\end{equation*}
$$

Now, we will assume that $\gamma_{0} \geq \gamma_{1}$, and we get

$$
\begin{equation*}
f^{\prime}(t) \leq-\gamma_{1} f(t)+c_{0} e^{-\gamma_{1} t} \Longrightarrow\left[e^{\gamma_{1} t} f(t)\right]^{\prime} \leq c_{0} \tag{3.19}
\end{equation*}
$$

Integrating from 0 to t, we obtain

$$
\begin{equation*}
f(t) \leq\left(f(0)+c_{0} t\right) e^{-\gamma_{1} t} . \tag{3.20}
\end{equation*}
$$

Since $t \leq\left(\gamma_{1}-\epsilon\right) e^{\left(\gamma_{1}-\epsilon\right) t}$ for any $0<\epsilon<\gamma_{1}$ we conclude that

$$
\begin{equation*}
f(t) \leq\left[f(0)+c_{0}\left(\gamma_{1}-\epsilon\right)\right] e^{-\epsilon t} . \tag{3.21}
\end{equation*}
$$

This completes the proof.
Finally, we will show the main result of this section.
Theorem 3.4. Take $\left(u_{0}, v_{0}\right) \in V^{2}$ and $\left(u_{1}, v_{1}\right) \in\left[L^{2}(\Omega)\right]^{2}$. If the resolvent kernels k_{1} and k_{2} satisfy (3.1), then there exist positive constants α_{1} and γ_{1} such that

$$
\begin{equation*}
E(t) \leq \alpha_{1} e^{-\gamma_{1} t} E(0), \quad \forall t \geq 0 . \tag{3.22}
\end{equation*}
$$

Proof. We will prove this result for strong solutions, that is, for solutions with initial data $\left(u_{0}, v_{0}\right) \in\left(H^{2}(\Omega) \cap V\right)^{2}$ and $\left(u_{1}, v_{1}\right) \in V^{2}$ satisfying the compatibility conditions (2.21). Our conclusion follows by standard density arguments.

Using Lemmas 3.1 and 3.2, condition (1.12), and Young's inequality we get

$$
\begin{align*}
& \frac{d}{d t} \mathscr{L}(t) \leq N\left\{-\frac{\tau_{1} \beta_{1}}{2} \int_{\Gamma_{1}}\left|u_{t}\right|^{2} d \Gamma_{1}+\frac{\tau_{1} \beta_{1}}{2} k_{1}^{2}(t) \int_{\Gamma_{1}}\left|u_{0}\right|^{2} d \Gamma_{1}\right. \\
& +\frac{\tau_{1} \beta_{1}}{2} k_{1}^{\prime}(t) \int_{\Gamma_{1}}|u|^{2} d \Gamma_{1}-\frac{\tau_{1} \beta_{1}}{2} \int_{\Gamma_{1}} k_{1}^{\prime \prime} \square u d \Gamma_{1} \\
& -\frac{\tau_{2} \beta_{2}}{2} \int_{\Gamma_{1}}\left|v_{t}\right|^{2} d \Gamma_{1}+\frac{\tau_{2} \beta_{2}}{2} k_{2}^{2}(t) \int_{\Gamma_{1}}\left|v_{0}\right|^{2} d \Gamma_{1} \\
& \left.+\frac{\tau_{2} \beta_{2}}{2} k_{2}^{\prime}(t) \int_{\Gamma_{1}}|v|^{2} d \Gamma_{1}-\frac{\tau_{2} \beta_{2}}{2} \int_{\Gamma_{1}} k_{2}^{\prime \prime} \square v d \Gamma_{1}\right\} \\
& +\frac{1}{2} \int_{\Gamma_{1}} m \cdot v\left(\left|u_{t}\right|^{2}+\left|v_{t}\right|^{2}\right) d \Gamma_{1}-\theta \int_{\Omega}\left|u_{t}\right|^{2}+\left|v_{t}\right|^{2} d x \\
& -(1-\theta) \frac{\beta_{1}}{2} \int_{\Omega}|\nabla u|^{2} d x-(1-\theta) \frac{\beta_{2}}{2} \int_{\Omega}|\nabla v|^{2} d x \tag{3.23}\\
& -c \sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial v}{\partial x_{i}}-u\right|^{2} d x-\left(\frac{n \delta}{2}-\theta(2+\delta)\right) \int_{\Omega} F(v) d x \\
& +\frac{\epsilon c}{2} \int_{\Gamma_{1}}\left|\frac{\partial u}{\partial v}\right|^{2} d \Gamma_{1}+\frac{\epsilon}{2 \delta_{0}} \int_{\Gamma_{1}} m \cdot v|\nabla u|^{2} d \Gamma_{1} \\
& +\frac{c}{2 \epsilon} \int_{\Gamma_{1}}\left|\frac{\partial v}{\partial v}\right|^{2} d \Gamma_{1}+\frac{\epsilon}{2 \delta_{0}} \int_{\Gamma_{1}} m \cdot v|\nabla v|^{2} d \Gamma_{1} \\
& -\frac{1}{2} \int_{\Gamma_{1}} m \cdot v|\nabla u|^{2} d \Gamma_{1}-\frac{1}{2} \int_{\Gamma_{1}} m \cdot v|\nabla v|^{2} d \Gamma_{1} \text {, }
\end{align*}
$$

for any $\epsilon>0$. Choosing N large enough, fixing $\epsilon=\delta_{0}$, and using the inequalities

$$
\begin{align*}
& \int_{\Gamma_{1}}\left|\frac{\partial u}{\partial v}\right|^{2} d \Gamma_{1} \leq c \int_{\Gamma_{1}}\left|u_{t}\right|^{2}+k_{1}^{2}|u|^{2}+k_{1}(0)\left|k_{1}^{\prime}\right| \square u+k_{1}^{2}|u|^{2} d \Gamma_{1}, \\
& \int_{\Gamma_{1}}\left|\frac{\partial v}{\partial v}\right|^{2} d \Gamma_{1} \leq c \int_{\Gamma_{1}}\left|v_{t}\right|^{2}+k_{2}^{2}|v|^{2}+k_{2}(0)\left|k_{2}^{\prime}\right| \square v+k_{2}^{2}|v|^{2} d \Gamma_{1}, \tag{3.24}
\end{align*}
$$

we arrive to

$$
\begin{equation*}
\frac{d}{d t} \mathscr{L}(t) \leq-q_{2} E(t)+c R^{2}(t) E(0) \tag{3.25}
\end{equation*}
$$

where $R(t)=k_{1}(t)+k_{2}(t)$ and $q_{2}>0$ is a small constant. Here we have used

542 Decay rates for solutions of a Timoshenko system
assumptions (3.1) in order to obtain the following estimates:

$$
\begin{align*}
& -\frac{\tau_{1}}{2} \int_{\Gamma_{1}} k_{1}^{\prime \prime} \square u d \Gamma_{1} \leq c_{1} \int_{\Gamma_{1}} k_{1}^{\prime} \square u d \Gamma_{1}, \\
& -\frac{\tau_{2}}{2} \int_{\Gamma_{1}} k_{2}^{\prime \prime} \square v d \Gamma_{1} \leq c_{2} \int_{\Gamma_{1}} k_{2}^{\prime} \square v d \Gamma_{1}, \\
& \tag{3.26}\\
& \frac{\tau_{1}}{2} \int_{\Gamma_{1}} k_{1}^{\prime}|u|^{2} d \Gamma_{1} \leq-c_{3} \int_{\Gamma_{1}} k_{1}|u|^{2} d \Gamma_{1}, \\
& \frac{\tau_{2}}{2} \int_{\Gamma_{1}} k_{2}^{\prime}|v|^{2} d \Gamma_{1} \leq-c_{4} \int_{\Gamma_{1}} k_{2}|v|^{2} d \Gamma_{1},
\end{align*}
$$

for some boundary terms in (3.23). Finally, in view of (3.13) we conclude that

$$
\begin{equation*}
\frac{d}{d t} \mathscr{L}(t) \leq-\frac{q_{2}}{q_{1}} \mathscr{L}(t)+c R^{2}(t) E(0) \tag{3.27}
\end{equation*}
$$

From the exponential decay of k_{1}, k_{2}, and Lemma 3.3 there exist positive constants c and γ_{1} such that

$$
\begin{equation*}
\mathscr{L}(t) \leq\{\mathscr{L}(0)+c\} e^{-\gamma_{1} t}, \quad \forall t \geq 0 \tag{3.28}
\end{equation*}
$$

From inequality (3.13) our conclusion follows.

4. Polynomial rate of decay

Here our attention will be focused on the uniform rate of decay when the resolvent kernels k_{1} and k_{2} decay polynomially like $(1+t)^{-p}$. In this case we will show that the solution also decays polynomially with the same rate. Therefore, we will assume that the resolvent kernels k_{1} and k_{2} satisfy
$k_{i}(0)>0, \quad k_{i}^{\prime}(t) \leq-b_{1}\left[k_{i}(t)\right]^{1+1 / p}, \quad k_{i}^{\prime \prime}(t) \geq b_{2}\left[-k_{i}^{\prime}(t)\right]^{1+1 /(p+1)}, \quad$ for $i=1,2$,
for some $p>1$ and some positive constants b_{1} and b_{2}. The following lemmas will play an important role in the sequel.

Lemma 4.1. Let (u, v) be a solution of system (1.2)-(1.7) and denote by $\left(\phi_{1}, \phi_{2}\right)=$ (u, v). Then, for $p>1,0<r<1$, and $t \geq 0$,

$$
\begin{align*}
& \left(\int_{\Gamma_{1}}\left|k_{i}^{\prime}\right| \square \phi_{i} d \Gamma_{1}\right)^{(1+(1-r)(p+1)) /(1-r)(p+1)} \\
& \quad \leq 2^{1 /(1-r)(p+1)}\left(\left.\int_{0}^{t}\left|k_{i}^{\prime}(s)\right|^{r} d s| | \phi_{i}\right|_{L^{\infty}\left(0, t ; L^{2}\left(\Gamma_{1}\right)\right)} ^{2}\right)^{1 /(1-r)(p+1)} \tag{4.2}\\
& \quad \times \int_{\Gamma_{1}}\left|k_{i}^{\prime}\right|^{1+1 /(p+1)} \square \phi_{i} d \Gamma_{1}
\end{align*}
$$

while for $r=0$

$$
\begin{align*}
&\left(\int_{\Gamma_{1}}\left|k_{i}^{\prime}\right| \square \phi_{i} d \Gamma_{1}\right)^{(p+2) /(p+1)} \\
& \leq 2\left(\int_{0}^{t}\left\|\phi_{i}(s, \cdot)\right\|_{L^{2}\left(\Gamma_{1}\right)}^{2} d s+t\left\|\phi_{i}(s, \cdot)\right\|_{L^{2}\left(\Gamma_{1}\right)}^{2}\right)^{p+1} \tag{4.3}\\
& \times \int_{\Gamma_{1}}\left|k_{i}^{\prime}\right|^{1+1 /(p+1)} \square \phi_{i} d \Gamma_{1}, \quad \text { for } i=1,2 .
\end{align*}
$$

Proof. See [2].
Lemma 4.2. Let $f \geq 0$ be a differentiable function satisfying

$$
\begin{equation*}
f^{\prime}(t) \leq-\frac{c_{1}}{f(0)^{1 / \alpha}} f(t)^{1+1 / \alpha}+\frac{c_{2}}{(1+t)^{\beta}} f(0) \quad \text { for } t \geq 0 \tag{4.4}
\end{equation*}
$$

for some positive constants c_{1}, c_{2}, α, and β such that

$$
\begin{equation*}
\beta \geq \alpha+1 \tag{4.5}
\end{equation*}
$$

Then there exists a constant $c>0$ such that

$$
\begin{equation*}
f(t) \leq \frac{c}{(1+t)^{\alpha}} f(0) \quad \text { for } t \geq 0 \tag{4.6}
\end{equation*}
$$

Proof. See [2].
Theorem 4.3. Take $\left(u_{0}, v_{0}\right) \in V^{2}$ and $\left(u_{1}, v_{1}\right) \in\left[L^{2}(\Omega)\right]^{2}$. If the resolvent kernels k_{1} and k_{2} satisfy conditions (4.1), then there exists a positive constant c such that

$$
\begin{equation*}
E(t) \leq \frac{c}{(1+t)^{p+1}} E(0) . \tag{4.7}
\end{equation*}
$$

Proof. We will prove this result for strong solutions, that is, for solutions with initial data $\left(u_{0}, v_{0}\right) \in\left(H^{2}(\Omega) \cap V\right)^{2}$ and $\left(u_{1}, v_{1}\right) \in V^{2}$ satisfying the compatibility conditions (2.21). Our conclusion will follow by standard density arguments. We define the functional \mathscr{L} as in (3.12) therefore we have the equivalence relation given in (3.13) again. Combining Lemmas 3.1 and 3.2 we get

$$
\begin{align*}
\frac{d}{d t} \mathscr{L}(t) \leq-c_{1} & \left\{\int_{\Omega}\left|u_{t}\right|^{2}+|u|^{2}+|\nabla u|^{2}+\left|v_{t}\right|^{2}+|\nabla v|^{2}+F(v) d x\right. \\
& \left.+\sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial v}{\partial x_{i}}-u\right|^{2} d x\right\}-N\left\{\int_{\Gamma_{1}} k_{1}^{\prime \prime} \square u+k_{2}^{\prime \prime} \square v d \Gamma_{1}\right\}+c_{2} R^{2}(t) E(0) \tag{4.8}
\end{align*}
$$

544 Decay rates for solutions of a Timoshenko system
for some positive constants c_{1} and c_{2}. Using hypothesis (4.1) we obtain

$$
\begin{align*}
\frac{d}{d t} \mathscr{L}(t) \leq & -c_{1}\left\{\int_{\Omega}\left|u_{t}\right|^{2}+|u|^{2}+|\nabla u|^{2}+\left|v_{t}\right|^{2}+|\nabla v|^{2}+F(v) d x\right. \\
& \left.+\sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial v}{\partial x_{i}}-u\right|^{2} d x\right\} \tag{4.9}\\
& -N\left\{\int_{\Gamma_{1}}\left[-k_{1}^{\prime}\right]^{1+1 /(p+1)} \square u d \Gamma_{1}+\int_{\Gamma_{1}}\left[-k_{2}^{\prime}\right]^{1+1 /(p+1)} \square v d \Gamma_{1}\right\} \\
& +c_{2} R^{2}(t) E(0) .
\end{align*}
$$

Denote by

$$
\begin{align*}
\mathcal{N}(t):= & \int_{\Omega}\left|u_{t}\right|^{2}+|u|^{2}+|\nabla u|^{2}+\left|v_{t}\right|^{2}+|\nabla v|^{2}+F(v) d x \\
& +\sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial v}{\partial x_{i}}-u\right|^{2} d x+k_{1}(t) \int_{\Gamma_{1}}|u|^{2} d \Gamma_{1}+k_{2}(t) \int_{\Gamma_{1}}|v|^{2} d \Gamma_{1} . \tag{4.10}
\end{align*}
$$

Using the following estimates:

$$
\begin{align*}
& k_{1}(t) \int_{\Gamma_{1}}|u|^{2} d \Gamma_{1} \leq c \int_{\Omega}|\nabla u|^{2} d x, \\
& k_{2}(t) \int_{\Gamma_{1}}|v|^{2} d \Gamma_{1} \leq c \int_{\Omega}|\nabla v|^{2} d x, \tag{4.11}
\end{align*}
$$

inequality (4.9) can be written as

$$
\begin{align*}
\frac{d}{d t} \mathscr{L}(t) \leq & -c_{1} \mathcal{N}(t)+c_{2} R^{2}(t) E(0) \\
& -N\left\{\int_{\Gamma_{1}}\left[-k_{1}^{\prime}\right]^{1+1 /(p+1)} \square u d \Gamma_{1}+\int_{\Gamma_{1}}\left[-k_{2}^{\prime}\right]^{1+1 /(p+1)} \square v d \Gamma_{1}\right\} . \tag{4.12}
\end{align*}
$$

Fix $0<r<1$ such that $1 /(p+1)<r<p /(p+1)$. Under this condition we have

$$
\begin{equation*}
\int_{0}^{\infty}\left|k_{i}^{\prime}\right|^{r} \leq c \int_{0}^{\infty} \frac{1}{(1+t)^{r(p+1)}}<\infty \quad \text { for } i=1,2 \tag{4.13}
\end{equation*}
$$

Using this estimate and Lemma 4.1 we get

$$
\begin{align*}
& \int_{\Gamma_{1}}\left[-k_{1}^{\prime}\right]^{1+1 /(p+1)} \square u d \Gamma_{1} \geq \frac{c}{E(0)^{1 /(1-r)(p+1)}}\left(\int_{\Gamma_{1}}\left[-k_{1}^{\prime}\right] \square u d \Gamma_{1}\right)^{1+1 /(1-r)(p+1)}, \\
& \int_{\Gamma_{1}}\left[-k_{2}^{\prime}\right]^{1+1 /(p+1)} \square v d \Gamma_{1} \geq \frac{c}{E(0)^{1 /(1-r)(p+1)}}\left(\int_{\Gamma_{1}}\left[-k_{2}^{\prime}\right] \square v d \Gamma_{1}\right)^{1+1 /(1-r)(p+1)} \tag{4.14}
\end{align*}
$$

On the other hand, since the energy is bounded we have

$$
\begin{equation*}
\mathcal{N}(t)^{1+1 /(1-r)(p+1)} \leq c E(0)^{1 /(1-r)(p+1)} \mathcal{N}(t) \tag{4.15}
\end{equation*}
$$

Substitution of (4.14) and (4.15) into (4.12) we arrive to

$$
\begin{align*}
& \frac{d}{d t} \mathscr{L}(t) \leq-\frac{c}{E(0)^{1 /(1-r)(p+1)}} \mathcal{N}(t)^{1+1 /(1-r)(p+1)}+c R^{2}(t) E(0) \\
&- \frac{c}{E(0)^{1 /(1-r)(p+1)}}\left\{\left(\int_{\Gamma_{1}}\left[-k_{1}^{\prime}\right] \square u d \Gamma_{1}\right)^{1+1 /(1-r)(p+1)}\right. \tag{4.16}\\
&\left.+\left(\int_{\Gamma_{1}}\left[-k_{2}^{\prime}\right] \square v d \Gamma_{1}\right)^{1+1 /(1-r)(p+1)}\right\} .
\end{align*}
$$

Taking into account inequality (3.13) we conclude that

$$
\begin{equation*}
\frac{d}{d t} \mathscr{L}(t) \leq-\frac{c}{\mathscr{L}(0)^{1 /(1-r)(p+1)}} \mathscr{L}(t)^{1+1 /(1-r)(p+1)}+c R^{2}(t) E(0) . \tag{4.17}
\end{equation*}
$$

Therefore, from Lemma 4.2 we conclude that

$$
\begin{equation*}
\mathscr{L}(t) \leq \frac{c}{(1+t)^{(1-r)(p+1)}} \mathscr{L}(0) . \tag{4.18}
\end{equation*}
$$

Since $(1-r)(p+1)>1$ we get, for $t \geq 0$, the following estimates:

$$
\begin{gather*}
t\|u\|_{L^{2}\left(\Gamma_{1}\right)}+t\|v\|_{L^{2}\left(\Gamma_{1}\right)} \leq t \mathscr{L}(t)<\infty \\
\int_{0}^{t}\|u\|_{L^{2}\left(\Gamma_{1}\right)}+\|v\|_{L^{2}\left(\Gamma_{1}\right)} \leq c \int_{0}^{t} \mathscr{L}(t)<\infty \tag{4.19}
\end{gather*}
$$

Under this condition applying Lemma 4.1 for $r=0$ we get

$$
\begin{align*}
& \int_{\Gamma_{1}}\left[-k_{1}^{\prime}\right]^{1+1 /(p+1)} \square u d \Gamma_{1} \geq \frac{c}{E(0)^{1 /(p+1)}}\left(\int_{\Gamma_{1}}\left[-k_{1}^{\prime}\right] u d \Gamma_{1}\right)^{1+1 /(p+1)}, \\
& \int_{\Gamma_{1}}\left[-k_{2}^{\prime}\right]^{1+1 /(p+1)} \square v d \Gamma_{1} \geq \frac{c}{E(0)^{1 /(p+1)}}\left(\int_{\Gamma_{1}}\left[-k_{2}^{\prime}\right] v d \Gamma_{1}\right)^{1+1 /(p+1)}, \tag{4.20}
\end{align*}
$$

Using these inequalities instead of (4.14) and reasoning in the same way as above, we conclude that

$$
\begin{equation*}
\frac{d}{d t} \mathscr{L}(t) \leq-\frac{c}{\mathscr{L}(0)^{1 /(p+1)}} \mathscr{L}(t)^{1+1 /(p+1)}+c R^{2}(t) E(0) . \tag{4.21}
\end{equation*}
$$

Applying Lemma 4.2 again, we obtain

$$
\begin{equation*}
\mathscr{L}(t) \leq \frac{c}{(1+t)^{p+1}} \mathscr{L}(0) \tag{4.22}
\end{equation*}
$$

Finally, from (3.13) we conclude

$$
\begin{equation*}
E(t) \leq \frac{c}{(1+t)^{p+1}} E(0) \tag{4.23}
\end{equation*}
$$

which completes the present proof.

Acknowledgment

The author expresses the appreciation to the referee for his valued suggestions which improved this paper.

References

[1] M. Ciarletta, A differential problem for heat equation with a boundary condition with memory, Appl. Math. Lett. 10 (1997), no. 1, 95-101.
[2] M. de Lima Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary, Electron. J. Differential Equations 2001 (2001), no. 73, 1-11.
[3] M. Fabrizio and A. Morro, A boundary condition with memory in electromagnetism, Arch. Rational Mech. Anal. 136 (1996), no. 4, 359-381.
[4] J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim. 25 (1987), no. 6, 1417-1429.
[5] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969 (French).
[6] Z. Liu and C. Peng, Exponential stability of a viscoelastic Timoshenko beam, Adv. Math. Sci. Appl. 8 (1998), no. 1, 343-351.
[7] J. E. Muñoz Rivera and D. Andrade, A boundary condition with memory in elasticity, Appl. Math. Lett. 13 (2000), no. 2, 115-121.
[8] , Exponential decay of non-linear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci. 23 (2000), no. 1, 41-61.
[9] T. H. Qin, Global solvability of nonlinear wave equation with a viscoelastic boundary condition, Chinese Ann. Math. Ser. B 14 (1993), no. 3, 335-346.
[10] R. Racke, Lectures on Nonlinear Evolution Equations. Initial Value Problems, Aspects of Mathematics, vol. E19, Friedr. Vieweg \& Sohn, Braunschweig, 1992.
[11] D.-H. Shi and D.-X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback, IMA J. Math. Control Inform. 18 (2001), no. 3, 395-403.
[12] D.-H. Shi, S. H. Hou, and D.-X. Feng, Feedback stabilization of a Timoshenko beam with an end mass, Internat. J. Control 69 (1998), no. 2, 285-300.
[13] S. Timoshenko, Vibration Problems in Engineering, Van Nostrand, New York, 1955.
Mauro de Lima Santos: Department of Mathematics, Federal University of Pará, Campus Universitario do Guamá, Rua Augusto Corrêa 01, Cep 66075-110, Pará, Brazil

E-mail address: 1s@ufpa.br

