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We investigate the stability and superstability of ternary homomorphisms between C∗-ternary
algebras and derivations onC∗-ternary algebras, associated with the following functional equation
f((x2 − x1)/3) + f((x1 − 3x3)/3) + f((3x1 + 3x3 − x2)/3) = f(x1).

1. Introduction

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product
(x, y, z) � [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear
in the middle variable, and associative in the sense that [x, y, [z,w, v]] = [x, [w, z, y], v] =
[[x, y, z], w, v], and satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3. If a C∗-ternary
algebra (A, [·, ·, ·]) has an identity, that is, an element e ∈ A such that x = [x, e, e] = [e, e, x] for
all x ∈ A, then it is routine to verify thatA, endowedwith xoy := [x, e, y] and x∗ := [e, x, e], is
a unital C∗-algebra. Conversely, if (A, o) is a unital C∗-algebra, then [x, y, z] := xoy∗ozmakes
A into a C∗-ternary algebra. A C-linear mapping H : A → B is called a C∗-ternary algebra
homomorphism if

H
([
x, y, z

])
=
[
H(x),H

(
y
)
,H(z)

]
, (1.1)
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for all x, y, z ∈ A. A C-linear mapping δ : A → A is called a C∗-ternary algebra derivation if

δ
([
x, y, z

])
=
[
δ(x), y, z

]
+
[
x, δ

(
y
)
, z
]
+
[
x, y, δ(z)

]
, (1.2)

for all x, y, z ∈ A.
Ternary structures and their generalization the so-called n-ary structures raise certain

hopes in view of their applications in physics (see [1–8]).
We say a functional equation ζ is stable if any function g satisfying the equation ζ

approximately is near to true solution of ζ. Moreover, ζ is superstable if every approximately
solution of ζ is an exact solution of it.

The study of stability problems originated from a famous talk given by Ulam [9]
in 1940: “Under what condition does there exist a homomorphism near an approximate
homomorphism?” In the next year 1941, Hyers [10] answered affirmatively the question of
Ulam for additive mappings between Banach spaces.

A generalized version of the theorem of Hyers for approximately additive maps was
given by Rassias [11] in 1978 as follows.

Theorem 1.1. Let f : E1 → E2 be a mapping from a normed vector space E1 into a Banach space E2

subject to the inequality:
∥∥f

(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥∥y
∥∥p), (1.3)

for all x, y ∈ E1, where ε and p are constants with ε > 0 and p < 1. Then, there exists a unique
additive mapping T : E1 → E2 such that

∥∥f(x) − T(x)∥∥ ≤ 2ε
2 − 2p

‖x‖p, (1.4)

for all x ∈ E1.

The stability phenomenon that was introduced and proved by Rassias is called Hyers-
Ulam-Rassias stability. And then the stability problems of several functional equations have
been extensively investigated by a number of authors, and there are many interesting results
concerning this problem (see [12–27]).

Throughout this paper, we assume that A is a C∗-ternary algebra with norm ‖ · ‖A and
that B is a C∗-ternary algebra with norm ‖ · ‖B. Moreover, we assume that n0 ∈ N is a positive
integer and suppose that T

1
1/no

:= {eiθ; 0 ≤ θ ≤ 2π/no}.

2. Superstability

In this section, first we investigate homomorphisms between C∗-ternary algebras. We need
the following Lemma in the main results of the paper.

Lemma 2.1. Let f : A → B be a mapping such that
∥∥∥∥f

(
x2 − x1

3

)
+ f

(
x1 − 3x3

3

)
+ f

(
3x1 + 3x3 − x2

3

)∥∥∥∥
B

≤ ∥∥f(x1)
∥∥
B, (2.1)

for all x1, x2, x3 ∈ A. Then f is additive.
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Proof. Letting x1 = x2 = x3 = 0 in (2.1), we get

∥
∥3f(0)

∥
∥
B ≤ ∥

∥f(0)
∥
∥
B. (2.2)

So f(0) = 0. Letting x1 = x2 = 0 in (2.1), we get

∥
∥f(−x3) + f(x3)

∥
∥
B ≤ ∥

∥f(0)
∥
∥
B = 0, (2.3)

for all x3 ∈ A. Hence f(−x3) = −f(x3) for all x3 ∈ A. Letting x1 = 0 and x2 = 6x3 in (2.1), we
get

∥
∥f(2x3) − 2f(x3)

∥
∥
B ≤ ∥

∥f(0)
∥
∥
B = 0, (2.4)

for all x3 ∈ A. Hence

f(2x3) = 2f(x3), (2.5)

for all x3 ∈ A. Letting x1 = 0 and x2 = 9x3 in (2.1), we get

∥∥f(3x3) − f(x3) − 2f(x3)
∥∥
B ≤ ∥∥f(0)

∥∥
B = 0, (2.6)

for all x3 ∈ A. Hence

f(3x3) = 3f(x3), (2.7)

for all x3 ∈ A. Letting x1 = 0 in (2.1), we get

∥∥∥∥f
(
x2
3

)
+ f(−x3) + f

(
x3 − x2

3

)∥∥∥∥
B

≤ ∥∥f(0)
∥∥
B = 0, (2.8)

for all x2, x3 ∈ A. So

f

(
x2
3

)
+ f(−x3) + f

(
x3 − x2

3

)
= 0, (2.9)

for all x2, x3 ∈ A. Let t1 = x3 − (x2/3) and t2 = x2/3 in (2.9). Then

f(t2) − f(t1 + t2) + f(t1) = 0, (2.10)

for all t1, t2 ∈ A, this means that f is additive.

Now, we prove the first result in superstability as follows.
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Theorem 2.2. Let p /= 1 and θ be nonnegative real numbers, and let f : A → B be a mapping such
that

∥
∥
∥
∥f

(
x2 − x1

3

)
+ f

(
x1 − 3μx3

3

)
+ μf

(
3x1 + 3x3 − x2

3

)∥
∥
∥
∥
B

≤ ∥
∥f(x1)

∥
∥
B, (2.11)

∥
∥f([x1, x2, x3]) − [f(x1), f(x2), f(x3)]

∥
∥
B ≤ θ

(
‖x1‖3pA + ‖x2‖3pA + ‖x3‖3pA

)
, (2.12)

for all μ ∈ T
1
1/no

and all x1, x2, x3 ∈ A. Then, the mapping f : A → B is a C∗-ternary algebra
homomorphism.

Proof. Assume p > 1.
Let μ = 1 in (2.11). By Lemma 2.1, the mapping f : A → B is additive. Letting x1 =

x2 = 0 in (2.11), we get

∥∥f
(−μx3

)
+ μf(x3)

∥∥
B ≤ ∥∥f(0)

∥∥
B = 0, (2.13)

for all x3 ∈ A and μ ∈ T
1. So

−f(μx3
)
+ μf(x3) = f

(−μx3
)
+ μf(x3) = 0, (2.14)

for all x3 ∈ A and all μ ∈ T
1. Hence f(μx3) = μf(x3) for all x3 ∈ A and all μ ∈ T

1
1/no

. By same
reasoning as proof of Theorem 2.2 of [28], the mapping f : A → B is C-linear. It follows from
(2.12) that

∥∥f([x1, x2, x3]) −
[
f(x1), f(x2), f(x3)

]∥∥
B

= lim
n→∞

8n
∥∥∥∥f

(
[x1, x2, x3]
2n · 2n · 2n

)
−
[
f
(x1
2n

)
, f

(x2
2n

)
, f

(x3
2n

)]∥∥∥
∥
B

≤ lim
n→∞

8nθ
8np

(
‖x1‖3pA + ‖x2‖3pA + ‖x3‖3pA

)
= 0,

(2.15)

for all x1, x2, x3 ∈ A. Thus,

f([x1, x2, x3]) =
[
f(x1), f(x2), f(x3)

]
, (2.16)

for all x1, x2, x3 ∈ A. Hence, the mapping f : A → B is a C∗-ternary algebra homomorphism.
Similarly, one obtains the result for the case p < 1.

Now, we establish the superstability of derivations on C∗-ternary algebras as follows.
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Theorem 2.3. Let p /= 1 and θ be nonnegative real numbers, and let f : A → A be a mapping
satisfying (2.11) such that

∥
∥f([x1, x2, x3]) −

[
f(x1), x2, x3

] − [
x1, f(x2), x3

] − [
x1, x2, f(x3)

]∥∥
A

≤ θ
(
‖x1‖3pA + ‖x2‖3pA + ‖x3‖3pA

)
,

(2.17)

for all x1, x2, x3 ∈ A. Then the mapping f : A → A is a C∗-ternary derivation.

Proof. Assume p > 1.
By the Theorem 2.2, the mapping f : A → A is C-linear. It follows from (2.17) that

∥
∥f([x1, x2, x3]) −

[
f(x1), x2, x3

] − [
x1, f(x2), x3

] − [
x1, x2, f(x3)

]∥∥
A

= lim
n→∞

8n
∥∥∥∥f

(
[x1, x2, x3]

8n

)
−
[
f
(x1
2n

)
,
x2
2n
,
x3
2n

]
−
[x1
2n
, f

(x2
2n

)
,
x3
2n

]

−
[x1
2n
,
x2
2n
, f

(x3
2n

)]∥∥∥∥
A

≤ lim
n→∞

8nθ
8np

(
‖x1‖3pA + ‖x2‖3pA + ‖x3‖3pA

)
= 0,

(2.18)

for all x1, x2, x3 ∈ A. So

f([x1, x2, x3]) =
[
f(x1), x2, x3

]
+
[
x1, f(x2), x3

]
+
[
x1, x2, f(x3)

]
(2.19)

for all x1, x2, x3 ∈ A. Thus, the mapping f : A → A is a C∗-ternary derivation. Similarly, one
obtains the result for the case p < 1.

3. Stability

First we prove the generalized Hyers-Ulam-Rassias stability of homomorphisms in C∗-
ternary algebras.

Theorem 3.1. Let p > 1 and θ be nonnegative real numbers, and let f : A → B be a mapping such
that

∥∥∥∥f
(
x2 − x1

3

)
+ f

(
x1 − 3μx3

3

)
+ μf

(
3x1 + 3x3 − x2

3

)
− f(x1)

∥∥∥∥
B

≤ θ
(
‖x1‖pA + ‖x2‖pA + ‖x3‖pA

)
,

(3.1)

∥∥f([x1, x2, x3]) −
[
f(x1), f(x2), f(x3)

]∥∥
B ≤ θ

(
‖x1‖3pA + ‖x2‖3pA + ‖x3‖3pA

)
, (3.2)
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for all μ ∈ T
1
1/no

, and all x1, x2, x3 ∈ A. Then there exists a unique C∗-ternary homomorphism
H : A → B such that

∥
∥H(x1) − f(x1)

∥
∥
B ≤ θ(1 + 2p)‖x1‖pA

1 − 31−p
, (3.3)

for all x1 ∈ A.

Proof. Let us assume μ = 1, x2 = 2x1 and x3 = 0 in (3.1). Then we get

∥
∥
∥
∥3f

(
x1
3

)
− f(x1)

∥
∥
∥
∥
B

≤ θ(1 + 2p)‖x1‖pA, (3.4)

for all x1 ∈ A. So by induction, we have

∥∥∥∥3
nf

(
x1
3n

)
− f(x1)

∥∥∥∥
B

≤ θ(1 + 2p)‖x1‖pA
n−1∑

i=0

3i(1−p), (3.5)

for all x1 ∈ A. Hence

∥∥∥∥3
n+mf

(
x1

3n+m

)
− 3mf

(
x1
3m

)∥∥∥∥
B

≤ θ(1 + 2p)‖x1‖pA
n−1∑

i=0

3(i+m)(1−p)

≤ θ(1 + 2p)‖x1‖pA
n+m−1∑

i=m

3i(1−p),

(3.6)

for all nonnegative integers m and n with n ≥ m, and all x1 ∈ A. It follows that the
sequence {3nf(x1/3n)} is a Cauchy sequence for all x1 ∈ A. Since B is complete, the sequence
{3nf(x1/3n)} converges. Thus, one can define the mappingH : A → B by

H(x1) := lim
n→∞

3nf
(
x1
3n

)
, (3.7)

for all x1 ∈ A. Moreover, letting m = 0 and passing the limit n → ∞ in (3.6), we get (3.3). It
follows from (3.1) that

∥∥∥∥H
(
x2 − x1

3

)
+H

(
x1 − 3μx3

3

)
+ μH

(
3x1 + 3x3 − x2

3

)
−H(x1)

∥∥∥∥
B

= lim
n→∞

3n
∥∥∥∥f

(
x2 − x1
3n+1

)
+ f

(
x1 − 3μx3

3n+1

)
+ f

(
3x1 + 3x3 − x2

3n+1

)
− f

(
x1
3n

)∥∥∥∥
B

≤ lim
n→∞

3nθ
3np

(
‖x1‖pA + ‖x2‖pA + ‖x3‖pA

)
= 0,

(3.8)
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for all μ ∈ T
1
1/no

, and all x1, x2, x3 ∈ A. So

H

(
x2 − x1

3

)
+H

(
x1 − 3μx3

3

)
+ μH

(
3x1 + 3x3 − x2

3

)
= H(x1), (3.9)

for all μ ∈ T
1
1/no

, and all x1, x2, x3 ∈ A. By the same reasoning as proof of Theorem 2.2 of [28],
the mappingH : A → B is C-linear.

Now, letH ′ : A → B be another additive mapping satisfying (3.3). Then, we have

∥
∥H(x1) −H ′(x1)

∥
∥
B = 3n

∥
∥
∥
∥H

(
x1
3n

)
−H ′

(
x1
3n

)∥
∥
∥
∥
B

≤ 3n
(∥
∥
∥
∥H

(
x1
3n

)
− f

(
x1
3n

)∥
∥
∥
∥
B

+
∥
∥
∥
∥H

′
(
x1
3n

)
− f

(
x1
3n

)∥
∥
∥
∥
B

)

≤ 2 · 3nθ(1 + 2p)
3np

(
1 − 31−p

) ‖x‖pA,

(3.10)

which tends to zero as n → ∞ for all x1 ∈ A. So we can conclude thatH(x1) = H ′(x1) for all
x1 ∈ A. This proves the uniqueness ofH.

It follows from (3.2) that

‖H([x1, x2, x3]) − [H(x1),H(x2),H(x3)]‖B

= lim
n→∞

27n
∥∥∥∥f

(
[x1, x2, x3]
3n · 3n · 3n

)
−
[
f

(
x1
3n

)
, f

(
x2
3n

)
, f

(
x3
3n

)]∥∥∥∥
B

≤ lim
n→∞

27nθ
27np

(
‖x1‖3pA + ‖x2‖3pA + ‖x3‖3pA

)
= 0,

(3.11)

for all x1, x2, x3 ∈ A.
Thus, the mapping H : A → B is a unique C∗-ternary homomorphism satisfying

(3.3).

Theorem 3.2. Let p < 1 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (3.1) and (3.2). Then, there exists a unique C∗-ternary homomorphism H : A → B such
that

∥∥H(x1) − f(x1)
∥∥
B ≤ θ(1 + 2p)‖x1‖pA

31−p − 1
, (3.12)

for all x1 ∈ A.

Proof. The proof is similar to the proof of Theorem 3.1.

Now, we prove the generalized Hyers-Ulam-Rassias stability of derivations on C∗-
ternary algebras.
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Theorem 3.3. Let p > 1 and θ be nonnegative real numbers, and let f : A → A be a mapping such
that

∥
∥
∥
∥f

(
x2 − x1

3

)
+ f

(
x1 − 3μx3

3

)
+ μf

(
3x1 + 3x3 − x2

3

)
− f(x1)

∥
∥
∥
∥
A

≤ θ
(
‖x1‖pA + ‖x2‖pA + ‖x3‖pA

)
,

(3.13)

∥
∥f([x1, x2, x3]) −

[
f(x1), x2, x3

] − [
x1, f(x2), x3

] − [
x1, x2, f(x3)

]∥∥
A

≤ θ
(
‖x1‖3pA + ‖x2‖3pA + ‖x3‖3pA

)
,

(3.14)

for all μ ∈ T
1
1/no

, and all x1, x2, x3 ∈ A. Then, there exists a unique C∗-ternary derivation D : A →
A such that

∥∥D(x1) − f(x1)
∥∥
A ≤ θ(1 + 2p)‖x1‖pA

1 − 31−p
, (3.15)

for all x1 ∈ A.

Proof. By the same reasoning as in the proof of the Theorem 3.1, there exists a unique C-linear
mapping D : A → A satisfying (3.15). The mapping D : A → A is defined by

D(x1) := lim
n→∞

3nf
(
x1
3n

)
, (3.16)

for all x1 ∈ A. It follows from (3.14) that

‖D([x1, x2, x3]) − [D(x1), x2, x3] − [x1, D(x2), x3] − [x1, x2, D(x3)]‖A

= lim
n→∞

27n
∥∥∥∥
[x1, x2, x3]
3n · 3n · 3n −

[
f

(
x1
3n

)
,
x2
3n
,
x3
3n

]
−
[
x1
3n
, f

(
x2
3n

)
,
x3
3n

]
−
[
x1
3n
,
x2
3n
, f

(
x3
3n

)]∥∥∥∥
A

≤ lim
n→∞

27nθ
27np

(
‖x1‖3pA + ‖x2‖3pA + ‖x3‖3pA

)
= 0,

(3.17)

for all x1, x2, x3 ∈ A. So

D([x1, x2, x3]) = [D(x1), x2, x3] + [x1, D(x2), x3] + [x1, x2, D(x3)] (3.18)

for all x1, x2, x3 ∈ A.
Thus, the mappingD : A → A is a unique C∗-ternary derivation satisfying (3.15).
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Theorem 3.4. Let p < 1 and θ be nonnegative real numbers, and let f : A → A be a mapping
satisfying (3.13)and (3.14). Then, there exists a unique C∗-ternary derivation D : A → A such that

∥
∥D(x1) − f(x1)

∥
∥
A ≤ θ(1 + 2p)‖x1‖pA

31−p − 1
, (3.19)

for all x1 ∈ A.

Proof. The proof is similar to the proof of Theorems 3.1 and 3.3.

4. Conclusions

In this paper, we have analyzed some detail C∗-ternary algebras and derivations on C∗-
ternary algebras, associated with the following functional equation:

f

(
x2 − x1

3

)
+ f

(
x1 − 3x3

3

)
+ f

(
3x1 + 3x3 − x2

3

)
= f(x1). (4.1)

A detailed study of how we can have the generalized Hyers-Ulam-Rassias stability of homo-
morphisms and derivations on C∗-ternary algebras is given.
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[21] D. H. Hyers and T. M. Rassias, “Approximate homomorphisms,” Aequationes Mathematicae, vol. 44,
no. 2-3, pp. 125–153, 1992.

[22] G. Isac and T.M. Rassias, “On theHyers-Ulam stability of ψ-additivemappings,” Journal of Approxima-
tion Theory, vol. 72, no. 2, pp. 131–137, 1993.

[23] G. Isac and T. M. Rassias, “Stability of ψ-additive mappings: applications to nonlinear analysis,” Inter-
national Journal of Mathematics and Mathematical Sciences, vol. 19, no. 2, pp. 219–228, 1996.

[24] Th. M. Rassias, Ed., Functional Equations and Inequalities, vol. 518 of Mathematics and Its Applications,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

[25] T. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae Ma-
thematicae, vol. 62, no. 1, pp. 23–130, 2000.

[26] Th.M. Rassias, “On the stability of the quadratic functional equation and its applications,” Studia Uni-
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