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Abstract. We obtain results of existence of weak solutions in the Hopf
sense of the initial-boundary value problem for the generalized Navier-Stokes
equations containing perturbations of retarded type. The degree theory for
maps A − g, where A is invertible and g is A-condensing, is used.

Various problems for the Navier-Stokes equations describing the motion of
the Newton fluid, and its generalizations for nonlinearly-viscous and visco-
elastic fluids, have been developed in many papers. We mention here some
of the papers which contain surveys on this subject, different approaches,
constructions, and methods of investigation: [1], [8], [10]-[16].
Here we consider the problem of the existence of weak solutions, in the

Hopf sense, of the initial-boundary value problem for equations of the Navier-
Stokes type. These equations include the ones describing the movement of
nonlinear-viscous and viscous-elastic fluids. We reduce the above problem
to an evolution equation in the space of functionals, and then to the equiv-
alent operator equation. The method of this paper consists of constructing
operator equations which approximate the original ones, and then investigat-
ing their solvability by means of infinite-dimensional degree theory. As we
know, the Galerkin-Faedo method or iteration methods have already been
used instead of the degree theory for the classical Navier-Stokes equations
and for some their generalizations (see, for example, [1], [10], [12]-[15]). The
solution of the original problem may be obtained by passage to the limit
in the set of solutions of approximating equations. The results of our paper
on the existence of weak solutions generalize the well known ones (see, for
example, [2], [10], [13], [15]).
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This paper consists of four sections.
In the first section we introduce the main notations and notions, set up

the problem of weak solutions of the initial-boundary value problem for gen-
eralized Navier-Stokes equations, and formulate our main results of existence
and uniqueness of weak solutions.
In the second section the problem of weak solutions is reduced to the

investigation of an equivalent operator equation. Then we construct the
approximating equations and investigate the properties of the operators in-
volved.
In the third section a priori estimates of solutions of approximating equa-

tions are established and a proposition on the existence of solutions of such
equations is obtained.
In the last section the possibility of the limit procedure in the sequence of

solutions of approximating equations is established. We present two different
approaches to proven the convergence and, as a corollary, we get propositions
for the existence of weak solutions of the initial-boundary value problem for
some cases of the generalized Navier-Stokes equations. We consider the
uniqueness of solutions for dimension n = 2 as well.
It should be noted that our interest in this problem arose when Professor

P. E. Sobolevskii posed to one of the authors the question of the appli-
cability of topological methods to the initial-boundary value problems in
hydrodynamics. The authors are grateful to P. E. Sobolevskii , and Yu. A.
Agranovich for discussions on some problems in hydrodynamics.

1. Introduction. Statement of the problem. Main results

1.1. Notations. Let Ω be a bounded domain in R
n with the boundary ∂Ω

of class C2. For T > 0, we denote by QT the cylinder (0, T ) × Ω. The bar
over Ω, QT means closure.
We consider different spaces of functions on Ω with values in R

n:
L2(Ω) denotes the space of square integrable functions on Ω. The
scalar product of functions u and v from L2(Ω) is defined by (u, v) =∫
Ω
u(x) · v(x) dx; the norm of the function u in L2(Ω) will be denoted

by ‖u‖L2(Ω);
W 1

2 (Ω) denotes the space of functions which belong together with their
first order partial derivatives to L2(Ω). A norm of the function v from
W 1

2 (Ω) is defined by the following equality

‖v‖W 1
2 (Ω)
= (

n∑
i=1

∥∥∥∥ ∂v∂xi

∥∥∥∥
2

L2(Ω)
+ ‖v‖2L2(Ω))

1
2 ;

D(Ω) denotes the space of functions of class C∞ with a compact support
in Ω.◦
W 1

2 (Ω) denotes the closure of the set D(Ω) with respect to the norm
of the space W 1

2 (Ω).
Denote by
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V = {v ∈ D(Ω) : div v = 0} the set of solenoidal functions;
H the closure of V with respect to the norm of the space L2(Ω);
V the closure of V with respect to the norm of the space W 1

2 (Ω).

Norms and scalar products in the spaces H and V are defined by the same
way as in spaces L2(Ω) and W 1

2 (Ω) respectively.
Also in the space V the symbol of another scalar product will be used

((u, v)) =
n∑
i=1
( ∂u∂xi

, ∂v
∂xi
). And the norm generated by this scalar product in

the space V is equivalent to the norm induced from the space W 1
2 (Ω).

Let V ∗ denote the dual space to V , and 〈h, v〉 means action of the func-
tional h from V ∗ to the element v from V .
Also we consider spaces of functions v : [a, b]→ X with values in a Banach

space X. In what follows,

Lα((a, b), X) denotes the space of functions which are integrable with
the power α ≥ 1. The norm of a function v from Lα((a, b), X) is defined
by the equality

‖v‖Lα((a,b),X) =


 b∫
a

‖v(t)‖αXdt




1/α

.

L∞((a, b), X) denotes the space of essentially bounded functions with
the norm

‖v‖L∞((a,b),X) = vrai sup
t∈(a,b)

‖v(t)‖X ;

C([a, b], X) denotes the space of continuous functions with the norm

‖v‖C([a,b],X) = max
[a,b]

‖v(t)‖X .

The spaces described above are Banach ones. In the case, when the interval
[a, b] is clear from a context, the notation [a, b] is omitted: Lα(X), Lα(X),
C(X). A dual space for a space Lα((a, b), X) is the space Lα

′
((a, b), X∗),

where 1
α +

1
α′ = 1.

For vector-function v from Lα((0, T ), V ) we denote:

by vi the coordinate functions;

by ∂v
∂xi

, ∂v∂t the first order partial derivatives;

by D1v =
(
∂vi
∂xj

)
.

Let us introduce the following notations. Let

X = L2((0, T ), V ) with the norm ‖v‖X = ‖v‖L2((0,T ),V ) for v ∈ X,

X∗ = L2((0, T ), V ∗) with the norm ‖f‖X∗ = ‖f‖L2((0,T ),V ∗) for f ∈ X∗,

W = {v; v ∈ X, v′ ∈ X∗} with the norm ‖v‖W = ‖v‖X + ‖v′‖X∗ .
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1.2. The statement of the problem. The equations with perturbations
of retarded type arise in mechanics for visco-elastic materials. By the defi-
nition (see [5]), ”these materials are such that they have ”memory” in sense
that at the moment t the tension state depends on all the deformations to
which the material have been undergone”.
If we reject the proportional dependence

D = µE
between the stress tensor D and the strain velocity tensor E we obtain the
non-Newton or real fluids.
We would like to point out some mathematical models describing motion

of such fluids.
In the paper [13] Litvinov V.G. investigated equations of fluid motion with

relations

D = ϕ(I2)E , E = (εij), I22 =
n∑

i,j=1
ε2ij ,

D = ϕ1(I2)E + ϕ2(I2)E2.

The Oldroid relation

λ1
dD

dt
+D = ν0(E + χ1

dE
dt
)

leads to investigation of fluids with ”memory”. Solving the equation con-
cerning D we obtain

D = ν0E + χ1 − λ1
ν0

t∫
0

e
− t−s

λ1 E ds.

Substituting the expression for D into the Cauchy form of the motion
equation

ρ(
∂v

∂t
+

n∑
i=1

vi
∂v

∂xi
) = −grad p+DivD + F

and transforming the equation we obtain

∂v

∂t
+

n∑
i=1

vi
∂v

∂xi
− µ0∆v − C

t∫
0

e− t−s
λ ∆v ds+ grad p = f, div v = 0,

where the vector-function v is connected with the tensor (εij) as follows:

εij =
1
2

(
∂vi
∂xj
+

∂vj
∂xi

)
, i, j = 1, n.

It is possible to obtain a model of nonlinear-viscous fluid choosing the
nonlinear relation between D and E in the form

λ1
dD

dt
+D = ϕ1(I2)E + χ1

d

dt
[ψ2(I2)E ].
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Expressing D from this relation

D = χ1ψ2(I2)E +
t∫

0

e
− t−s

λ1 [ϕ1(I2)− χ1

λ1
ψ2(I2)]E ds

and substituting it into the motion equation we obtain

∂v

∂t
+

n∑
i=1

vi
∂v

∂xi
− µ0∆v − Div[2µ1(I2)E ]−

t∫
0

e
− t−s

λ1 Div[2µ2(I2)E ]ds

+ grad p = f, div v = 0, (x, t) ∈ QT .

The existence results for strong solutions in the cases n = 2, 3 can be
found in [1].
The phenomenological theory of linear visco-elastic fluids with a finite

number of discretely distributed times of relaxation and times of retardation
uses the relations(

1 +
L∑
l=1

λl
dl

dtl

)
D = 2ν

(
1 +

M∑
m=1
æmν−1 dm

dtm

)
E , ν, λl,æm > 0.

For L =M and under additional conditions for coefficients {λl}, ν and {æm}
(see [8]) the equation of the fluid motion has the following form:

∂v

∂t
+

n∑
i=1

vi
∂v

∂xi
− µ∆v −

L∑
l=1

β
(0)
l

t∫
0

eαl(t−s)∆v(s)ds+ grad p = f,

(x, t) ∈ QT , div v = 0.

In this paper we investigate the above mentioned classes of equations of
visco-elastic and nonlinear-viscous fluid motions basing on approximations,
using of topological methods for the proof of solvability of approximating
problems, and the further limit procedure. It seems that this approach may
be useful not only for the solvability but also for the settlement of other
questions.
Consider the following initial-boundary value problem for the vector-

function v : Q̄T → R
n, v = (v1, . . . , vn), and for the scalar function

p : Q̄T → R:

(1.1)

∂v

∂t
− µ0∆v +

n∑
i=1

vi
∂v

∂xi
− Div[2µ1(I2(v))E(v)]

−
t∫

0

L(t, s)Div[2µ2(I2(v))E(v)]ds

−
t∫

0

Div a(t, s, x, v(s), D1v(s))ds

+ grad p = f(t, x), (t, x) ∈ QT .
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div v(t, x) = 0, (t, x) ∈ QT ,(1.2)

v(t, x) = 0, x ∈ ∂Ω, t ∈ [0, T ],(1.3)

v(0, x) = v0(x), x ∈ Ω,(1.4)

where µ0 > 0 is a constant and f : QT → R
n, v0 : Ω → R

n are given
functions. Here, and below, E(v) is a matrix function with components

εij(v) =
1
2

(
∂vi
∂xj
+

∂vj
∂xi

)
for i, j = 1, n and I2(v) =


 n∑
i,j=1

[εij(v)]2



1/2

.

Suppose that the scalar functions µi(s), i = 1, 2, are continuously differ-
entiable on [0,+∞) and satisfy the following conditions:
M1) 0 ≤ µi(s) ≤ M for all s ∈ [0,+∞);
M2) sµ′

i(s) ≤ M for all s ∈ [0,+∞), and if µ′
i(s) < 0, then −sµ′

i(s) ≤ µi(s).
Note that restrictions for µi, i = 1, 2, mentioned above, may be found in

[1], [14].
The essentially bounded function L(t, s) is defined on the set

Td = {(t, s) : t ∈ [0, T ], 0 ≤ s ≤ t}.
The matrix function a(t, s, x, v, w) is defined for all t ∈ [0, T ], 0 ≤ s ≤

t, x ∈ Ω, v ∈ R
n, w ∈ R

n2
and satisfies either the conditions:

A1) the functions aij (components of a) are measurable as functions of t, s, x
for all v, w and continuous as functions of v, w for almost all t, s, x;

A2) |aij(t, s, x, v, 0)| ≤ L1(t, s, x) + L2(t, s, x)|v|, i, j = 1, n, where L2 is an
essentially bounded function and L1 ∈ L2(Qd) for Qd = Td × Ω;

A3) |aij(t, s, x, v, w) − aij(t, s, x, v, w̄)| ≤ L2(t, s, x)|w − w̄| for all possible
t, s, x, v and w, w̄ ∈ R

n2
;

or the conditions A1) and
A′

2) |aij(t, s, x, v, w)− aij(t, s, x, v̄, w̄)| ≤ L2(t, s, x) (|v − v̄| +
+|w − w̄|) for all t, s, x ∈ Qd, v, v̄ ∈ R

n, w, w̄ ∈ Rn2
, i, j = 1, n,

where L2(t, s, x) is an essentially-boundary function.
We shall suppose that n ≤ 4 and v0 ∈ H, f ∈ L2((0, T ), H).

Definition 1.1. A function v ∈ L2((0, T ), V ) with v′ ∈ L1((0, T ), V ∗) is
said to be a weak solution of the problem (1.1)-(1.4) if for all h ∈ V

d

dt

∫
Ω

v(t, x)h(x)dx+ µ0

n∑
i=1

∫
Ω

∂v

∂xi
· ∂h

∂xi
dx −

n∑
i,j=1

∫
Ω

vivj
∂hj
∂xi

dx

+
∫
Ω

2µ1(I2(v))E(v) : E(h)dx+
t∫

0

L(t, s)
∫
Ω

2µ2(I2(v))E(v) : E(h)dx ds



TOPOLOGICAL DEGREE AND NAVIER-STOKES EQUATIONS 7

+
t∫

0

∫
Ω

a(t, s, x, v,D1v) : D1h dx ds =
∫
Ω

f(t, x)h(x)dx(1.5)

and

v(0) = v0,(1.6)

where a : D1h =
n∑

i,j=1
aij · ∂hi

∂xj
and E(v) : E(h) =

n∑
i,j=1

εij(v) · εij(h).
Let us point out that the integral equality (1.5) is obtained from (1.1) by

scalar multiplication in L2(Ω) of each term of (1.1) with h and some simple
transformations.

1.3. Statements of main results. Now we formulate the main results for
the existence and uniqueness of weak solutions of problem (1.1)-(1.4). Proofs
of these results can be found in the fourth section.

Theorem 4.3. Let n = 2 and the conditions M1) − M2), A1) − A3) hold.
Then for all f ∈ L2((0, T ), H) and v0 ∈ H there exists at least one weak
solution v ∈ W of problem (1.1)-(1.4) satisfying the following inequalities

max
t∈[0,T ]

‖v(t)‖H +
n∑
i=1

∥∥∥∥ ∂v∂xi

∥∥∥∥
L2(QT )

≤ C(1 + ‖f‖L2((0,T ),H) + ‖v0‖H),

‖v′‖L2((0,T ),V ∗) ≤ C(1 + ‖f‖L2((0,T ),H) + ‖v0‖H)2

with C independent of v, f, v0.

Theorem 4.4. Let n = 2 and the conditions M1) − M2), A1) − A′
2) hold.

Then for all f ∈ L2((0, T ), H), v0 ∈ H the weak solution v ∈ W of problem
(1.1)-(1.4) is unique.
In the case 2 ≤ n ≤ 4 we establish existence of a weak solution for

equations of the form:

(1.7)
∂v

∂t
− µ0∆v +

n∑
i=1

vi
∂v

∂xi
−

t∫
0

Div(a(t, s, x, v(s, x), D1v(s, x))ds

+ grad p = f, (t, x) ∈ QT ,

where the elements of the matrix-function a are defined by

aij(t, s, x, v(s, x), D1v(s, x))

= b(i, j; t, s, x) : D1v(s, x) + c(i, j; t, s, x) · v(s, x).
Theorem 4.5. Let 2 ≤ n ≤ 4 and assume that the matrix functions b(i, j, ·)

and the vector functions c(i, j, ·) are essentially bounded for i, j = 1, n. Then
for all f ∈ L2((0, T ), H) and v0 ∈ H there exists at least one weak solution

v ∈ L2((0, T ), V ) with v′ ∈ L1((0, T ), V ∗)
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of problem (1.7), (1.2)-(1.4), which satisfies the following inequalities:

max
t∈[0,T ]

‖v(t)‖H +
n∑
i=1

∥∥∥∥ ∂v∂xi

∥∥∥∥
L2(QT )

≤ C(1 + ‖f‖L2((0,T ),H) + ‖v0‖H),

‖v′‖L1((0,T ),V ∗) ≤ C(1 + ‖f‖L2((0,T ),H) + ‖v0‖H)2
with C independent of v, f and v0.

2. Operator and approximating equations

In this section we introduce operator equations which are equivalent to
the problem of weak solutions of (1.5)-(1.6), and then we construct a fam-
ily of approximating equations and investigate properties of the operators
involved.

2.1. The operator equation which is equivalent to the weak solu-
tions problem. Let v be a weak solution of the problem (1.1)-(1.4). Then
the function v satisfies (1.5) for all h ∈ V . Taking into account identifications

V ⊆ H ≡ H∗ ⊂ V ∗,

consider each term of (1.5) as the action of some functional on the function
h. Thus ∫

Ω

f · h dx = (f, h) = 〈f, h〉 for h ∈ V,

where f is considered as an element of the space L2((0, T ), V ∗). Suppose for
all t ∈ [0, T ]

n∑
i=1

∫
Ω

∂v

∂xi
· ∂h

∂xi
dx = 〈Av, h〉,

∫
Ω

2µi(I2(v))E(v) : E(h)dx = 〈Bi(v), h〉, i = 1, 2,

∫
Ω

a(t, s, x, v,D1v) : D1h dx = −〈G(t, s, v), h〉,

n∑
i,j=1

∫
Ω

vivj
∂hj
∂xi

dx = 〈K(v), h〉,

d

dt

∫
Ω

v · h dx =
d

dt
〈v, h〉 = 〈v′, h〉.

The last equality follows from [15, Lemma 1.1.]. Taking into account the
above notations we can rewrite identity (1.5) in the form:

(2.1)

〈v′, h〉+ µ0〈Av, h〉 − 〈K(v), h〉+ 〈B1(v), h〉

+
t∫

0

L(t, s)〈B2(v(s)), h〉ds −
t∫

0

〈G(t, s, v(s)), h〉ds = 〈f, h〉
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for ∀h ∈ V and for almost all t ∈ [0, T ].
Lemma 2.1. Let n ≤ 4 and the conditions M1)− M2), A1)− A3) hold.

Then
1) for every function v ∈ L2((0, T ), V ) functions Av, Bi(v), i = 1, 2,

C(v) =
t∫
0

L(t, s)B2(v(s))ds and Q(v) =
t∫
0
G(t, s, v(s))ds belong to the space

L2((0, T ), V ∗); G(t, s, v(s)) belongs to the space L2(Td, V ∗); K(v) belongs to
the space L1((0, T ), V ∗);
2) operators A, B1, B2, C, Q : X → X∗ and K : X → L1((0, T ), V ∗) are
continuous;
3) the following estimates are valid:

‖Av‖X∗ ≤ C(1 + ‖v‖X),

‖Bi(v)‖X∗ ≤ C(1 + ‖v‖X), i = 1, 2,

‖C(v)‖X∗ ≤ C(1 + ‖v‖X),(2.2)

‖Q(v)‖X∗ ≤ C(1 + ‖v‖X),
‖K(v)‖L1((0,T ),V ∗) ≤ C‖v‖2X ,

for all v ∈ X, and C is a constant depending only on characteristic constants
and functions included in conditions A1)− A3), M1)− M2).

Proof. 1) Consider the function G(t, s, v(s)). By definition

〈G(t, s, v(s)), h〉 = −
∫
Ω

a(t, s, x, v(s, x), D1v(s, x)) : D1h(x)dx

for every h ∈ V . Therefore

‖G(t, s, v(s))‖V ∗ ≤ ‖a(t, s, x, v(s, x), D1v(s, x))‖H

≤ ‖L1(t, s, x)‖H + ‖L2‖L∞(Qd)‖v‖H + ‖L2‖L∞(Qd)‖D1v‖H
by conditions A2)− A3). We rewrite the inequality in the form

‖G(t, s, v(s))‖V ∗ ≤ ‖L1(t, s, ·)‖H + ‖L2(t, s, ·)‖L∞(Ω) · ‖v(s)‖V
with some constant C. Note that functions ‖L1‖H and ‖v‖V are square
integrable on Td and, hence, the function G(t, s, v(s)) belongs to L2(Td, V ∗).
Then

‖
t∫
0
G(t, s, v(s))ds‖V ∗ ≤

t∫
0

‖G(t, s, v(s))‖V ∗ds

≤
t∫
0
(‖L1(t, s, x)‖H + C‖v(s)‖V )ds ≤

t∫
0

‖L1(t, s, x)‖Hds+ C‖v‖X .
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By assumption A2), the right-hand side of the inequality is square integrable

in the variable t. Hence, the function Q(v) =
t∫
0
G(t, s, v(s))ds belongs to the

space L2((0, T ), V ∗) and

‖Q(v)‖X∗ ≤

 T∫

0

‖
t∫

0

G(t, s, v(s))ds‖2V ∗dt




1/2

≤ C(1 + ‖v‖X),

where C depends only on ‖L1‖L2(Qd) and ‖L2‖L∞(Qd).
2) To prove the continuity of the map

G : X → L2(Td, V ∗), v �→ G(t, s, v(s)),

it is sufficient to show the continuity of the map

a : X → L2(Qd), v �→ a(t, s, x, v(s, x), D1v(s, x)).

It is known [9] that under assumptions A1)− A3) the Nemytskii operator a
is continuous. Hence, the map G is continuous too. Thus, Q is continuous as
a composition of two continuous maps, namely, G and the integral operator.
By similar arguments one can check that the definition is well-defined,

prove that the maps A, B1, B2, C are continuous and obtain the estimates
for them.
3) Consider the function K(v). By definition,

〈K(v), h〉 =
n∑

i,j=1

∫
Ω

vivj
∂hj
∂xi

dx.

Therefore ‖K(v)‖V ∗ ≤ C max
ij

‖vivj‖H ≤ C‖v‖2L4(Ω). By Sobolev’s embed-

ding theorem [6], we have the continuous embedding V ⊂ L4(Ω) when n ≤ 4
and, hence,

‖v‖L4(Ω) ≤ C‖v‖V and ‖K(v)‖V ∗ ≤ C‖v‖2V .
Thus, ‖K(v)‖L1((0,T ),V ∗) ≤ C‖v‖2X . The continuity of K follows from the
continuity of the embedding X ⊂ L2((0, T ), L4(Ω)) and the continuity of
the Nemytskii operators

kij : L2((0, T ), L4(Ω))→ L1((0, T ), L2(Ω)), kij(v) = vivj .

By [6, Theorem 8],
t∫

0

L(t, s)〈B2(v(s)), h〉ds =
〈 t∫

0

L(t, s)B2(v(s))ds, h

〉

and
t∫

0

〈G(t, s, v(s)), h〉ds = 〈
t∫

0

G(t, s, v(s))ds, h〉.
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Hence, applying lemma 2.1, we rewrite the equality (2.1) in the form:

(2.3)

v′ + µ0Av − K(v) +B1(v) +
t∫

0

L(t, s)B2(v(s))ds

−
t∫

0

G(t, s, v(s))ds = f.

It follows that every weak solution of problem (1.1)-(1.4) is a solution of
the operator equation (2.3) with

v(0) = v0.(2.4)

Repeating arguments ([15], p. 226), it is easy to show that the equality (2.4)
makes sense and every solution of problem (2.3)-(2.4) is a weak solution of
problem (1.1)-(1.4).

2.2. Approximating equations. To investigate the solvability of the oper-
ator equation (2.3) we introduce (following [2], [14]) nonlinear approximating
equations.
We replace the nonlinear term

n∑
i=1

vi
∂v

∂xi

in (1.1) by the term

n∑
i=1

∂

∂xi

(
viv

1 + ε|v|2
)
,

with ε > 0, and obtain the equation

(1.1ε)

∂v

∂t
− µ0∆v +

n∑
i=1

∂

∂xi

(
viv

1 + ε|v|2
)

− Div[2µ1(I2(v))E(v)]

−
t∫

0

L(t, s)Div[2µ2(I2(v))E(v)]ds

−
t∫

0

Div a(t, s, x, v(s, x), D1v(s, x))ds

+ grad p = f(t, x), (x, t) ∈ QT .
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Repeating above arguments for equation (1.1ε) instead of (1.1), we obtain
that the weak solutions of problem (1.1ε)− (1.4) are solutions of the approx-
imating operator equation

(2.3ε)

v′ + µ0Av − Dε(v) +B1(v) +
t∫

0

L(t, s)B2(v(s))ds

−
t∫

0

G(t, s, v(s))ds = f, ε > 0,

with v(0) = v0. And vice versa, any solution of problem (2.3ε), (2.4) is a
weak solution of problem (1.1ε)− (1.4).
The functional Dε(v) used in the equality (2.3ε) is defined by

n∑
i,j=1

∫
Ω

vivj
1 + ε|v|2 · ∂hj

∂xi
dx = 〈Dε(v), h〉, h ∈ V.

Since ∣∣∣∣ vivj
1 + ε|v|2

∣∣∣∣ ≤ 1ε
and

‖Dε(v)‖V ∗ ≤ Cmax
i,j

∥∥∥∥ vivj
1 + ε|v|2

∥∥∥∥
H

,

we get

‖Dε(v)‖V ∗ ≤ C

ε
.

Hence, Dε(v) ∈ L∞((0, T ), V ∗) and

‖Dε(v)‖X∗ ≤ C

ε
.(2.5)

Moreover, the map Dε : X → X∗ is continuous since it is a Nemytskii
operator.
Note that, for v ∈ X, all the terms in (2.3ε) (but the first one) belong to

the space X∗. Therefore, for a solution v of (2.3ε) we get v′ ∈ X∗. Hence,
any solution belongs to the space W = {v : v ∈ X, v′ ∈ X∗}. It is known
[6, Theorem 1.16] that the space W is Banach and the embedding W ⊂
C([0, T ], H) is continuous [6, Theorem 1.17]. Thus, the operator v �→ v |t=0
is well defined on W , takes values in H and is continuous.
Let us introduce the following notations.
A :W → X∗ × H, A(v) = (v′ + µ0Av +B1(v) + C(v), v |t=0);
g :W ⊆ X → X∗ × H, g(v) = (Q(v), 0),
Kε :W ⊂ X → X∗ × H, Kε(v) = (Dε(v), 0).
It is easy to see that problem (2.3ε), (2.4) is equivalent to the operator

equation

(2.6ε) A(v)− Kε(v)− g(v) = (f, v0).

It follows that the problem of weak solutions of (1.1ε) − (1.4) is equivalent
to the problem of the solvability of the operator equation (2.6ε).
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We shall now investigate the properties of the operators A, Kε and g
appearing in (2.6ε).

2.3. Properties of the operator A. W first study the properties of the
map A. Then we show that A is an invertible map and its inverse A−1 is a
contraction.

Lemma 2.2. If the functions µi(s) satisfy the assumptions M1)− M2),
then, for all u, v ∈ V ,

〈Bi(u)− Bi(v), u − v〉 ≥ 0,(2.7)

〈Bi(u)− Bi(v), u − v〉 ≤ C(M)‖u − v‖2V , i = 1, 2,(2.8)

where C(M) is a constant depending on M from conditions M1)− M2).

This statement is well known. For example, it was used in [1]. We give
its proof for completeness.

Proof. Let u, v ∈ V . By the definition of Bi,

〈Bi(u)− Bi(v), u − v〉
=
∫
Ω

(2µi(I2(u)) · E(u)− 2µi(I2(v)) · E(v)) : (E(u)− E(v))dx.

Using the mean value theorem for integrals we write this expression as fol-
lows:

2
∫
Ω

1∫
0

d

ds
(µi(I2(v + s(u − v)))E(v + s(u − v)))ds : E(u − v)dx

= 2
∫
Ω

1∫
0

(µi(I2(v + s(u − v)))E(u − v)

+
dµi(I2(v + s(u − v)))

ds
· E(v + s(u − v)))ds : E(u − v)dx

= 2
∫
Ω

(µi(I2(v + s0(u − v)))E(u − v) : E(u − v)

+ µ′
i(I2(v + s0(u − v)))

E(v + s0(u − v)) : E(u − v)
I2(v + s0(u − v))

· E(v + s0(u − v)) : E(u − v))dx

= 2
∫
Ω

(µi(I2(v + s0(u − v)))E(u − v) : E(u − v)

+
µ′
i(I2(v + s0(u − v)))
I2(v + s0(u − v))

· (E(v + s0(u − v)) : E(u − v))2)dx.

Observe that if µ′
i(I2(v+s0(u−v))) ≥ 0, then the second term is nonnegative.

Since µi(s) ≥ 0, the first term is also nonnegative. Thus, the integrand is
nonnegative.
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In the case µ′
i(I2(v + s0(u − v))) < 0 we use the inequality

(E(v + s0(u − v)) : E(u − v))2

≤ (E(v + s0(u − v)) : E(v + s0(u − v))) · (E(u − v) : E(u − v))

and the relation

E(v + s0(u − v)) : E(v + s0(u − v)) = (I2(v + s0(u − v)))2.

Then

µi(I2(v + s0(u − v)))E(u − v) : E(u − v)

+
µ′
i(I2(v + s0(u − v)))
I2(v + s0(u − v)))

· (E(v + s0(u − v))) : E(u − v))2

≥ (µi(I2(v + s0(u − v))) + I2(v + s0(u − v)))

·µ′
i(I2(v + s0(u − v)))

) E(u − v) : E(u − v).

This expression is nonnegative since µi(s) + sµ′
i(s) ≥ 0 for µ′(s) < 0.

We have actually proved that the integrand is nonnegative. Hence,

〈Bi(u)− Bi(v), u − v〉 ≥ 0.
Using the above relations and inequalities we can similarly get the estimate

〈Bi(u)− Bi(v), u − v〉

≤ 2
∫
Ω

(|µi(I2(v + s0(u − v)))| · ε(u − v) : ε(u − v)

+
|µ′
i(I2(v + s0(u − v)))|
I2(v + s0(u − v))

· (E(v + s0(u − v))) : E(u − v))2)dx

≤ 2
∫
Ω

(|µi(I2(v + s0(u − v)))|+ I2(v + s0(u − v))

· |µ′(I2(v + s0(u − v)))|) · E(u − v) : E(u − v)dx

≤ 4M
∫
Ω

n∑
i,j=1

(εij(u − v))2dx ≤ C(M)‖u − v‖2V .

As we mentioned above, W ⊂ C([0, T ], H). hence, W ⊂ X ∩ C([0, T ], H).
For functions v ∈ X ∩ C([0, T ], H), we consider the norm

‖v‖XC = max
0≤t≤T

‖v(t)‖H +
n∑
i=1

∥∥∥∥ ∂v∂xi

∥∥∥∥
L2((0,T ),H)

and the equivalent norms

‖v‖k,XC = ‖e−ktv(t)‖XC for k > 0.

Similarly, we define equivalent norms ‖ · ‖k,X , ‖ · ‖k,X∗×H , ‖ · ‖k,L2((0,T ),H)
for the spaces X, X∗ × H and L2((0, T ), H) = L2(QT ), respectively.
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Lemma 2.3. If µ2(s) satisfies the assumptions M1)− M2), then for all
u, v ∈ W and k > 0,

T∫
0

e−2kt〈C(v)− C(u), v − u〉dt ≤ C√
2k

‖v − u‖2k,X ,(2.9)

where C is independent of u, v and k.

Proof. Let u, v ∈ X. By the definitions of the operators C and B2,

〈C(v)− C(u), v − u〉

=
t∫

0

L(t, s)〈B2(v(s))− B2(u(s)), v(t)− u(t)〉ds

=
t∫

0

L(t, s)
∫
Ω

(2µ2(I2(v(s)))E(v(s))− 2µ2(I2(u(s)))E(u(s)))

: (E(v(t))− E(u(t)))dx ds.

Using the mean value theorem for integrals we get

2
t∫

0

L(t, s)
∫
Ω

1∫
0

d

dτ
(µ2(I2(u(s) + τ(v(s)− u(s))))E(u(s)

+ τ(v(s)− u(s))))dτ : E(v(t)− u(t))dx ds

= 2
t∫

0

L(t, s)
∫
Ω

1∫
0

(µ2(I2(u(s) + τ(v(s)− u(s)))) · E(v(s)− u(s))

+
dµ2(I2(u(s) + τ(v(s)− u(s))))

dτ
· E(u(s) + τ(v(s)− u(s))))dτ : (E(v(t)− u(t)))dx ds

= 2
t∫

0

L(t, s)
∫
Ω

(µ2(I2(u(s) + τ0(v(s)− u(s)))) E(v(s)

− u(s)) : E(v(t)− u(t))

+
µ′
2(I2(u(s) + τ0(v(s)− u(s))))
I2(u(s) + τ0(v(s)− u(s)))

· E(u(s) + τ0(v(s)− u(s)))

: E(v(s)− u(s)) · E(u(s) + τ0(v(s)− u(s))) : E(v(t)− u(t)))dx ds.
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By the Cauchy inequality,

|E(v(s)− u(s)) : E(v(t)− u(t))|
≤ I2(v(s)− u(s)) · I2(v(t)− u(t)),

|E(u(s) + τ0(v(s)− u(s))) : E(v(s)− u(s))|
≤ I2(u(s) + τ0(v(s)− u(s))) · I2(v(s)− u(s)),

|E(u(s) + τ0(v(s)− u(s))) : E(v(t)− u(t))|
≤ I2(u(s) + τ0(v(s)− u(s))) · I2(v(t)− u(t)).

Hence,

〈C(v)− C(u), v − u〉 ≤ 2
t∫

0

L(t, s)
∫
Ω

(|µ2(I2(u(s)

+ τ0(v(s)− u(s))))| · I2(v(s)− u(s)) · I2(v(t)− u(t))

+ |µ′
2(I2(u(s) + τ0(v(s)− u(s))))| · I2(u(s)

+ τ0(v(s)− u(s))) · I2(v(s)− u(s)) · I2(v(t)− u(t))dx ds

≤ 4M
t∫

0

L(t, s)
∫
Ω

I2(v(s)− u(s)) · I2(v(t)− u(t))dx ds.

Let us consider the functions ū(t) = e−ktu(t) and v̄(t) = e−ktv(t). It is
obvious that ‖u‖k,X = ‖ū‖X and ‖v‖k,X = ‖v̄‖X . By the Hölder inequality
we obtain

T∫
0

e−2kt〈C(v(t))− C(u(t)), v(t)− u(t)〉dt

≤ 4M‖L‖L∞(Td)

T∫
0

e−2kt
t∫

0

‖E(v(s)− u(s))‖L2(Ω)

· ‖E(v(t)− u(t))‖L2(Ω)ds dt = 4M‖L‖L∞(Td)

T∫
0

‖E(v̄(t)− ū(t))‖L2(Ω)

·
t∫

0

e−k(t−s)‖E(v̄(s)− ū(s))‖L2(Ω)ds dt

≤ 4M‖L‖L∞(Td) ·
T∫
0

‖E(v̄(t)− ū(t))‖L2(Ω)
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·

 t∫

0

‖E(v̄(s)− ū(s))‖2L2(Ω)ds




1/2

·

 t∫

0

e−2k(t−s)ds




1/2

dt

≤ 4M‖L‖L∞(Td)‖E(v̄ − ū)‖2L2(QT ) ·

 T∫

0

t∫
0

e−2k(t−s)ds dt




1/2

.

As

(2.10)

T∫
0

t∫
0

e−2k(t−s) ds dt =
1
2k

T∫
0

(1− e−2kt)dt

=
1
2k
(T +

1
2k
(e−2kT − 1)) ≤ T

2k
,

we have
T∫
0

e−2kt〈C(v(t))− C(u(t)), v(t)− u(t)〉dt

≤ 4M‖L‖L∞(Td)√
2k

√
T‖E(v̄ − ū)‖2L2(Ω)

≤ C√
2k

‖v̄ − ū‖2X =
C√
2k

‖v − u‖2k,X .

Consider the auxiliary problem

v′ + µ0Av +B1(v) + C(v) = ϕ, ϕ ∈ X∗,

v |t=0= a.
(2.11)

Letting v(t) = ektv̄(t), ϕ = ektϕ̄(t) and multiplying by e−kt we obtain

v̄′ + kv̄ + µ0Av̄ + e−ktB1(ektv̄(t)) + e−ktC(ektv̄) = ϕ,

v̄ |t=0= a.
(2.12)

Lemma 2.4. If functions µi(s) satisfy the conditions M1) − M2), then
the operator Vk : X → X∗, defined by the equality

Vk(v̄) = kv̄ + µ0Av̄ + e−ktB1(ektv̄) + e−ktC(ektv̄),

is continuous, monotone and coercive for k large enough.

Proof. The continuity of the operator follows from the continuity of each
term.
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Let us show the monotonicity of the operator Vk. For arbitrary functions
ū, v̄ ∈ X, we have

T∫
0

〈Vk(v̄(t))− Vk(ū(t)), v̄(t)− ū(t)〉dt

= k

T∫
0

‖v̄(t)− ū(t)‖2Hdt+ µ0

T∫
0

((v̄(t)− ū(t), v̄(t)− ū(t)))dt

+
T∫
0

e−kt〈B1(ektv̄(t))− B1(ektū(t)), v̄(t)− ū(t)〉dt

+
T∫
0

e−kt〈C(ektv̄(t))− C(ektū(t)), v̄(t)− ū(t)〉dt.

We evaluate terms at the right hand side of the equation. For k > µ0,

k

T∫
0

‖v̄(t)− ū(t)‖2Hdt+ µ0

T∫
0

((v̄(t)− ū(t), v̄(t)− ū(t)))dt ≥ µ0‖v̄ − ū‖2X .

Applying lemma 2.2 we have

(2.13)

T∫
0

e−kt〈B1(ektv̄(t))− B1(ektū(t)), v̄(t)− ū(t)〉dt

=
T∫
0

e−2kt〈B1(v(t))− B1(u(t)), v(t)− u(t)〉dt ≥ 0.

By lemma 2.3,

T∫
0

e−kt〈C(ektv̄(t))− C(ektū(t)), v̄(t)− ū(t)〉dt

=
T∫
0

e−2kt〈C(v(t))− C(u(t)), v(t)− u(t)〉dt ≤ C√
2k

‖v̄ − ū‖2X .

Choosing k so that k > µ0 and C√
2k

< µ0
2 , we obtain the following estimate:

T∫
0

〈Vk(v̄(t))− Vk(ū(t)), v̄(t)− ū(t)〉dt ≥ µ0
2

‖v̄ − ū‖2X .(2.14)

Hence, the operator Vk is monotone.
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Note that Vk(0) = 0. To prove the coercivity property of the operator Vk
we substitute ū = 0 into (2.14) to obtain

T∫
0

〈Vk(v̄(t)), v̄(t)〉dt ≥ µ0
2

‖v̄‖2X .

Using the above propositions we will show that the map A is invertible and
expanding with respect to certain special norms.

Theorem 2.1. Let functions µi(s), i = 1, 2 satisfy assumptions M1) −
M2). Then the map A : W → X∗ × H is invertible and for all functions
v, u ∈ W we have the following estimate:

‖v − u‖k,XC ≤ C‖A(v)− A(u)‖k,X∗×H ,(2.15)

for k large enough, where the constant C is independent of u, v and the choice
of k.

Proof. 1) Let us show the invertibility of the map A. For this purpose it is
sufficient to show that the operator equation

A(v) = (ϕ, a)(2.16)

has a unique solution for each pair ϕ ∈ X∗ and a ∈ H.
The operator equation (2.16) is equivalent to the problem (2.11) and,

hence, the problem (2.12). We can rewrite the problem (2.12) as follows:

v̄′ + Vk(v̄) = ϕ, v̄(0) = a.

Since the operator Vk is a continuous monotone coercive Volterra operator
(according to the terminology of [6]), this problem has a unique solution by
[6, Theorem 1.1]. The map a �→ v is continuous from H to C([0, T ], H). It
follows that the map A is invertible.
2) Let u, v ∈ W . We shall now prove the estimate (2.15). Set A(v) =

(ϕ, v0), A(u) = (ψ, u0). Then
v′ + µ0Av +B1(v) + C(v) = ϕ, v(0) = v0,

u′ + µ0Au+B1(u) + C(u) = ψ, u(0) = u0.

Letting

v(t) = ektv̄(t), u(t) = ektū(t), ϕ(t) = ektϕ̄(t), ψ(t) = ektψ̄(t)

in the above equations and then multiplying the equations by e−kt, we obtain

v̄′ + kv̄ + µ0Av̄ + e−ktB1(ektv̄(t)) + e−ktC(ektv̄(t)) = ϕ̄, v̄(0) = v0,

ū′ + kū+ µ0Aū+ e−ktB1(ektū(t)) + e−ktC(ektū(t)) = ψ̄, ū(0) = u0.
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Subtract the second equality from the first one and consider the actions of
the relevant functionals on the function v̄(t)− ū(t):

1
2
d

dt
‖v̄(t)− ū(t)‖2H + k‖v̄(t)− ū(t)‖2H
+ µ0((v̄(t)− ū(t), v̄(t)− ū(t))

+ e−kt〈B1(ektv̄(t))− B1(ektū(t)), v̄(t)− ū(t)〉
+ e−kt〈C(ektv̄(t))− C(ektū(t)), v̄(t)− ū(t)〉
= 〈ϕ̄(t)− ψ̄(t), v̄(t)− ū(t)〉.

Integrating both sides of this equality from 0 to t and using (2.9), (2.13), we
obtain

1
2
‖v̄(t)− ū(t)‖2H − 1

2
‖v0 − u0‖2H + k‖v̄ − ū‖2L2(Qt)

+ µ0

n∑
i=1

∥∥∥∥ ∂v̄∂xi
− ∂ū

∂xi

∥∥∥∥
2

L2(Qt)
≤ C√
2k

‖v̄ − ū‖2X

+
T∫
0

‖ϕ̄(t)− ψ̄(t)‖V ∗‖v̄(t)− ū(t)‖Hdt,

where Qt = (0, t)× Ω. It follows that for k > µ0 we have

max
0≤t≤T

‖v̄(t)− ū(t)‖2H + 2µ0
n∑
i=1

∥∥∥∥ ∂v̄∂xi
− ∂ū

∂xi

∥∥∥∥
2

L2(QT )

≤ ‖v0 − u0‖2H +
2C√
2k

‖v̄ − ū‖2X + 2
T∫
0

‖ϕ̄(t)− ψ̄(t)‖V ∗‖v̄(t)− ū(t)‖Hdt.

By the Cauchy inequality for ε > 0,

T∫
0

‖ϕ̄(t)− ψ̄(t)‖V ∗ · ‖v̄(t)− ū(t)‖Hdt

≤ ε

2

T∫
0

‖v̄(t)− ū(t)‖2Hdt+
1
2ε

T∫
0

‖ϕ̄(t)− ψ̄(t)‖2V ∗dt

≤ ε

2
‖v̄ − ū‖2X +

1
2ε

‖ϕ̄ − ψ̄‖2X∗ .

Hence,

max
0≤t≤T

‖v̄(t)− ū(t)‖2H + 2µ0
n∑
i=1

∥∥∥∥ ∂v̄∂xi
− ∂ū

∂xi

∥∥∥∥
2

L2(QT )

≤
(√
2C√
k
+ ε

)
‖v̄ − ū‖2X + ‖v0 − u0‖2H +

1
ε
‖ϕ̄ − ψ̄‖2X∗ .
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Since ‖v̄− ū‖2X ≤ C1‖v̄− ū‖2XC for some C1 > 0, the above inequality implies

‖v̄ − ū‖2XC ≤ 2
min{1,2µ0}C1

(√
2C√
k
+ ε

)
‖v̄ − ū‖2XC

+ 2
min{1,2µ0}

(
‖v0 − u0‖2H + 1

ε‖ϕ̄ − ψ̄‖2X∗
)
.

Choosing k large enough and ε small enough, so that

2
min{1, 2µ0}C1

(√
2C√
k
+ ε

)
<
1
2
,

we get the estimate:

‖v̄ − ū‖2XC ≤ 4
min{1, 2µ0}(‖v

0 − u0‖2H +
1
ε
‖ϕ̄ − ψ̄‖2X∗).

Hence, ‖v̄ − ū‖XC ≤ C(‖v0 − u0‖2H + ‖ϕ̄ − ψ̄‖2X∗), for some constant C.
Since ‖v̄ − ū‖XC = ‖v − u‖k,XC , ‖ϕ̄ − ψ̄‖X∗ = ‖ϕ − ψ‖k,X∗ and ‖A(v) −
A(u)‖k,X∗×H = ‖ϕ−ψ‖k,X∗+‖v0−u0‖H , the last inequality may be rewritten
in the form (2.15).

2.4. Properties of the operator Kε.

Theorem 2.2. For each ε > 0 the maps

Kε :W → X∗ × H and Dε :W → X∗

are completely continuous.

Proof. By definition, Kε(v) = (Dε(v), 0). Thus, it is sufficient to show that
the operator Dε is completely continuous.
The operator Dε is defined by

〈Dε(v), h〉 =
n∑

i,j=1

∫
Ω

vivj
1 + ε|v|2 · ∂hj

∂xi
dx for v, h ∈ V.

Therefore, the operator Dε is completely continuous if each one of the oper-
ators

dij :W ⊂ L2(QT )→ L2(QT ), dij(v) =
vivj
1 + ε|v|2 , i, j = 1, n

is completely continuous. By Sobolev’s embedding theorem [15, Theorem
1.1], the embedding V ⊂ L2(Ω) is completely continuous. Hence, the em-
bedding W ⊂ L2(QT ) is completely continuous by theorem 2.1 ([15], p.
217). The estimate |dij(v)| < 1

ε implies that the Nemytskii operator dij :
L2(QT )→ L2(QT ) is continuous. Hence, the operator

dij :W ⊂ L2(QT )→ L2(QT )

is completely continuous as a composition of the completely continuous em-
bedding W ⊂ L2(QT ) and the continuous map dij : L2(QT )→ L2(QT ).
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2.5. Properties of the map g. In this subsection we show that the map
g is A-condensing with respect to the Kuratovskii’s measure of noncompact-
ness γk.
We recall some necessary notions (see [3]).

Definition 2.1. The nonnegative function ψ is called a measure of non-
compactness in a Banach space E, for every bounded subset M in E there
exists a number ψ(M) such that:

1) ψ(coM) = ψ(M), where coM is the convex hull of the set M ;
2) M1 ⊂ M2 implies ψ(M1) ≤ ψ(M2).

In this work we shall use Kuratovskii’s measure of noncompactness in
spaces W and X∗ × H.

Definition 2.2. The number γk(M) is called Kuratovskii’s measure of
noncompactness of the set M ⊂ W if it is equal to the infimum of all numbers
d > 0 for which M may be represented as a union of a finite number of
subsets Mi with diameters less than d. We mean here a diameter with respect
to the norm ‖ · ‖k,X .

In the same way we define the measure of noncompactness γk in the space
X∗ ×H. Kuratovskii’s measure of noncompactness in the space X∗ ×H has
the following properties:

1) M is compact iff γk(M) = 0;
2) γk(M1 ∪ M2) = max{γk(M1), γk(M2)};
3) γk(c1M1 + c2M2) ≤ |c1|γk(M1) + |c2|γk(M2) for all numbers c1, c2 and
subsets M1,M2 in X∗ × H.

Definition 2.3. The map g on W is said to be A-condensing with respect
to the measure of noncompactness γk on X∗ × H if

γk(g(M)) < γk(A(M))
for every subset M of W such that sets g(M) and A(M) are bounded and
γk(g(M)) �= 0.
The next lemma is an auxiliary one.

Lemma 2.5. If a matrix-function a(t, s, x, v, w) satisfies the conditions
A1)− A3), then for all functions u, v, w ∈ L2(QT ) the following estimate is
valid:

(2.17)

‖
t∫

0

|a(t, s, x, u(s), v(s))− a(t, s, x, u(s), w(s)|ds‖k,L2(QT )

≤ C

√
T

2k
‖L2‖L∞(Qd)‖v − w‖k,L2(QT ),

with C independent of u, v, w and k > 0.
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Proof. Let v̄(t) = e−ktv(t), w̄(t) = e−ktw(t). From the assumption A3) it
follows that

e−kt
t∫

0

|a(t, s, x, u(s), v(s))− a(t, s, x, u(s), w(s))|ds

≤ e−kt
t∫

0

L2(t, s, x)|v(s)− w(s)|ds

≤ ‖L2‖L∞(Qd)

t∫
0

e−k(t−s)|v̄(s)− w̄(s)|ds.

Then ∥∥∥∥∥∥
t∫

0

|a(t, s, x, u(s), v(s))− a(t, s, x, u(s), w(s))|ds
∥∥∥∥∥∥
k,L2(QT )

=

∥∥∥∥∥∥e−kt
t∫

0

|a(t, s, x, u(s), v(s))− a(t, s, x, u(s), w(s))|ds
∥∥∥∥∥∥
L2(QT )

≤ ‖L2‖L∞(Qd)

∥∥∥∥∥∥
t∫

0

e−k(t−s)|v̄(s)− w̄(s)|ds
∥∥∥∥∥∥
L2(QT )

= ‖L2‖L∞(Qd) ·



T∫
0

∫
Ω


 t∫

0

e−k(t−s)|v̄(s)− w̄(s)|ds



2

dx dt




1/2

and, by Hölder’s inequality,

≤ ‖L2‖L∞(Qd) ·

 T∫

0


 t∫

0

e−2k(t−s)ds




 t∫

0

∫
Ω

|v̄(s)− w̄(s)|2dx ds

 dt




1/2

≤ ‖L2‖L∞(Qd) · ‖v̄ − w̄‖L2(QT ) ·

 T∫

0

t∫
0

e−2k(t−s)ds dt




1/2

.

The required estimate (2.17) follows from the equality (2.10) and from the
relation ‖v̄ − w̄‖L2(QT ) = ‖v − w‖k,L2(QT ).

Theorem 2.3. If a matrix-function a(t, s, x, v, w) satisfies the assump-
tions A1)−A3), then the map g :W → X∗ ×H is A-condensing with respect
to Kuratovskii’s measure of noncompactness γk for all sufficiently large k.

Proof. We define an auxiliary map p : L2(QT )× X → X∗ by the equality

〈p(v, w), h〉 = −
∫
Ω

t∫
0

a(t, s, x, v(s, x), D1w(s, x))ds : D1h(x)dx,
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for h ∈ V . The continuity of the map p is proved in the same way as the
continuity of Q in lemma 2.1. Moreover, g(v) = (p(v, v), 0) for v ∈ X.
Let M ⊂ W be an arbitrary bounded set. As we mentioned above, the

embedding W ⊂ L2(QT ) is completely continuous. Hence, the set M is
completely bounded in L2(QT ). Then for every w ∈ X the set p(M,w) is
completely bounded. By lemma 2.5 the map p(v, w) is Lipschitz continuous
in its second variable with Lipschitz constant

√
T
2k‖L2‖L∞(Qd). Hence, by

[3, Theorem 1.5.7], the map g is
√

T
2k‖L2‖L∞(Qd)-bounded with respect to

Hausdorff’s measure of noncompactness χk, i.e.

χk(g(M)) ≤
√

T

2k
‖L2‖L∞(Qd)χk(M).

Here, χk(M) is the Hausdorff’s measure of noncompactness in the space X
with the norm ‖v‖k,X , and χk(g(M)) is the Hausdorff’s measure of noncom-
pactness in the space X∗ with the norm ‖f‖k,X∗ (these definitions may be
found in [3]).
It is known [3, Theorem 1.1.7] that the Kuratovskii and Hausdorff mea-

sures of noncompactness satisfy the following inequality

χk(M) ≤ γk(M) ≤ 2χk(M).
Hence,

γk(g(M)) ≤
√
2T
k

‖L2‖L∞(Qd)γk(M).(2.18)

From (2.15) it follows that after the action of the map A diameter of the set
becomes at least C times less. Hence,

γk(M) ≤ C · γk(A(M)),(2.19)

with the constant C from estimate (2.15). Here, γk(A(M)) is the Kura-
tovskii measure of noncompactness in the space X∗ × H with the norm
‖f‖k,X∗ + ‖a‖H , for (f, a) ∈ X∗ ×H. As g(M) ⊂ X∗ × {0}, the measures of
noncompactness γk(g(M)) in the space X∗ and in the space X∗×H coincide.
Thus, from (2.18) and (2.19) we obtain

γk(g(M)) ≤
√
2T
k

‖L2‖L∞(Qd)C · γk(A(M)).

Choosing k large enough so that
√

2T
k ‖L2‖L∞(Qd) · C < 1, we obtain the

inequality

γk(g(M)) < γk(A(M)).
The choice of k is independent of the set M .
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3. Estimates of solutions and solvability of approximating
operator equations

In this section we establish a priori estimates of solutions of approximating
operator equations (2.6ε) and prove their solvability using the degree theory
for A-condensing perturbations of the map A.

3.1. Estimates of solutions. Given ε > 0, consider the auxiliary family
of operator equations

(3.1τ ) A(v)− τKε(v)− τg(v) = (f, v0), τ ∈ [0, 1].
If τ = 1 this equation coincides with (2.6ε). If τ = 0 we get the equation

A(v) = (f, v0)
which has a unique solution.

Theorem 3.1. Suppose that the assumptions M1)− M2), A1)− A3) are
fulfilled. Then every solution v ∈ W of equation (3.1τ ) for τ ∈ [0, 1] satisfies
the following estimates:

‖v‖XC ≤ C(1 + ‖f‖X∗ + ‖v0‖H),(3.2)

‖v′‖L2((0,T ),V ∗) ≤ C(1 + ‖f‖X∗ + ‖v0‖H),(3.3)

with the constant C depending only on T, n,Ω, ε, and on constants from the
assumptions M1)− M2), A1)− A3).

Proof. Let v ∈ W be a solution of equation (3.1τ ) for some τ ∈ [0, 1]. Since
A(0) = 0, the estimate (2.15) implies

‖v‖k,XC ≤ C‖A(v)‖k,X∗×H .

The function v is a solution of equation (3.1τ ) and, hence,

A(v) = τKε(v) + τg(v) + (f, v0),

provided that

(3.4) ‖v‖k,XC ≤ C(‖Dε(v)‖k,X∗ + ‖Q(v)‖k,X∗ + ‖f‖k,X∗ + ‖v0‖H .

Evaluate the first and second terms at the right-hand side of the inequality.
Note that, by (2.5),

‖Dε(v)‖k,X∗ ≤ ‖Dε(v)‖X∗ ≤ C0

ε
,

where the constant C0 is independent of k and ε.
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Let v̄(t) = e−ktv(t). Evaluate the second term. By the definition of g and
conditions A2)− A3),

‖Q(v)‖k,X∗ ≤ ‖
t∫

0

∣∣∣a(t, s, x, v(s, x), D1v(s, x))
∣∣∣ ds‖k,L2(QT )

= ‖e−kt
t∫

0

∣∣∣a(t, s, x, v(s, x), D1v(s, x))
∣∣∣ ds‖L2(QT )

≤ ‖e−kt
t∫

0

(
L1(t, s, x) + L2(t, s, x)(|v(s, x)|+ |D1v(s, x)|)

)
ds‖L2(QT )

≤ T‖L1‖L2(Qd) + ‖L2‖L∞(Qd)‖
t∫

0

e−kt(|v(s, x)|+ |D1v(s, x)|)ds‖L2(Qt).

Repeating the arguments of the proof of lemma 2.5, we obtain

‖Q(v)‖k,X∗

≤ C1


1 + (

T∫
0

∫
Ω

(
t∫

0

e−k(t−s)(|v̄(s, x)|+ |D1v̄(s, x)|)ds)2dx dt)1/2



≤ C1


1 + (

T∫
0

(
t∫

0

e−2k(t−s)ds) · (
t∫

0

∫
Ω

(|v̄(s, x)|2 + |D1v̄(s, x)|2)dx ds)dt)1/2



≤ C1


1 + (‖v̄‖L2(QT ) + ‖D1v̄‖L2(QT )) · (

T∫
0

t∫
0

e−2k(t−s)ds dt)1/2

 .

From inequality (2.10) and the relation

‖v̄‖L2(QT ) + ‖D1v̄‖L2(QT ) = ‖v‖k,L2(QT ) + ‖D1v‖k,L2(QT ) ≤ C‖v‖k,XC

it follows that

‖Q(v)‖k,X∗ ≤ C1



√

T

2k
‖v‖k,XC + 1


 .(3.5)

Substituting the estimates of ‖Dε(v)‖k,X∗ and ‖Q(v)‖k,X∗ into (3.4), we get

‖v‖k,XC ≤ C


C1(

√
T

2k
‖v‖k,XC + 1) +

C0

ε
+ ‖f‖k,X∗ + ‖v0‖H


 .

Let k be large enough so that

C · C1

√
T

2k
<
1
2
.

Then the above inequality may be rewritten as follows:

‖v‖k,XC ≤ C(1 + ‖f‖k,X∗ + ‖v0‖H),
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with some constant C depending on ε. Taking into account this and the
equivalence of norms ‖ · ‖k,XC and ‖ · ‖XC , as well as the norms ‖ · ‖k,X∗ and
‖ · ‖X∗ , we obtain (3.2).
To estimate ‖v′‖L2((0,T ),V ∗), we recall that v is a solution of the equation

v′ + µ0Av +B1(v) + C(v)− τDε(v)− τQ(v) = f.

Hence,
‖v′‖X∗ ≤ µ0‖Av‖X∗ + ‖B1(v)‖X∗ + ‖C(v)‖X∗

+ ‖Dε(v)‖X∗ + ‖Q(v)‖X∗ + ‖f‖X∗ .

Therefore, from inequalities (2.2), (3.5), we obtain

‖v′‖X∗ ≤ C(1 + ‖v‖X) + C

ε
+ ‖f‖X∗ .

Now estimate (3.3) follows from estimate (3.2).

3.2. The basic facts of the degree theory. We recall some facts about
the degree theory forA-condensing perturbations of different classes of maps.
Let E, F be Banach spaces and D a bounded subset of E. Consider the

set of maps of the following form:

A − g : D̄ ⊂ E → F,

where A is a continuous map, g is continuous and A-condensing with respect
to some measure of noncompactness ψ on F , and A(x) �= g(x) for x ∈ ∂D.
Two maps A−g0,A−g1 : (D̄, ∂D)→ (F, F\0), where 0 is the origin of the

space F , are called “homotopic” if there exists an A-condensing homotopy
g : D̄ × [0, 1] → F such that g(x, 0) = g0(x), g(x, 1) = g1(x), x ∈ D̄ and
A(x) �= g(x, t), for x ∈ ∂D, t ∈ [0, 1].
Denote by [D̄, F,A]Y the set of homotopic classes of maps of the form

A − g : (D̄, ∂D)→ (F, F\0), and by [D̄, F,A]C the set of homotopic classes
A −K : (D̄, ∂D)→ (F, F\0), where K is a completely continuous map (the
homotopies have the form A −K, where K : D̄× [0, 1]→ F , is a completely
continuous).
It is known [4, Theorem 4] that the natural embedding

i∗ : [D̄, F,A]C → [D̄, F,A]Y
is a bijection. This means that for every map A−g there exists a homotopic
map A − K. If we have a degree for a map A − K, then we define

deg(A − g, D̄, 0) = deg(A − K, D̄, 0).

In this work we consider an invertible map A. The construction of the
degree of completely continuous perturbations of the invertible map A is
assumed to be well known.
We recall some properties of the degree for maps of the form A−g, where

A is invertible and g is A-condensing. These properties will be useful in
what follows.
1. If deg(A − g, D̄, y0) = deg(A − g − y0, D̄, 0) �= 0, then the equation

A(x)− g(x) = y0 has a solution in D.
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2. If A(x) �= tg(x) + y0 for all x ∈ ∂D and t ∈ [0, 1], then
deg(A − g, D̄, y0) = deg(A, D̄, y0).

3. If the equation A(x) = y0 has a solution in D then
deg(A, D̄, y0) = 1.

3.3. Solvability theorem for (2.6ε).

Theorem 3.2. Let the assumptions M1) − M2) and A1) − A3) hold.
Then for all f ∈ X∗, v0 ∈ H and ε > 0 the equation (2.6ε) has at least one
solution v ∈ W .

Proof. Let f ∈ X∗, v0 ∈ H and ε > 0. Note that (2.6ε) coincides with
the equation (3.11). By theorem 3.1, all solutions of the family of equations
(3.1τ ), τ ∈ [0, 1], are contained in the ball BR ⊂ W with radius R =
C(2 + ‖f‖X∗ + ‖v0‖H) and center at zero, and there are no solutions on the
boundary of the ball. Therefore, for each τ ∈ [0, 1], the degree is defined for
the map A − τ(Kε + g) on the ball BR : deg(A − τ(Kε + g), BR, (f, v0)),
where the sum of the completely continuous map Kε and the A-condensing
map g is a A-condensing map.
The map A is invertible. Hence, from the choice of R it follows that the

equation A(v) = (f, v0) has a solution in the ball BR. Then, by property 3
of the degree,

deg(A, BR, (f, v0)) = 1.
From property 2 we obtain

deg(A − Kε − g,BR, (f, v0)) = deg(A, BR, (f, v0)) = 1.

Finally, property 1 implies that (3.11) has a solution in the ball BR.

4. Existence theorem for weak solutions

In this section we apply approximate solutions to obtain existence results
for weak solutions of the initial-boundary value problem for Navier-Stokes-
type equations.

4.1. A priori estimates for (2.6ε). Here we obtain a priori estimates of
solutions of equations (2.6ε), ε ≥ 0, which are independent of the parameter
ε.

Theorem 4.1. Suppose that the conditions A1) − A3),M1) − M2) are
fulfilled. Then for every solution v ∈ W of the equations (2.6ε), for ε > 0,
the following estimate is valid:

‖v‖XC ≤ C(1 + ‖f‖X∗ + ‖v0‖H),(4.1)

with the constant C independent of ε.

Proof. Let v ∈ W be a solution of the equation (2.6ε), for some ε > 0. Then

v′ + µ0Av − Dε(v) +B1(v) + C(v)− Q(v) = f.

Consider the action on the element v of the above functionals:

〈v′, v〉+ µ0〈Av, v〉 − 〈Dε(v), v〉+ 〈B1(v), v〉+ 〈C(v), v〉 − 〈Q(v), v〉 = 〈f, v〉.
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We show that 〈Dε(v), v〉 = 0. In fact,

〈Dε(v), v〉 =
n∑

i,j=1

∫
Ω

vi
1 + ε|v|2 · 1

2
∂v2j
∂xi

dx

=
n∑
i=1

∫
Ω

vi
∂ ln(1 + ε|v|2)

∂xi
· 1
2ε

dx

= − 1
2ε

∫
Ω

ln(1 + ε|v|2)
n∑
i=1

∂vi
∂xi

dx = 0,

by the condition of solenoidality of the function v.
Thus, we get

〈v′, v〉+ µ0〈Av, v〉+ 〈B1(v), v〉+ 〈C(v), v〉 = 〈ϕ, v〉,
where ϕ = f +Q(v). Repeating the arguments of the proof of theorem 2.1
with u = 0, u0 = 0, ψ = 0, we obtain the estimate

‖v‖k,XC ≤ C(‖ϕ‖k,X∗ + ‖v0‖H),
for k large enough. Since

‖ϕ‖k,X∗ ≤ ‖Q(v)‖k,X∗ + ‖f‖k,X∗ ≤ C1



√

T

2k
‖v‖k,XC + 1


+ ‖f‖k,X∗

(by estimate (3.3)), we obtain

‖v‖k,XC ≤ C


C1



√

T

2k
‖v‖k,XC + 1


+ ‖f‖k,X∗ + ‖v0‖H


 .

Choosing k large enough so that C · C1 ·
√

T
2k < 1

2 , we get the estimate

‖v‖k,XC ≤ C(‖f‖k,X∗ + ‖v0‖H + 1),
which is equivalent to (4.1).

Theorem 4.2. Suppose that assumptions M1) − M2), A1) − A3) are
fulfilled. Then every solution v ∈ W of equation (2.6ε) for ε > 0 satisfies the
following inequality

‖v′‖L1((0,T ),V ∗) ≤ C(1 + ‖f‖X∗ + ‖v0‖H)2,(4.2)

with the constant C independent of ε.

Proof. Repeating the arguments of the proof of theorem 3.1, we obtain the
inequality

(4.3)
‖v′‖L1((0,T ),V ∗) ≤ C (‖Av‖X∗ + ‖B1(v)‖X∗ + ‖C(v)‖X∗

+‖Q(v)‖X∗ + ‖f‖X∗) + ‖Dε(v)‖L1((0,T ),V ∗).
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We evaluate ‖Dε(v)‖L1((0,T ),V ∗) as in the proof of lemma 2.1. By definition,

(4.4)
‖Dε(v)‖V ∗ ≤ max

i,j

∥∥∥∥ vivj
1 + ε|v|2

∥∥∥∥
L2(Ω)

≤ max
i,j

‖vivj‖L2(Ω) ≤ C‖v‖2L4(Ω).

Hence,
‖Dε(v)‖L1((0,T ),V ∗) ≤ C‖v‖2L2((0,T ),L4(Ω)).

Since the embedding V ⊂ L4(Ω) is continuous for n ≤ 4, the embed-
ding X = L2((0, T ), V ) ⊂ L2((0, T ), L4(Ω)) is also continuous. Hence,
‖v‖L2((0,T ),L4(Ω)) ≤ C‖v‖X and

‖Dε(v)‖L1((0,T ),V ∗) ≤ C‖v‖2X .

Using the above estimate, inequalities (2.2) and inequality (4.3), we obtain

‖v′‖L1((0,T ),V ∗) ≤ C((1 + ‖v‖X)2 + ‖f‖X∗).

Now, estimate (4.2) follows from estimate (4.1).

4.2. Existence and uniqueness theorems for a weak solution in the
case n = 2.

Theorem 4.3. Let n = 2 and let the assumptions M1)−M2), A1)−A3)
be fulfilled. Then for every f ∈ L2((0, T ), H) and v0 ∈ H there exists at least
one weak solution v ∈ W of the problem (1.1)-(1.4) satisfying the following
inequalities:

(4.5)
max
t∈[0,T ]

‖v(t)‖H +
n∑
i=1

∥∥∥∥ ∂v∂xi

∥∥∥∥
L2(QT )

≤ C(1 + ‖f‖L2((0,T ),H) + ‖v0‖H),

‖v′‖L2((0,T ),V ∗) ≤ C(1 + ‖f‖L2((0,T ),H) + ‖v0‖H)2,
with C independent of v, f, v0.

The next lemma is an auxiliary proposition which is analogous to theorem
4.2.

Lemma 4.1. Under the conditions of theorem 4.3, every solution v ∈ W
of the operator equation (2.6ε), ε > 0, satisfies

‖v′‖L2((0,T ),V ∗) ≤ C(1 + ‖f‖X∗ + ‖v0‖H)2,(4.6)

with C independent of ε > 0.

Proof. By [15, Lemma 3.3] for n = 2,

‖v‖L4(Ω) ≤ 21/4‖v‖1/2L2(Ω) · ‖grad v‖1/2L2(Ω).

From the above and from estimate (4.4) we have

‖Dε(v)‖V ∗ ≤ C‖v‖L2(Ω) · ‖grad v‖L2(Ω).

Hence,
‖Dε(v)‖L2((0,T ),V ∗) ≤ C max

t∈[0,T ]
‖v(t)‖H · ‖D1v‖L2(QT ).



TOPOLOGICAL DEGREE AND NAVIER-STOKES EQUATIONS 31

Using the embedding W ⊂ C([0, T ], H) and the definition of norm ‖v‖XC ,
we obtain

max
t∈[0,T ]

‖v(t)‖H ≤ ‖v‖XC and ‖D1v‖L2(QT ) ≤ ‖v‖XC .

Therefore,
‖Dε(v)‖L2((0,T ),V ∗) ≤ C‖v‖2XC .

Hence, repeating the arguments of the proof of theorem 3.1, we get the
estimate (4.6).

Proof of theorem 4.3. Choose an arbitrary sequence of positive numbers {εm}
tending to zero. From theorem 3.2 every equation (2.6εm) has a solution vm.
We shall show that the sequence {vm} has a convergent subsequence which
tends (in the norm of the space X) to a solution of the problem (2.3), (2.4).
The space V is reflexive and separable, thus the spaceX = L2((0, T ), V ) is

reflexive [6, Remark 1.11], and its dual space X∗ is also reflexive [6, Theorem
1.14]. In a reflexive Banach space a bounded closed set is weakly compact.
By estimates (4.1), (4.6), the set of solutions {vm} is bounded in W . Hence,
without loss of generality, passing to subsequences and preserving the nota-
tion {vm}, we may assume that

vm ⇀ v∗ weakly in X,

vm
′
⇀ v∗′

weakly in X∗.

Thus, the function v∗ belongs to W . Using the compactness of the embed-
ding W ⊂ L2(QT ), we may assume that

vm −→ v∗ strongly in L2(QT ),

vm −→ v∗ a. e. in QT and v∗(0) = v0.

As the space L1((0, T ), H) is separable, by [7, Theorem 6] we may assume
that

vm ⇀ v∗ ∗ −weakly in L∞((0, T ), H).
Next we show that the sequence {vm} converges to v∗ with respect to the

norm of the space X and that v∗ is a solution of the problem (2.3), (2.4).
Let f0 ∈ X∗ be defined by

v∗′
+ µ0Av∗ − K(v∗) +B1(v∗) + C(v∗)− Q(v∗) = f0.

Since vm is a solution of the equation (2.6εm),

(vm)′ + µ0Avm − Dεm(v
m) +B1(vm) + C(vm)− Q(vm) = f.

Letting

vm(t) = ektv̄m(t), v∗(t) = ektv̄∗(t), f(t) = ektf̄(t), f0(t) = ektf̄0(t)

and multiplying the above equalities by e−kt, we obtain

v̄m
′
+ kv̄m + µ0Av̄m − e−ktDem(e

ktv̄m(t)) + e−ktB1(ektv̄m(t))

+ e−ktC(ektv̄m(t))− e−ktQ(ektv̄m(t)) = f̄
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and

v̄∗′
+ kv̄∗ + µ0Av̄∗ − e−ktK(ektv̄∗(t)) + e−ktB1(ektv̄∗(t))

+ e−ktC(ektv̄∗(t))− e−ktQ(ektv̄∗(t)) = f̄0.

We subtract from the first equality the second one and consider action of
functionals from both sides of the equality on the function v̄m(t)− v̄∗(t):

1
2
d

dt
‖v̄m(t)− v̄∗(t)‖2H + k‖v̄m(t)− v̄∗(t)‖2H
+ µ0((v̄m(t)− v̄∗(t), v̄m(t)− v̄∗(t)))

+ e−kt〈B1(ektv̄m(t))− B1(ektv̄∗(t)), v̄m(t)− v̄∗(t)〉
+ e−kt〈C(ektv̄m(t))− C(ektv̄∗(t)), v̄m(t)− v̄∗(t)〉
− e−kt〈Dεm(e

ktv̄m(t))− K(ektv̄∗(t)), v̄m(t)− v̄∗(t)〉
− e−kt〈Q(ektv̄m(t))− Q(ektv̄∗(t)), v̄m(t)− v̄∗(t)〉
= 〈f̄(t)− f̄0(t), v̄m(t)− v̄∗(t)〉.

Integrating both sides of the equality in t from 0 to T we get

(4.7)

1
2
‖v̄m(T )− v̄∗(T )‖2H

+ k‖v̄m − v̄∗‖2L2(QT ) + µ0

n∑
i=1

∥∥∥∥∂v̄m∂xi
− ∂v̄∗

∂xi

∥∥∥∥
2

L2(QT )

+
T∫
0

e−2kt〈B1(ektv̄m(t))− B1(ektv̄∗(t)), ektv̄m(t)− ektv̄∗(t)〉dt

= −
T∫
0

e−2kt〈C(ektv̄m(t))− C(ektv̄∗(t)), ektv̄m(t)− ektv̄∗(t)〉dt

+
T∫
0

e−2kt〈Q(ektv̄m(t))− Q(ektv̄∗(t)), ektv̄m(t)− ektv̄∗(t)〉dt

+
T∫
0

e−2kt〈Dεm(e
ktv̄m(t))− K(ektv̄∗(t)), ektv̄m(t)− ektv̄∗(t)〉dt

+
T∫
0

〈f̄(t)− f̄0(t), v̄m(t)− v̄∗(t)〉dt.

Let k ≥ µ0, then

k‖v̄m − v̄∗‖2L2(QT ) + µ0

n∑
i=1

∥∥∥∥∂v̄m∂xi
− ∂v̄∗

∂xi

∥∥∥∥
2

L2(QT )
≥ µ0‖v̄m − v̄∗‖2X .
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Lemma 2.2 implies
T∫
0

e−2kt〈B1(ektv̄m(t))− B1(ektv̄∗(t)), ektv̄m(t)− ektv̄∗(t)〉dt

=
T∫
0

e−2kt〈B1(vm(t))− B1(v∗(t)), vm(t)− v∗(t)〉dt ≥ 0.

Hence, the left-hand side of (4.7) is no smaller than µ0‖v̄m − v̄∗‖X . Denote
the terms at the right hand side of (4.7) by I1(m), I2(m), I3(m), I4(m),
respectively. Then, by (4.7), we obtain the following inequality

µ0‖v̄m − v̄∗‖2X ≤ I1(m) + I2(m) + I3(m) + I4(m).(4.8)

Let us estimate each term Ii(m), i = 1, 2, 3, 4.
Estimate for I4(m). As vm ⇀ v∗ weakly in X, v̄m ⇀ v̄∗ weakly in X too.

Then by the definition of weak convergence

I4(m) =
T∫
0

〈f̄(t)− f̄0(t), v̄m(t)− v̄∗(t)〉dt → 0 as m → ∞.

Estimate for I1(m). From estimate (2.9)

|I1(m)| =
T∫
0

e−2kt〈C(vm(t))− C(v∗(t)), vm(t)− v∗(t)〉dt

≤ C1√
2k

‖vm − v∗‖2k,X =
C1√
2k

‖v̄m − v̄∗‖2X ,

with C1 independent of k and m.
Estimate for I2(m). By definition,

I2(m) =
T∫
0

e−2kt〈Q(vm(t))− Q(v∗(t)), vm(t)− v∗(t)〉dt

=
T∫
0

e−2kt
∫
Ω

t∫
0

(a(t, s, x, vm(s, x), D1vm(s, x))

− a(t, s, x, v∗(s, x), D1v∗(s, x)))ds : D1(vm(t, x)− v∗(t, x))dx dt

=
T∫
0

e−2kt
∫
Ω

t∫
0

(a(t, s, x, vm(s, x), D1vm(s, x))

− a(t, s, x, vm(s, x), D1v∗(s, x)))ds : D1(vm(t, x)− v∗(t, x))dx dt

+
T∫
0

e−2kt
∫
Ω

t∫
0

(a(t, s, x, vm(s, x), D1v∗(s, x))

− a(t, s, x, v∗(s, x), D1v∗(s, x)))ds : D1(vm(t, x)− v∗(t, x))dx dt.
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Denote the terms on the right hand-side of the equality by I2,1(m) and
I2,2(m), respectively. We evaluate each one of them. By Hölder’s inequality,

|I2,1(m)|

≤
∥∥∥∥∥∥

t∫
0

∣∣∣a(t, s, x, vm(s, x), D1vm(s, x))

−a(t, s, x, vm(s, x), D1v∗(s, x))
∣∣∣ ds

∥∥∥∥∥∥
k,L2(QT )

· ‖D1(vm(t, x)− v∗(t, x))‖k,L2(QT ).

Hence, by inequality (2.17), we get

|I2,1(m)| ≤ C2

√
T

2k
‖L2‖L∞(Qd)‖vm − v∗‖2k,X

= C2

√
T

2k
‖L2‖L∞(Qd)‖v̄m − v̄∗‖2X .

We now evaluate the second term I2,2(m). By Hölder’s inequality,

|I2,2(m)| ≤ T
∥∥∥a(t, s, x, vm(s, x), D1v∗(s, x))

−a(t, s, x, v∗(s, x), D1v∗(s, x))
∥∥∥
L2(Qd)

·
∥∥∥D1(vm − v∗)

∥∥∥
L2(QT )

.

The second factor is bounded. We show that the first factor converges to
zero as m → ∞.
From conditions A1)− A3) it follows that the Nemytskii operator

a : L2(QT )→ L2(Qd), a(v) = a(t, s, x, v(s, x), D1v∗(s, x))

is continuous. Since vm → v∗ strongly in L2(QT ) and a(vm) → a(v∗)
strongly in L2(Qd), we have

‖a(vm)− a(v∗)‖L2(Qd) =
∥∥∥a(t, s, x, vm(s, x), D1v∗(s, x))

−a(t, s, x, v∗(s, x), D1v∗(s, x))
∥∥∥
L2(Qd)

→ 0

as m → ∞. Hence, I2,2(m)→ 0 for m → ∞. Thus, we have obtained that

|I2(m)| ≤ C2

√
T

2k
‖v̄m − v̄∗‖2X + |I2,2(m)|,

where I2,2(m)→ 0 as m → ∞.
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Estimate for I3(m). By definition,

I3(m) =
T∫
0
e−2kt〈Dεm(vm(t)− K(v∗(t)), vm(t)− v∗(t)〉dt

=
T∫
0
e−2kt〈Dεm(vm(t)), vm(t)〉dt −

T∫
0
e−2kt〈K(v∗(t)), v∗(t)〉dt

−
T∫
0
e−2kt〈K(v∗(t)), vm(t)− v∗(t)〉dt

−
T∫
0
e−2kt〈Dεm(vm(t))− K(v∗(t)), v∗(t)〉dt.

Let us estimate each term on the right-hand side of the above equality. In
the proof of theorem 4.1 it was shown that

〈Dε(v), v〉 = 0 for all v ∈ V and ε > 0.

In the same way we can show that 〈K(v), v〉 = 0 for v ∈ V . Therefore,

T∫
0

e−2kt〈Dεm(v
m(t)), vm(t)〉dt = 0

and
T∫
0

e−2kt〈K(v∗(t)), v∗(t)〉dt = 0.

Furthermore, by the definition of the weak convergence vm ⇀ v∗ in the space
X,

T∫
0

e−2kt〈K(v∗(t)), vm(t)− v∗(t)〉dt → 0 as m → ∞.

We show that the last term in the expression I3(m) also converges to zero
as m → ∞. By definition,

(4.9)

T∫
0

e−2kt〈Dεm(v
m(t))− K(v∗(t)), v∗(t)〉dt

=
n∑

i,j=1

T∫
0

e−2kt
∫
Ω

(
vmi vmj

1 + εm|vm|2 − v∗
i v

∗
j

)
∂v∗

j

∂xi
dx dt.

Since vm → v∗ almost everywhere on QT ,

vmi vmj
1 + εm|vm|2 → v∗

i v
∗
j a. e. on QT .

From the estimate

‖v‖L4(Ω) ≤ 21/4‖v‖1/2L2(Ω) · ‖grad v‖1/2L2(Ω),
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for v ∈ W and n = 2, it follows that W ⊂ L4(QT ), and this embedding is
continuous. Therefore,∥∥∥∥ vmi vmj

1 + εm|vm|2
∥∥∥∥
L2(QT )

≤ ‖vmi vmj ‖L2(QT ) ≤ C‖vm‖2L4(QT ) ≤ C‖vm‖2W .

As the set of solutions {vm} is bounded inW , the set of functions
{

vm
i vm

j

1+εm|vm|2
}

is bounded in L2(QT ). Therefore, without loss of generality, we may assume
that

vmi vmj
1 + εm|vm|2 ⇀ v∗

i v
∗
j weakly in L2(QT ).

This means that

Dεm(v
m)⇀ K(v∗) weakly in X∗,(4.9)

and, consequently,
T∫
0

e−2kt〈Dεm(v
m(t))− K(v∗(t)), v∗(t)〉dt → 0,

as m → ∞.
Thus, we have showed that all the terms in the expression for I3(m) are

equal to zero or converge to zero as m → ∞, i.e.,
I3(m)→ 0 for m → ∞.

Summarizing the above investigation of the terms Ii(m), i = 1, 2, 3, 4, and
applying inequalities, we can rewrite (4.8) as follows:

µ0‖v̄m − v̄∗‖2X ≤ C1√
2k

‖v̄m − v̄∗‖2X + C2

√
T
2k‖v̄m − v̄∗‖2X

+|I2,2(m)|+ I3(m) + I4(m).

Choosing sufficiently large k such that C1√
2k
+ C2

√
T
2k ≤ µ0

2 , we get

µ0‖v̄m − v̄∗‖2X ≤ 2 (|I2,2(m)|+ I3(m) + I4(m)) .

Each term of the right hand side of the above inequality converges to zero
as m → ∞, and ‖v̄m − v̄∗‖X → 0 as m → ∞. Hence,

vm → v∗ strongly in X.

By lemma 2.1 the maps A, B1, C, Q are continuous on X. Hence,

Avm → Av∗ strongly in X∗,

B1(vm)→ B1(v∗) strongly in X∗,

C(vm)→ C(v∗) strongly in X∗,

Q(vm)→ Q(v∗) strongly in X∗.

Passing to the limit, in weak sense, in each term of the equality

(vm)′ + µ0Avm − Dεm(v
m) +B1(vm) + C(vm)− Q(vm) = f
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and applying (4.10), we obtain

(v∗)′ + µ0Av∗ − K(v∗) +B1(v∗) + C(v∗)− Q(v∗) = f.

Thus, we have showed that v∗ is a solution of equation (2.3) and v∗(0) = v0.

The uniqueness of weak the solution of the problem (1.1)-(1.4) will be
established under assumption that the matrix-function a(t, s, x, v, w) is Lip-
schitzian in the variables v, w, i.e.,

A′
2) |aij(t, s, x, u, v)− aij(t, s, x, ū, v̄)| ≤ L2(t, s, x)(|u − ū|+ |v − v̄|),

for all (t, s, x) ∈ Qd, u, ū ∈ R
n, v, v̄ ∈ R

n2
, i, j ∈ 1, n, where L2 is an

essentially bounded function.

Theorem 4.4. Let n = 2 and conditions M1)−M2), A1)−A′
2) be fulfilled.

Then for each f ∈ L2((0, T ), H), v0 ∈ H, the weak solution v ∈ W of the
problem (1.1)− (1.4) is unique.

Proof. Suppose, there exists two different solutions u and v of the problem
(2.3)-(2.4). Then

v′ + µ0Av − K(v) +B1(v) + C(v)− Q(v) = f

u′ + µ0Au − K(u) +B1(u) + C(u)− Q(u) = f.

Substituting the following expressions

v(t) = ektv̄(t), u(t) = ektū(t), f(t) = ektf̄(t)

in the above equalities, then multiplying them by e−kt and then subtracting
the second equality from the first one, we obtain

(v̄ − ū)′ + k(ū − v̄) + µ0A(v̄ − ū)− e−kt(K(ektv̄(t))− K(ektū(u)))

+ e−kt(B1(ektv̄(t))− B1(ektū(t)) + e−kt(C(ektv̄(t))− C(ektū(t)))

− e−kt(Q(ektv̄(t))− Q(ektū(t)))

= 0.

Evaluating the functionals from this equality on the function v̄(t)− ū(t) and
then integrating the result in with respect to t from 0 to τ , we arrive at

1
2
‖v̄(τ)− ū(τ)‖2H + k‖v̄ − ū‖2L2(Qτ ) + µ0

n∑
i=1

∥∥∥∥ ∂v̄∂xi
− ∂ū

∂xi

∥∥∥∥
2

L2(Qτ )

+
τ∫
0

e−2kt〈B1(v(t))− B1(u(t)), v(t)− u(t)〉dt

= −
τ∫
0

e−2kt〈C(v(t))− C(u(t)), v(t)− u(t)〉dt
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+
τ∫
0

e−2kt〈Q(v(t))− Q(u(t)), v(t)− u(t)〉dt

+
τ∫
0

e−2kt〈K(v(t))− K(u(t)), v(t)− u(t)〉dt.

As in the proof of theorem 4.2, we denote the terms on the right-hand side of
this equality by I1(τ), I2(τ), I3(τ), respectively, and suppose that k ≥ µ0.
Then we obtain

(4.10)
1
2
‖v̄(τ)− ū(τ)‖2H + µ0‖v̄ − ū‖2L2((0,τ),V ) ≤ I1(τ) + I2(τ) + I3(τ).

Let us estimate the terms I1(τ), I2(τ), I3(τ).
Estimate for I1(τ). The estimate (2.9) gives

I1(τ) ≤ C1√
2k

‖v̄ − ū‖2L2((0,τ),V ),

with C1 independent of τ .
Estimate for I2(τ). By definition,

I2(τ) =
τ∫
0

e−2kt
∫
Ω

t∫
0

(a(t, s, x, v(s, x), D1v(s, x))

− a(t, s, x, u(s, x), D1u(s, x)))ds : D1(v(t, x)− u(t, x))dx dt.

Then, applying Hölder’s inequality and (2.10), we have

|I2(τ)| ≤
∥∥∥∥∥∥

t∫
0

|a(t, s, x, v(s, x), D1v(s, x))−

− a(t, s, x, u(s, x), D1u(s, x))|ds
∥∥∥∥∥∥
k,L2(Qτ )

· ‖D1(v(t, x)− u(t, x))‖k,L2(Qτ )

≤ ‖L2‖L∞(Qd)

∥∥∥∥∥∥
t∫

0

(|v(s, x)− u(s, x)|

+ |D1v(s, x)− D1u(s, x)|)ds
∥∥∥∥∥∥
k,L2(Qτ )

· ‖D1(v(t, x)− u(t, x))‖k,L2(Qτ )
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= ‖L2‖L∞(Qd)

∥∥∥∥∥∥
t∫

0

e−k(t−s)(|v̄(s, x)− ū(s, x)|

+ |D1v̄(s, x)− D1ū(s, x)|)ds
∥∥∥∥∥∥
L2(Qτ )

· ‖D1(v̄(t, x)− ū(t, x))‖L2(Qτ )

≤ C‖L2‖L∞(Qd)


 τ∫

0

∫
Ω


 t∫

0

e−k(t−s)(|v̄(s, x)− ū(s, x)|

+ |D1v̄(s, x)− D1ū(s, x)|)ds



2

dx dt




1/2

· ‖v̄ − ū‖L2((0,τ),V )

≤ C‖L2‖L∞(Qd) · ‖v̄ − ū‖L2((0,τ),V )

·

 τ∫

0


 t∫

0

e−2k(t−s)ds)


 t∫

0

∫
Ω

(|v̄(s, x)− ū(s, x)|2

+ |D1v̄(s, x)− D1ū(s, x)|)2

 dx ds


 dt




1/2

≤ C‖L2‖L∞(Qd) ·
√

τ

2k
‖v̄ − ū‖2L2((0,τ),V ),

which implies

|I2(τ)| ≤ C2√
2k

‖v̄ − ū‖2L2((0,τ),V ).

Estimate for I3(τ). By definition,

I3(τ) =
τ∫
0

e−2kt
∫
Ω

n∑
i,j=1

(vivj − uiuj) · ∂(vj − uj)
∂xi

dx dt

=
τ∫
0

e−2kt
n∑

i,j=1

∫
Ω

(
(vi − ui)vj · ∂(vj − uj)

∂xi

+ui(vj − uj)
∂(vj − uj)

∂xi

)
dx dt.

Hence, taking into account the condition (1.2), we obtain

I3(τ) = −
τ∫
0
e−2kt

n∑
i,j=1

∫
Ω
(vi − ui)

∂vj

∂xi
(vj − uj)dx dt

= −
τ∫
0

n∑
i,j=1

∫
Ω
(v̄i − ūi)

∂vj

∂xi
(v̄j − ūj)dx dt.
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From the inequality ‖v‖L4(Ω) ≤ 21/4‖v‖1/2L2(Ω) · ‖grad v‖1/2L2(Ω) ([15], p. 233),
as well as the Schwartz and Hölder inequalities, we obtain∣∣∣∣∣∣

n∑
i,j=1

∫
Ω

(v̄i − ūi)
∂vj
∂xi
(v̄j − ūj)dx

∣∣∣∣∣∣
≤

n∑
i,j=1

‖v̄i − ūi‖L4(Ω) ·
∥∥∥∥∂vj∂xi

∥∥∥∥
L2(Ω)

· ‖v̄j − ūj‖L4(Ω)

≤
(

n∑
i=1

‖v̄i − ūi‖2L4(Ω)

)1/2

 n∑
i,j=1

∥∥∥∥∂vj∂xi

∥∥∥∥
2

L2(Ω)




1/2
 n∑
j=1

‖v̄j − ūj‖2L4(Ω)




1/2

=
n∑
i=1

‖v̄i − ūi‖2L4(Ω)


 n∑
i,j=1

∥∥∥∥∂vj∂xi

∥∥∥∥
2

L2(Ω)




1/2

≤
√
2

n∑
i=1

(
‖v̄i − ūi‖L2(Ω) · ‖grad(v̄i − ūi)‖L2(Ω)

) n∑
j=1

‖grad(vj)‖2L2(Ω)




1/2

≤
√
2‖v̄ − ū‖L2(Ω) · ‖D1v̄ − D1ū‖L2(Ω) · ‖D1v‖L2(Ω).

Thus,

(4.11) |I3(τ)| ≤
√
2

τ∫
0

‖v̄(t)− ū(t)‖H · ‖D1v̄(t)− D1ū(t)‖H · ‖D1v(t)‖Hdt.

From the estimates for I1(τ) and I2(τ) it follows that

1
2
‖v̄(τ)− ū(τ)‖2H + µ0‖v̄ − ū‖2L2((0,τ),V )

≤ C1√
2k

‖v̄ − ū‖2L2((0,τ),V ) +
C2√
2k

‖v̄ − ū‖2L2((0,τ),V ) + I3(τ).

Choosing k large enough, so that C1+C2√
2k

< µ0
2 , we obtain

‖v̄(τ)− ū(τ)‖2H + µ0‖v̄ − ū‖2L2((0,τ),V ) ≤ 2I3(τ).(4.12)

By Cauchy’s inequality,

I3(τ) ≤ 1
ε
√
2

τ∫
0

‖v̄(t)− ū(t)‖2H · ‖D1v(t)‖2Hdt

+
ε√
2

τ∫
0

‖D1v̄(t)− D1ū(t)‖2Hdt

≤ 1
ε
√
2

τ∫
0

‖v̄(t)− ū(t)‖2H · ‖D1v(t)‖2Hdt+
ε√
2
‖v̄ − ū‖2L2((0,τ),V ).
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Choosing ε = µ0
2
√
2
and substituting the above inequality into (4.12) we get

‖v̄(τ)− ū(τ)‖2H +
µ0
2

‖v̄ − ū‖2L2((0,τ),v) ≤ 4
µ0

τ∫
0

‖v̄(t)− ū(t)‖2H · ‖D1v(t)‖2Hdt,

which gives

‖v̄(τ)− ū(τ)‖2H ≤ 4
µ0

τ∫
0

‖v̄(t)− ū(t)‖2H · ‖D1v(t)‖2Hdt.

Hence, by the Gronwall-Bellman inequality we obtain

‖v̄(τ)− ū(τ)‖H = 0 for τ ∈ [0, T ],
i.e. v = u.

4.3. Existence theorem for weak solutions for nnn ≤ 444. In the case n ≤ 4
we consider the equation (1.1) in the form:

(4.13)
∂v

∂t
− µ0∆v +

n∑
i=1

vi
∂v

∂xi
−

t∫
0

Div(a(t, s, x, v(s, x), D1v(s, x))ds

+ grad p = f, (t, x) ∈ QT ,

where elements of the matrix-function aij are defined by

(4.14)
aij(t, s, x, v(s, x), D1v(s, x))

= b(i, j; t, s, x) : D1v(s, x) + c(i, j; t, s, x) · v(s, x),
and the matrix-functions b(i, j, ·) and the vector-function c(i, j, ·) are essen-
tially bounded.
In particular, the equation (4.13) contains, as a special case, the equations

of the Oldroid mathematical model and its generalizations [2], [8].
The problem of the existence of weak solutions of an initial–boundary

value problem for the equation (4.13) is equivalent to the problem

(4.15) v′ + µ0Av − K(v)−
t∫

0

G(t, s, v(s))ds = f, v(0) = v0.

Moreover, the solution v ∈ L2((0, T ), V ) and v′ ∈ L1((0, T ), V ∗).
We first prove an auxiliary proposition.

Lemma 4.2. If sequence vε ∈ X converges weakly in X to v∗, strongly
with respect to the norm L2((0, T ), H) and a.e. on QT , then Dε(vε)− − →
K(v∗), ε → 0. The last limit is in the sense of distributions on [0, T ] with
values in V∗.

Proof. By the definition of convergence in the sense of distributions ([6], p.
167), it is sufficient to show that

T∫
0

〈Dε(vε)− K(v∗), h〉ψ(t)dt → 0
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for all h ∈ V and for all real-valued functions ψ which are continuously
differentiable on [0, T ] and have supports in (0, T ). Since

T∫
0

〈Dε(vε)− K(v∗), h〉ψ(t)dt =
T∫
0

∫
Ω

n∑
i,j=1

(
vεi v

ε
j

1 + ε|vε|2 − v∗
i v

∗
j

)
∂hj
∂xi

ψdx dt,

we have∣∣∣∣∣∣
T∫
0

〈Dε(vε)− K(v∗), h〉ψ(t)dt
∣∣∣∣∣∣

≤ Cmax
i,j

∥∥∥∥ vεi v
ε
j

1 + ε|vε|2 − v∗
i v

∗
j

∥∥∥∥
L1(QT )

· ‖h‖C1(Ω) · ‖ψ‖L∞((0,T ),R).

Consider a chain of inequalities:

(4.16)

∥∥∥∥ vεi v
ε
j

1 + ε|vε|2 − v∗
i v

∗
j

∥∥∥∥
L1(QT )

≤
∥∥∥∥∥v

ε
i v

ε
j − v∗

i v
∗
j

1 + ε|vε|2
∥∥∥∥∥
L1(QT )

+

∥∥∥∥∥ε|v
ε|2v∗

i v
∗
j

1 + ε|vε|2
∥∥∥∥∥
L1(QT )

≤ ‖vεi vεj − v∗
i v

∗
j ‖L1(QT ) +

∥∥∥∥∥ε|v
ε|2v∗

i v
∗
j

1 + ε|vε|2
∥∥∥∥∥
L1(QT )

≤ ‖vεi ‖L2(QT ) · ‖vεj − v∗
j ‖L2(QT ) + ‖v∗

j ‖L2(QT )‖vεi − v∗
i ‖L2(QT )

+

∥∥∥∥∥ε|v
ε|2v∗

i v
∗
j

1 + ε|vε|2
∥∥∥∥∥
L1(QT )

.

Under the conditions of the lemma, ‖vε − v∗‖L2(QT ) → 0 as ε → 0 and
‖vε‖L2(QT ), ‖v∗‖L2(QT ) are uniformly bounded. Hence, to complete the proof
it is sufficient to show that the third term in (4.16) also tends to zero as
ε → 0.
The convergence vε → v∗ a.e. on QT implies that

ε|vε|2v∗
i v

∗
j

1+ε|vε|2 → 0 a.e.

on QT as ε → 0. Furthermore,
∣∣∣∣ ε|vε|2v∗

i v
∗
j

1+ε|vε|2
∣∣∣∣ ≤ |v∗

i v
∗
j | and v∗

i v
∗
j ∈ L1(QT ).

Thus,
∥∥∥∥ ε|vε|2v∗

i v
∗
j

1+ε|vε|2
∥∥∥∥
L1(QT )

→ 0 as ε → 0 by the Lebesgue theorem [6, Theorem
1.1].

We are now in the position to prove the weak solvability of the initial-
boundary value problem for (4.13).

Theorem 4.5. Let n ≤ 4 and the condition (4.14) be fulfilled. Let also
the matrix-functions b(i, j, ·) and the vector-functions c(i, j, ·) be essentially
bounded for i, j = 1, n. Then for every f ∈ L2((0, T ), H) and v0 ∈ H there
exists at least one weak solution

v ∈ L2((0, T ), V ) with v′ ∈ L1((0, T ), V ∗)
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of the problem (4.13), (1.2)-(1.4) which satisfies the inequalities

max
t∈[0,T ]

‖v(t)‖H +
n∑
i=1

∥∥∥∥ ∂v∂xi

∥∥∥∥
L2((0,T ),H)

≤ C(1 + ‖f‖L2((0,T ),H) + ‖v0‖H),

‖v′‖L1((0,T ),V ∗) ≤ C(1 + ‖f‖L2((0,T ),H) + ‖v0‖H)2,
with C independent of v, f and v0.

Proof. It is easy to see that in the case of equation (4.13) conditions A1)−
A3) are fulfilled. The terms B1(v) and C(v) are absent. Hence, conditions
M1) − M2) are also fulfilled. Thus, by theorem 3.2, every approximating
equation

(4.15ε) v′ + µ0Av − Dε(v)−
t∫

0

G(t, s, v(s))ds = f, ε > 0

has a solution v ∈ W such that v(0) = v0.
Choose an arbitrary sequence of positive numbers {εm} converging to

zero. Let {vm}, vm ∈ W be a sequence of solutions of the corresponding
operator equations (4.15εm). By estimates (4.1), (4.2), the sequence {vm}
is bounded. Hence, repeating the arguments of the proof of theorem 4.3,
without loss of generality, we may assume that

vm ⇀ v∗ weakly in X,

vm ⇀ v∗ ∗ −weakly in L∞((0, T ), H),

vm ⇀ v∗ strongly in L2(QT ),

vm ⇀ v∗ a. e. in QT ,

(vm)′ − − → (v∗)′ (in the sense of distributions).

It is known that linear continuous operators are weakly continuous. Hence,

Avm ⇀ Av∗ weakly in X,

t∫
0

G(t, s, vm(s))ds ⇀

t∫
0

G(t, s, v∗(s))ds weakly in X∗.

Therefore [6, Lemma 1.10], they converge in the sense of distributions. Fur-
thermore, in lemma 4.2 we showed that Dεm(vm)− − → K(v∗) in the sense
of distributions on [0, T ] with values in V∗. Thus, passing to the limit in the
sense of such distributions in the equality

(vm)′ + µ0Avm − Dεm(v
m)−

t∫
0

G(t, s, vm(s))ds = f,
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we obtain the following distributional equality

(v∗)′ + µ0Av∗ − K(v∗)−
t∫

0

G(t, s, v∗(s))ds = f.

All the terms, but the first one, are contained in L1((0, T ), V ∗), which implies
(v∗)′ ∈ L1((0, T ), V ∗). Therefore, v∗ is a solution of the equation (4.15).
Furthermore, since the sequence {vm} is bounded in the norm of the space
L∞((0, T ), H) and {vm(0)} is bounded in H, we may assume, without loss
of generality, that vm(0) ⇀ v∗(0) weakly in H, i.e., v∗(0) = v0. All a
priori estimates for solutions vm are also valid for the function v∗. Hence,
inequalities (4.17) hold.
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