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We introduce a general implicit iterative scheme base on viscosity approximation method with
a ¢-strongly pseudocontractive mapping for finding a common element of the set of solutions
for a system of mixed equilibrium problems, the set of common fixed point for a nonexpansive
semigroup, and the set of solutions of system of variational inclusions with set-valued maximal
monotone mapping and Lipschitzian relaxed cocoercive mappings in Hilbert spaces. Furthermore,
we prove that the proposed iterative algorithm converges strongly to a common element of the
above three sets, which is a solution of the optimization problem related to a strongly positive
bounded linear operator.

1. Introduction

Throughout this paper we denoted by N and R™ the set of all positive integers and all positive
real numbers, respectively. We always assume that H be a real Hilbert space with inner
product (-,-) and norm || - ||, respectively, C is a nonempty closed convex subset of H. Let
¢ : C — R be a real-valued function and © : C x C — R be an equilibrium bifunction. The
mixed equilibrium problem (for short, MEP) is to find x* € C such that

O(x"y) +¢(y) —p(x) 20, VyeC (1.1)
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The set of solutions of (1.1) is denoted by MEP(©, ¢), that is,

MEP(©,¢) = {x* € C: O(x",y) + p(y) —p(x*) >0, Vy € C}. (1.2)

In particular, if ¢ = 0, this problem reduces to the equilibrium problem, that is, to find
x* € C such that

O(x*,y) =20, VYyeC (1.3)

The set of solution of (1.3) is denoted by EP(O).

Mixed equilibrium problems include fixed point problems, optimization problems,
variational inequality problems, Nash equilibrium problems, and equilibrium problems as
special cases (see, e.g., [1-6]). Some methods have been proposed to solve the equilibrium
problem, see, for instance, [7-21].

Let A be a strongly positive bounded linear operator on H, that is, there exists a
constant y > 0 such that

(Ax,x) >Y||lx|>, VYxeH. (1.4)

Recall that, a mapping f : H — H is said to be contractive if there exists a constant
a € (0,1) such that

157G = fWl < allx-yll, vxyeH (1.5)

A mapping T : H — H is said to be

(i) nonexpansive if

[ITx =Tyl <[lx-v

, Vx,y€eH, (1.6)

(ii) pseudocontractive if

(Tx-Ty,x-y) < ||x—y||2, Vx,y € H, (1.7)

(iii) ¢-strongly pseudocontractive if there exists a continuous and strictly increasing
function ¢ : R* — R* with ¢(0) = 0 such that

(Tx~Ty,x-y) < |lx =yl = ¢(lx~yDllx-vl. VxyeH (1.8)

It is obvious that pseudocontractive mapping is more general than ¢-strongly
pseudocontractive mapping. If ¢(t) = at with 0 < a < 1, then ¢-strongly pseudocontractive
mapping reduces to f-strongly pseudocontractive mapping with 1 —a = g € (0,1), which is
more general than contractive mapping.
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Definition 1.1. A one-parameter family mapping S = {T(t) : t € R*} from C into itself is said
to be a nonexpansive semigroup on C if it satisfies the following conditions:

(i) T(0O)x =x for all x € C,

(ii) T(s+t) =T(s) oT(t) forall s,t € RY,
(iii) for each x € C the mapping t — T (f)x is continuous,
(iv) [THx =Tyl < |lx -yl forall x,y € Cand t € R*.

Remark 1.2. We denote by F(S) the set of all common fixed points of S, that is, F(S) :=
Mier: F(T(t)) = {x € C: T(t)x = x}.

Recall the following definitions of a nonlinear mapping B : C — H, the following are
mentioned.

Definition 1.3. The nonlinear mapping B : C — H is said to be

(i) monotone if

(Bx-By,x-y)>0, VYx,yeC, (1.9)
(ii) B-strongly monotone if there exists a constant § > 0 such that
(Bx - By, x-y) 2ﬂ||x—y||2, Vx,y €C, (1.10)
(iii) L-Lipschitz continuous if there exists a constant L > 0 such that

|Bx-By|| <L||x-y|, VxyeC (1.11)

(iv) v-inverse-strongly monotone if there exists a constant v > 0 such that

(Bx - By, x —y) >v|Bx - By 2 Vx,y €C, (1.12)

(v) relaxed (c, d)-cocoercive if there exists a constants ¢, d > 0 such that
(Bx - By, x-y) > (—c)||Bx - By||2 +d||dx - y||2, Vx,y € C. (1.13)

The resolvent operator technique for solving variational inequalities and variational
inclusions is interesting and important. The resolvent equation technique is used to
develop powerful and efficient numerical techniques for solving various classes of
variational inequalities, inclusions, and related optimization problems.

Definition 1.4. Let M : H — 2H be a multivalued maximal monotone mapping. The single-
valued mapping Jim,p) : H — H, defined by

Jop) () = (I+pM) ™ (1), YueH, (1.14)
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is called resolvent operator associated with M, where p is any positive number and I is the
identity mapping.

Next, we consider a system of quasivariational inclusions problem is to find (x*, y*) €
H x H such that

0€x*—y* +p1(Biy* + Mix*), (1.15)
0 € y* — x* + po(Box* + May*), .

where B; : H — H and M; : H — 2H are nonlinear mappings for eachi = 1,2.
As special cases of the problem (1.15), we have the following results.

(1) If By = B, = Band M; = M, = M, then the problem (1.15) is reduces to the fol-
lowing. Find (x*, y*) € H x H such that

0 € x* - y* + p1(By* + Mx*), 116)
0 € y* —x* + po(Bx* + My*). .

(2) Further, if x* = y* in problem (1.16), then the problem (1.16) is reduces to the
following. Find x* € H such that

0 € Bx* + Mx". (1.17)

The problem (1.17) is called variational inclusion problem. We denote by VI(H, B, M) the set of
solutions of the variational inclusion problem (1.17). Next, we consider two special cases of
the problem (1.17).

(1) M =0¢ : H — 2H, where ¢ : H — R U {+o0} is a proper convex lower
semicontinuous function and 0¢ is the subdifferential of ¢ then the quasivariational
inclusion problem (1.17) is equivalent to finding x* € H such that (Bx*,x — x*) +
P(x)-p(x*) >0, forall x € H, which is said to be the mixed quasivariational inequality.

(2) If M = 06¢c, where C is a nonempty closed convex subset of H, and 6c : H —
[0, o) is the indicator function of C, that is,

0, x €C,
oc(x) = (1.18)
+o0, x¢C,

then the quasivariational inclusion problem (1.17) is equivalent to the classical
variational inequality problem denoted by VI(C, B) which is to find x* € C such
that

(Bx*,x-x*)>0, VxeC. (1.19)

This problem is called Hartman-Stampacchia variational inequality problem (see e.g., [22-24]).
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It is known that problem (1.17) provides a convenient framework for the unified
study of optimal solutions in many optimization related areas including mathematical
programming, complementarity, variational inequalities, optimal control, mathematical
economics, equilibria, and game theory. Also various types of variational inclusions problems
have been extended and generalized (see [25—40] and the references therein).

On the other hand, the following optimization problem has been studied extensively
by many authors:

mig%(Ax,x} + %Hx—ullz—h(x), (1.20)

xeQ

where Q = Miei Cn, C1,Cy, ... are infinitely many closed convex subsets of H such that
Ny=1 Cn#0, u € H, p > 0 is a real number, A is a strongly positive linear bounded operator
on H and h is a potential function for yf (i.e., h'(x) = yf(x) for all x € H). This kind of
optimization problem has been studied extensively by many authors (see, e.g. [41-44]) when
Q=N2,C,and h(x) = (x,b), where b is a given point in H.

Li et al. [45] introduced two steps of iterative procedures for the approximation of
common fixed point of a nonexpansive semigroup S = {T(t) : t € R*} on a nonempty closed
convex subset C in a Hilbert space. Recently, Liu et al. [46] introduced a hybrid iterative
scheme for finding a common element of the set of solutions of system of mixed equilibrium
problems, the set of common fixed points for nonexpansive semigroup and the set of solution
of quasivariational inclusions with multivalued maximal monotone mappings and inverse-
strongly monotone mappings. Very recently, Hao [47] introduced a general iterative method
for finding a common element of solution set of quasivariational inclusion problems and the
set of common fixed points of an infinite family of nonexpansive mappings.

In this paper, motivated and inspired by Li et al. [45], Liu et al. [46], and Hao [47], we
introduce a general implicit iterative algorithm base on viscosity approximation methods
with a ¢-strongly pseudocontractive mapping which is more general than a contraction
mapping for finding a common element of the set of solutions for a system of mixed
equilibrium problems, the set of common fixed point for a nonexpansive semigroup, and the
set of solutions of system of variational inclusions (1.15) with set-valued maximal monotone
mapping and Lipschitzian relaxed cocoercive mappings in Hilbert spaces. We prove that the
proposed iterative algorithm converges strongly to a common element of the above three sets,
which is a solution of the optimization problem related to a strongly positive bounded linear
operator. The results obtained in this paper extend and improve several recent results in this
area.

2. Preliminaries

In the sequel, we use x, — x and x, — x to denote the weak convergence and strong
convergence of the sequence {x,} in H, respectively.
This collects some results that will be used in the proofs of our main results.

Proposition 2.1 (see [21]). (i) The resolvent operator J(a1,p) associated with M is single-valued and
nonexpansive for all p > 0, that is,

T () = T (W < llx -yl Vx,y € H ¥Yp>O0. (2.1)
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(ii) The resolvent operator J(m,p) is 1-inverse-strongly monotone, that is,

1T e () = Ty D17 < (x = v, Jompy () = Ty (), Vx,y € H. (2.2)

Obviously, this immediately implies that

2
7

Vx,y € H.
(2.3)

[ (x = y) = U () = Tty WD < M2 = w11 = [T (%) = Ty ()

For solving the equilibrium problem for bifunction ©® : Hx H — R, let us assume that
satisfies the following conditions:

(H1) O(x,x) =0forall x € H;
(H2) © is monotone, thatis, O(x,y) + O(y,x) < 0forall x,y € H;

)
)
(H3) for each y € H, x — O(x, y) is concave and upper semicontinuous;
(H4) for each y € H, x — ©O(x, y) is convex;

)

(H5) for each y € H, x — O(x, y) is lower semicontinuous.

Definition 2.2. Amap n: HxH — H is called Lipschitz continuous, if there exists a constant
L > 0 such that

ln(xy)|| <Ll|x-y|, VYxyeH. (2.4)

A differentiable function K : H — R on a convex set H is called

(i) p—convex [7] if

K(y) - K(x) > (K'(x),n(y,x)), VYx,y€H, (2.5)

where K'(x) is the Fréchet differentiable of K at x,

(i) n—strongly convex [7] if there exists a constant v > 0 such that

> Vx,yeH. (2.6)

K(y) - K@) = (K'@,n(x) 2 (3)lx-y

Let© : H x H — R be an equilibrium bifunction satisfying the conditions (H1)-(HS5). Let
r be any given positive number. For a given point x € H, consider the following auxiliary
problem for MEP (for short, MEP (x, y)) to find y € H such that

O(y,2) +9(z) ~9(y) + %(K’(y) -K'(x),n(zy)) 20, vzeH, 2.7)
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where 1 : H x H — H is a mapping, and K'(x) is the Fréchet derivative of a functional

K:H — Ratx. Let V,(e’(p) : H — H be the mapping such that for each x € H, Vr(@’w) (x)is
the set of solutions of MEP (x,vy), that is,

Vr(e"’))(x) = {y € H:0(y,z) +¢(z) —¢(y)
(2.8)
+%<K’(y) -K'(x),n(z,y)) >0,Vz € H}, Vx € H.

Then the following conclusion holds.

Proposition 2.3 (see [7]). Let H be a real Hilbert space, ¢ : H — R be a a lower semicontinuous
and convex functional. Let © : H x H — R be an equilibrium bifunction satisfying conditions
(H1)-(H5). Assume that

(i) n: H x H — R s Lipschitz continuous with constant ¢ > 0 such that
@) n(x,y)+n(y,x)=0forall x,y € H;
(b) n(-,-) is affine in the first variable;

(c) for each fixed y € H, x — n(y, x) is continuous from the weak topology to the weak
topology;

(ii) K : H — R is -strongly convex with constant p > 0, and its derivative K' is continuous
from the weak topology to the strong topology;

(iii) for each x € H, there exists a bounded subset D, C H and z, € H such that for all
y € Dy,

O(y,22) +9(20) ~ p(y) + {K'(y) ~ K'() 1(z,y)) <0 29)

Then the following hold:

(i) V,(e"”) is single valued;
(i) F(v;7") = MEP(O,");
(iii) MEP(O, ¢) is closed and convex.

Lemma 2.4 (see [48]). Let C be a nonempty bounded closed and convex subset of a real Hilbert space
H.Let S ={T(t):t € R"} beanonexpansive semigroup on C, then for all h > 0,

t t
% J‘o T(s)xds—T(h) <% fo T(s)x ds>

Lemma 2.5 (see [49]). Let X be a uniformly convex Banach space, C be a nonempty closed and
convex subset of X, and T : C — X be a nonexpansive mapping. Then I — T is demiclosed at zero.

lim sup
t=yec

=0. (2.10)
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Lemma 2.6 (see [50]). Assume that A is a strongly positive linear bounded operator on H with
coefficient y > 0 and 0 < p < ||A||™". Then ||I - pA|| <1 - pY.

Lemma 2.7 (see [51]). Let X be a Banach space and f : X — X be a ¢-strongly pseudocontractive
and continuous mapping. Then f has a unique fixed point in X.

Lemma 2.8. In a real Hilbert space H, the following inequality holds:
x+y|* < lIxI® +2(y,x+y), Vx,ye€H. (2.11)

The following lemma can be found in [52, 53] (see also Lemma 2.2 in [54]).

Lemma 2.9. Let C be a nonempty closed and convex subset of a real Hilbert space Hand g : C — RU
{+00} be a proper lower semicontinuous differentiable convex function differentiable convex function.
If x* is a solution to the minimization problem

g(x") = infg(x), (2.12)
then
(§'(x),x-x*)>0, xeC. (2.13)

In particular, if x* solves the optimization problem

H 1 )
5 Slx = - 2.14
minz (Ax, x) + zllx ull” - h(x), (2.14)
then
(u+ (yf-(I+pA))x’,x-x")<0, xeC, (2.15)

where h is a potential function for y f.

The following lemmas can be found in ([55, 56]). For the sake of the completeness,
one includes its proof in a Hilbert space version. Without loss of generality, one assumes that
c,de (0,1)and Lg € [1, ).

Lemma 2.10. Let H be a real Hilbert space, B: H — H be an Lp-Lipschitzian and relaxed (c, d)-
cocoercive mapping. Then, one has

11 = pB)x = (1= pB)y||* < (1 +2pcLy - 2pd + p°L} ) | - I, (2.16)

where p > 0. In particular, if 0 < p < 2(d — cL3) /L3, then I — pB is nonexpansive.



Abstract and Applied Analysis 9

Proof. For all x,y € H, we have

11 = pB)x — (I - pB)y|I* = || (x = ) = (pBx - pBy)||°
= ||lx - y||* - 2p(Bx - By, x - y) + p*||Bx - By||®
<l gl - 20 el B~ Byl + e~y + o2 Bx - By P
= |lx = ylI* - 2pd||x - y|I* + 2pc|| Bx - By||* + p?|| Bx - By||?

< (1 +2pcLy - 2pd + PZL%> lx-yl”
2.17)

It is clear that, if 0 < p < 2(d — cL3)/L3, then I — pB is nonexpansive. This completes the
proof. O

Lemma 2.11. Let H be a real Hilbert space, M; : H — 2 be the a maximal monotone mapping
and B; : H — H be an L;-Lipschitzian and relaxed (c;, d;)-cocoercive mapping for all i = 1,2. Let
Q: H — H be a mapping defined by

Qx = Jovupn [Jiata o) (x = p2B2X) = p1B1] (Mo ) (X — p2Bax)], Vx € H. (218)

If0<p; <2(di— c;L?)/L? foralli=1,2, then Q : H — H is nonexpansive.
Proof. By Lemma 2.10, we know that (I — p,B;) and (I — p1B;) are nonexpansive, for all x, y €
H, we have
1Qx = Q|| = [|Tmio0) T Ma p0) (X = p2B2x) = p1B1J My 0) (X = p2Bax) ]
~Jovipn Ut pn) (¥ = p2B2y) = p1Bil ) (y = p2Bay)] ||
< ||t p0) (x = p2Bax) = p1B1J (as 0) (X — p2Bax) ]
=tz p0) (v = p2B2y) = prBi vz ) (v = p2B2y)] ||

(2.19)
= [Tz ) (T = p2B2) (T = p1B1) X = Jitz o) (I = p2Ba) (T = p1 B ) y|
<|[(T=p2B2) (I = p1Br)x = (I = p2Ba) (I - pr1B1) |
<[(T=p2Bo)x = (I - p2Ba)y|
< lx-yl.

which implies that Q is nonexpansive. This completes the proof. O

Lemma 2.12. For all (x*,y*) € H x H, where y* = Jm, p,) (x* — p2Box™), (x*,y*) is a solution
of the problem (1.15) if and only if x* is a fixed point of the mapping Q : H — H defined as in
Lemma 2.11.
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Proof. Let (x*,y*) € H x H be a solution of the problem (1.15). Then, we have

v —p1Biy* € (I + p1My)x*,

(2.20)
x* - szzx* S (I + pzMz)y*,
which implies that
x* - Lo * B * P
* o )(3/* p1 13/*) 221)
Y = Jva ) (X" = p2Box”™).
We can deduce that (2.21) is equivalent to
X" = Jov o) Tz po) (37 = p2B2x™) = p1Bu vty ) (X7 = p2Box”)]. (2.22)
This completes the proof. O

3. Main Results

Now, in this section, we prove our main results of this article. Before proving the main result
we need the following lemma.

Lemma 3.1. Let H be a real Hilbert space. Let S = {T(t) : t € R*} be a nonexpansive semigroup

from H into itself. Then I — oy(-) is monotone, where oy(x) := (1/t) f(t) T(s)xds for all x € H and
t>0.

Proof. For all x,y € H, we have

t t
(r=y, (I=o)x= A =ai()y) = <" R4 <I 4 T<s>d5>x_ <I‘ i) T<s>d5>y>
0 0

1 1
= ||x—y||2— <x—y,?J T(s)xds - ?f T(s)yds>
0 0

1 t
> Jlx =yl = e =yl 7 [ T2 -TElds

2 2
2 [lx=yl|” = flx -yl
=0,
(3.1)

which implies that I — 0;(-) is monotone. This completes the proof. O

Theorem 3.2. Let H be a real Hilbert space. Let ¢; : H — R (i =1,2,...,N) be a finite family of
lower semicontinuous and convex function, ©; : Hx H — R (i =1,2,...,N) be a finite family of
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bifunctions satisfying (H1)—(H5), and n; : H x H — H be a finite family of Lipschitz continuous
mappings with a constant o; (i =1,2,...,N). Let S = {T(t) : t € R*} be a nonexpansive semigroup
from H into itself, B; : H — H(i = 1,2) be an L;-Lipschitzian and relaxed (c;, d;)-cocoercive
mapping with p; € (0,2(d; — ¢;L?)/L?] forall i = 1,2 and M; : H — 2H(i = 1,2) be a maximal
monotone mapping. Assume that Q := F(S) mﬂszlMEP (O, wi)NF(Q) # 0, where Q is defined as in
Lemma 2.11. Let f : H — H be a ¢-strongly pseudocontractive mapping with lim, _, ., (E(t) = +oo
and A be a strongly positive linear bounded operator on H with a coefficient y > 0. Let p > 0 and
y > 0 be two constants such that 0 < y < 1+ py. Let {ri,}(i = 1,2,...,N) be a finite family of
positive real sequence such that lim inf, _, .1;, > 0, {a,} and {p,} be two sequences in [0,1], and
{tn} be a positive real divergent sequence. For any fixed u € H, let {x,} be the sequence defined by

0, <u,(1),x> +1(x) — @1 <u§ll)> ! <K' ( (1)> - Ki(xn), 11 <x uill)>> >0, VxeH,

62(11,, ,x) +¢a(x) — (p2<u,(1)> ! <K§<u;2)> - K'2< (1)> m (x,uf,z)>> >0, VYVxeH,

On (48" ) o1 (46 (K (1) R () (o) 20 v 1
Yn = J(My,p) (usz) - PszuﬁN)>,

tn
Xp = oy (U+Yf(xXn)) + Puxn+ (1= Pu)] —an(I + #A))% fo T(5)J My p1) (Yn = p1Bryn)ds,

(3.2)
where
(1) Vr(lenl (Pl) X,
u](/:) — Vr(l? (Px) (l 1) Vr(l(:? ‘P!)Vrsel1nl SPi- 1) (1 2) Vr(!,(:?u(ﬂl) . Vr(zenZ IPZ)u(l) (3.3)

= VO Ly Ol 203, N

Tn

and V,l? " H — H,i=1,2,...,Nis the mapping defined by (2.8). Assume the following.

(i) ; : Hx H — H is Lipschitz continuous with constant 0; >0 (i = 1,2,...,N) such that

(@) ni(x,y) +ni(y,x) =0 forall x,y € H,

(b) 1i (-, -) is affine in the first variable,

(c) for each fixed y € H, x — n;(y, x) is sequentially continuous from the weak topology
to the weak topology.

(i) K; : H — R is n;-strongly convex with constant y; > 0, and its derivative K; is not only
continuous from the weak topology to the strong topology but also Lipschitz continuous
with constant v; such that p; > o;v;.
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(iii) Foralli=1,2,...,, N and for all x € H, there exists a bounded subset D, C H and z,, € H
such that for all y & Dy,

©i(Y, zn) + 9i(2x) — @i(y) + ril—n<K§ (v) - Ki(x),mi(zx,y)) <0. (3.4)

If the following conditions are satisfied:

(C1) limy,—, oxy, =0,
(C2) 0 < liminf, ., f, <limsup, , p, <1,

then the sequence {x,} defined by (3.2) converges strongly to x* € Q := F(S) N(eL,;MEP (O, ¢x) N
F(Q), provided V,(i?i"pi) is firmly nonexpansive, where x* is the unique solution of the
variational inequality

(u+ (yf - (I+pA))x",z-x") <0, VzeQ, (3.5)
or, equivalently, x* is the unique solution of the optimization problem

o L e
min® (Ax,x) + 5 |lx ~ ul = h(x), (3.6)

where h is a potential function for y f and (x*, y*) is the solution of the problem (1.15), where
V' = J(Mypo) (X% = p2Box*).

Proof. By the conditions (C1) and (C2), we may assume, without loss of generality, that a,, <
1-p1+ ‘u||A||)’1 for all n € N. Since A is a linear bounded self-adjoint operator on H, by
(1.4), we have

[All = sup{[(Aw, u)| : u € H, ||ul| = 1}. (3.7)

Observe that

((A=B)I —an(I+pA))u,u) =1-p, - a, — au(Au,u)
>1-Pn—an—anpl|All (3.8)

> 0.
This shows that (1 - ,)I — a,, (I + pA) is positive. It follows that

(2= )T = an(I +pA) || = sup{[{((1 = fu)] = an(I + pA))u,u)| : u € H, ||ul| = 1}
=sup{l -, —an —anpu(Au,u) :u € H,|jul| =1} (3.9)

<1-py—a, —ayuy.
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In fact, by the assumption that forall k € {1,2,..., N}, Vr(:)”k ) g nonexpansive. Setting Vk .=
AN V(@2’¢2)V,(1?1'(P1) fork € {1,2,...,N} and V; := I. Define a mapping W,, : H — H

Tkn 2,n

by
1 (™
W,x ::t—j T(s)QVNxds, Vxe€H. (3.10)
nJo

Hence, by Lemma 2.11 and nonexpansiveness (semigroup) of T(s) and V,f, forall x,y € C,
we have

t, tn
Wt - Wyl = “} [ TeQvixds- L [ T)QvNyds

0 nJo
<[leviNx-aviy| (3.11)
<|[Vix - V,iVyH

< [lx=wll

which implies that W,, is nonexpansive.

First, we show that {x,} defined by (3.2) is well defined. Define a mapping T,{ H —
H by

T)x = ay(u+yf(x)) +pux+ ((1=po)I —an(I+pA))Wyx, VxeH. (3.12)
Indeed, by Lemma 2.6, and from (3.11), for all x, y € H, we have

(Tix=Tiy,x-y) = an(f() - f(y), x -y} +Pulx -y, x - )
+ (A= pu)] - an(I +pA)) (Wx - Wy), x - y)
< any (= yl* = ¢l -y < - yll)
+Pallx = ylI* + (1= - @ = awpey) | x — y||”
= [T+ a(y = 1+ )] llx = yl? = anyd(llx =yl llx -y

(3.13)

<l =yl - awyp(llc = yl) 1 = -

This shows that T,{ is a ¢-strongly pseudocontractive and strongly continuous. It follows

from Lemma 2.7 that Tr{ has a unique fixed point x,, € H, that s, {x,} defined by (3.2) is well
defined.
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Next, we show that uniqueness of the solution of the variational inequality (3.5).
Suppose that X, x* € Q satisfy (3.5), then

(u+ (vf - (I + pA))x', % -x') <0,

(3.14)
(u+ (yf - (I+pA))x,x*-x) <0.
Adding up (3.14), we have
0> ((I+pA)x" = (I+pA)X -y (f(x") - f(X)),x" - %)
= ((I+pA)x* — (I+pA)X,x* - Xy —y(f(x*) - f(X),x* - X) 615)
2 (1+ )l = 2P = ylla” = 27 + p(llx" = Z) ([l = XI) |
= (L+u7 = y)lIx" = 2P + p(llx" = Z) ([lx" = X))
It follows that
(L+py = y)llx™ - Xl + ¢(lx" - X])) <0, (3.16)

which is a contradiction. Hence, X = x* and the uniqueness is proved.
Next, we show that {x,} is bounded. Taking x € , it follows from Lemma 2.11 that

X = Jvupn) [J(Mapa) (X = p2B2X) = p1B1] (a0 (X = p2B2X) ] (3.17)

Putting ¥ = Ja, ) (X — p2B2X), we have X = Jia, p) (¥ — p1B1Yy). Setting z, := VNx, and
Uy = Jmy,p0) (Yn — p1B1ya), then

Xn = 0y (U+Yf(xn)) + Puxn+ (1= Pp)] —an(I+ ‘uA))% J:n T(s)v, ds. (3.18)

Since forall k € {1,2,...,N}, Vr(,ik’q)k ) is nonexpansive, we also have that VN is nonexpansive
and x = VNx, then

12 — || = V,ﬁ\]xn—V,ﬂ\’E” <|lxn—%|, VneN. (3.19)

By nonexpansiveness of [y, ,,) and I — p;B; (i = 1,2), we have

[on =%l = | Jv1,00 (¥n = P1B1Yn) = Tt (¥ = p1B1Y) |
< |[(yn = p1Bryn) = (¥ - p1B1) ||
<y -9l
= [ JMa ) (20 = P2B220) = J (Mo o) (X = p2BoX) ||
< || (zn = p2B2za) = (X = p2BoX) ||
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< lzn = x|l
< lxen = x|
(3.20)
It follows from (3.20) that
llxn _E”2 = (X —X,Xp = X)
= ay(u+yf(xn) — (I +pA)X, Xy = X) + Pr{Xn — X, X, — X)
+ <((1 = Bu)I - a,(I+pA)) (tl J‘t"(T(s)v,1 —E)ds>,xn —E>
nJo
= any (f(xn) = f(X), %0 = X) + an(u +yf(X) = (I + pA)X, xn = X)
+ Pn(Xn — X, Xp — X)
(3.21)

((@por-anttena) (e s x,-5)

< any (Il = %I = ¢l = %) 1w ~ X1 )
+ oy (u+yf(X) - (I+pA)X, x5 =) Bollxn - X
+ (1= o = = aup7) | ~ %I,

and, so
Yo (lacn = X (lxn = xl) + (1 =y + uP) ocn = %> < (w+yf(®) = (I + pA)X, x, —X).  (3.22)
It follows that

Yo lloen = XD llxn = %I < (u+yf (%) = (I + pA)X, x, - X)

(3.23)
< lu+yf ) = (I +pA)x|llx, - |

Hence

o 3 < ¢-1<””+ /@ (7 > (624)

which implies that {x,} is bounded, so are {z,}, {y.}, and {v,}. Since f is ¢-strongly pseu-
docontractive, we have

(f(xn) = fX), %0 = %) < ||2cw = TI* = p(llx5 = X)) | = x|

. (3.25)
<l = ||

Thus { f(x,)} is bounded.
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Next, we show that lim,,_, ||x, — T (h)x,|| = 0, for all h > 0. From (3.18), we observe

that
1 (" 1 ("
Xn — t_f T(S)vnds Sayflu+ Yf(xn) - (I + ‘llA)t— f T(S)v”ds
nJo nJ0
(3.26)
1 ("
+ Pl xn — —J T(s)v,ds]||.
tTl 0
It follows that
1 (" an 1 ("
Xp—— | T(s)v,ds| < u+yf(xn) - (I+pA)— | T(s)v,ds|. (3.27)
ty 0 1- ﬁn ty 0
By the conditions (C1) and (C2), we obtain
1 ("
lim ||x, - o I T(s)v,ds|| =0. (3.28)
n—oo n 0

LetB={we H: |lw-%|| < ¢ (lu+yf(x) - (I+pA)x|/y)}, then B is nonempty bounded
closed and convex subset of H, which is T'(h)-invariant for all & > 0 and contains {x,}. It
follows from Lemma 2.4 that

1 (™ 1 ("
i L T(s)v,ds—T(h) <E .[0 T(s)v, ds>

On the other hand, we note that

lim

n— oo

‘ =0. (3.29)

ty
[l = T (h)xu|| < ||xn — tlf T(s)v,ds|| +
nJo

ty tn
é J; T(s)v,ds—T(h) <% fo T(s)v, ds>
T(h) <é f; T(s)o, ds> —T(h)x,

tl Jdﬂ T(s)on ds - T(h) <tl f" T(s)on ds>
nJo nJo
(3.30)

+

<2

1 ("
Xy — —f T(s)v, ds
tn 0

From (3.28) and (3.29), for all h > 0, we have

Jim [l2c, =T (h) x| = 0. (3.31)



Abstract and Applied Analysis 17

Next, we show that lim, . ||V x, - V¥1x,|| = 0 for all k € {1,2,...,N}. Since Vr(kenk"”k) is

firmly nonexpansive for all k € {1,2,..., N} and V¥ = V(ek (p")V,(k@fn] e D Vr(l(? ) for k €
{1,2,..., N}, hence for x € Q, we have

_n2
[ Vi =] - |

<V(@k Pr) Vk 1 V(ek APk)=— Vk 1 _E>

Tk,n rkrl

V(@k ‘Pk)Vk 1 (G)k ‘Pk)—“

Tkn Tk

- <V,i‘xn _% Vi, _E> (3.32)
[N R EA i e
It follows that
[V =5 < e =307 - | Vi - v 63)

Now, by Lemma 2.8, we have

—2
ll2¢n = I[|” =

anu + ay (yf(x0) = (I + pA)X) + Py <xn 3 tl J‘fn T(s)v, ds>
nJo

2

1 (™
+(I - an(I+pA)) <a fo T(s)v,ds —§>

ty tn
<é ,[0 T(s)v,ds —§> + P <xn - é :[0 T(s)v, ds>

+2a,(u+yf(xn) — (I +pA)X, x, —X)

< <H (I-a,(I+pA)) <% J‘: T(s)v, ds —§>

+ 20, (u+yf(xn) = (I + pA)X, x, — X)

+ Pn

1 ("
Xp— — f T(s)v,ds
tn 0

:

ty
< <(1 =ty — Ay ||on = X|| + B |[xn — tl .[0 T(s)v,ds

+ 20 ||+ y f (xn) = (I +pA)X||[|x, — x|

= (1= ap — a7 lon = X|* + Cn,
(3.34)



18 Abstract and Applied Analysis

where
1 ty, 2 1 ty
Cn = Ballxn — — f T(s)vpds|| +2(1—an— anpy)Bullon —x||||xn — — j T(s)v,ds
tn Jo tn Jo (3.35)
+ 2o ||+ v f (xn) = (I +pA)X||||xn — X
From the condition (C1) and (3.28), we have
lim ¢, = 0. (3.36)
From (3.20), we observe that
[on = X[| < [|ya = ]|
< [[vien - %| (3.37)
< | Vix,-%|, Vke(1,2,..., N}
Substituting (3.33) into (3.34), we have
2
llacn = %7 < (1 - — an/ﬁ)Z{ len = %I = || Vi = Vi, } +
_ _\2 _
= {1 =20, (1 + py) + i (1 + py) }||x,1 - x| (3.38)

2
V,’fxn - Vf‘lxn +Cy,

—\2
- (1= ay - anpsy)’|
which in turn implies that

2
VEx, - Vx| < {1 + a2 (1+ )’ } lotn = %I = 12w = %> + . (3:39)

—\2
(1- @, - auiy)’|
From the condition (C1) and from (3.36), we obtain that

V,fxn - V,’f‘lxn

lim =0. (3.40)

n—oo
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On the other hand, we observe that

l|xn = zull = [|2n — V,{Vxn
< k k-1
= |2 (Vi - Vi) (3.41)
k=1
N
< Z VEx, - Vx|l
k=1
Then, we have
lim ||x,, — z,|| = 0. (3.42)
n—oo
Moreover, we observe that
1 (M 1
Zy — —J T(s)v,ds|| < |lzn — xull + ||xn — — f T(s)v,ds||, (3.43)
tTl 0 tn 0
and hence
1 (M
lim ||z, — — I T(s)v,ds|| =0. (3.44)
n— oo tn 0

Next, we show that for all X,y € Q, lim,,_, »||B1y» — B1y|| = 0 and lim,,_, .|| B2z, — B2x|| = 0.
By the cocoercivity of the mapping B;, we have

0w = %I = || vt o0 (Y = p1B1Yn) = Jeats o (7~ p1BiY) |I°

<||(yn = p1Biyn) - (¥ - p1BiY) ||”

= |y -9) - 1 (Biyn - BY)|I°

= |y =71 = 201(Biyn — BiY, yu = %) + p}||Biyn - Biy |’ (3.45)
< 1 = %I = 201 [-c1[| Buyw = Byl + d[|yn ~ 7| + o3[ Biyn - Buy|?

_ 2p1d —_
<t (2o - 228 g - il
1

Similarly, we have

”]/n - y"2 = ”](MZ/Pz) (Zn - pZB2zn) - ](szPz) (E - p2B2§) ”2

< |(zn = p2B2zn) = (X - p2B2%) ||°
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= ||(zn = X) = p2(B2zy — Byx) ||2
= ||zn = XII* = 2p2( B2z — BoX, 24 = X) + p3| Bozy — BoX||”

< Jln = I = 22| ~callBozo — B[ + dallz, - %] + p2IIBoz, — B3P

_ 2p,d _
< lloen = I + <2P2C2 +p3 - Tz 2>”B22n - Box|]*.
2

(3.46)

Substituting (3.45) into (3.34), we have

_ _ _ 2p.1d _
1P < (1 —anwf{uxn 3P <zpm o 1>||Blyn —Blynz}

L
(3.47)
Again, from (3.34), we obtain
s = X7 < (1= @ = aupiy)l[on = X7 + <&
—\ 2 —n2
< — — —
—= (1 an aﬂ‘u}’) ”y" y” + Cn (3.48)
_ _ 2prd, _
<(1-ay- anwf{ e — TP + <2P202 +p3- "L—> 1Bz - Bzx||2} en
2
Therefore, from (3.47) and (3.48), we obtain
2 2p1dy —i2
(1 - aw — anpiy) <-2p161 -pi+ = )IIBua - By
1
< (1= ay = i) |l = I = [|00 = X1 + c2
< {1+ @21+ )" Hlew = I = v = 7P+,
(3.49)

2p>ds

Boz, — Byx|*
2 >II 2zn — BoX||

(1 - an = anpy)’ <—2poz —p3+

—\2 —n2 —2
(1= an = anpy) N0 = X||° = ll2n = X||I” + Cn

IN

IN

{1+ + )" Hlw = %I = v = 3P + .
From the condition (C1) and from (3.36), we obtain that

lim ||Biy, - Biy]| =0, lim [|Bz, - By|| = 0. (3.50)
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Next, we show that lim,, ., ||z, — || = 0 and lim,, _, .|| x, — ©,|| = 0. By the nonexpansiveness
of I — p»B,, we have

”yn - ?llz = ”](MZer)(Zﬂ - p2Bazy) - JMap2) (x - PZBzE) ”2
< ((zn = p2Bozn) = (X = p2BoX), yu — )
1 — — —
= 5{ 120 = p2B2zn) = (X = p2BoT) ||* + [l - 7’
— — —\ 112
—||(za = p2Bazn) = (X = p2B2X) = (yu - 9) || } (3.51)
1 _ — — —
< §{||Zn =3I+ lyn = YI* = | (20~ yn) = p2(Boza — B3 - (- ) ||’}
1 _ _ _
= 5z =3+ g =71 = (20 - ya) - G- D)
+202((20 = yu) = (X~ ¥), Bazn — B2X) - p3 1 Bazn - B .

So, we obtain

[y =GI* < 120 = %I = [ (20 = yn) = @ =) |I* + 202((z0 = Yn) = (X~ Y), Bazn - BoX).
(3.52)

Substituting (3.52) into (3.34), we have

lw = %I < (1 = an = i) {1z = X1 = [ (20~ 90) - F- D)

(3.53)
#202((2n = yu) = (X~ F), Brzu — BoX) } + cn,

which in turn implies that

(1= an = aut¥) | (20 = yn) = F=P)|I” < (1 = = @) 1w =3I = [l x|

+ (1= an = ai¥) 202 ||z = ) - =)

x ”BZZn - BZEH +Cu
—\2 _ —
< {1+ (14 ) flixn = X1 = v = %I

+(1-a,— zxn;t?)Zsz” (zZn—yn) - (x-7)|
X ”Bzzn - Bzf” + Cp-
(3.54)

From the condition (C1) and from (3.36), (3.50), we obtain that

lim || (z, —ya) - (x-Y)|| =0. (3.55)

n— oo



22 Abstract and Applied Analysis

On the other hand, by Lemma 2.8 and from (2.3), we have,

[(¥n=2u) + @=D)” = | (¥~ p1Biyw) = (¥ - p1B1Y)
~ vt (Yn = p1B1Ya) = Jiats o (7 = p1B1Y)] + p1 (Biyn — BiY) ||”
< |[(yn = prB1yn) = (¥ - p1B1Y)
~ U0 (Y = p1Biya) = Jownpn (¥ = B ||
+2p1(B1yn = B1Y, (Yn —vn) + (X~ ¥))
<Ny = prBiya) - T - 1B
[T ws00 (W = P1B1yn) = Joat o0 (¥ = 1B ||
+2p1||Biyn = By ||| (v = on) + (X - D) |

<||(yn - p1Biyw) - (- p1B1Y)||°

1 (™
o IO T(8)J My 1) (Yn — p1Biyn)ds

2

1 tn _ _
_t_’[ T(S)](Mllpl)(y_plBly)ds
nJo

+2p1||Biyn = Biy ||| (yn —vn) + -7 ||

= | (yu - p1Biyn) - (7 - 1B |1
2

1" 1 ("
- t—f T(s)vnds—t—’[ T(s) xds

nJo nJo

+2p1||Biyn = Biy ||| (yn —vn) + =) ||

<
nJo

tn
(Yn = p1Biyn) = (¥ - p1B1Y) - <tl f T(s)vnds - §>

1 ("
— f T(s)v,ds —x
tn 0

X {”(yn_PlBlyn) -y -pBiy)| + }
+2p1||Biyn = Biy||[| (vn — vn) + (X - 1) ||

ty
<Zn - % fo T(s)v, ds> + (X =) = (20 = yn) - pr(Biyn — B1Y) H

}

1 ("
— I T(s)v,ds—x
ta Jo

x { | (yn = p1Biyn) = (¥ -~ p1B1y) || +

+2p1||Biyn = Biy ||| (yn — o) + X =9)|-
(3.56)
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we obtain that
i || (v - 02) + (E-7)]| 0. (657)

In fact, since

20 =0l < [0 = ) = G =T + | (= 02) + G-I, (3.58)
so
lim ||z, — v, = 0. (3.59)
And since
30 = Oull < 30 = znll + [120n = Onll, (3.60)
and so
i [lx, — o] = 0. (3.61)

Next, we show that X € Q := F(S) N (L, MEP (O, ¢x) N F(Q).

(i) We first show that X € F(S). Since {x,} is bounded, there exists a subsequence {x;, }
of {x,} such that x,, — X € H as j — co. From (3.31) and Lemma 2.5, we obtain
that X € F(39).

(ii) Now, we show that X € ﬂkN: {MEP (O, pk). Since VF = V(@""P")V,’f‘1 for k €

Tkn

{1,2,...,N}.Hence, for all x € H and forall k € {1,2,..., N}, we obtain
Ok (V,i‘xn,x> + i (x) — <V,fxn> + % <K;c (V,’fxn> - K; <Vf"1xn>, Tk <x, V,’fxn> > >0.
(3.62)

And hence

< K| <V,]fxnj> - K, <Vn’<-1xnj>

Tkn

Mk <x, V,’fJan>> 2 ~Ok <V,’fxn/.,X> - k(%) (3.63)

+ (P <V,fxn/.>, Vx € H.

By the assumptions that ¢ is lower semicontinuous and by conditions (H4), (H5),
the mapping x +— (-Ok(x,y)) is lower semicontinuous. So, they are weakly lower
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semicontinuous. Since x,; — X, we have that Vkx, — X forall k € {1,2,...,N} and from
(i)(c), (ii), (3.40). Now, taking lower limit as j — oo in (3.63), we obtain that

O (%, x) + g (x) — i (¥) 20, VxeH, Yk e {1,2,...,N}. (3.64)

Therefore ¥ € N, MEP (O, ¢).
(iii) Now, we show that X € F(Q), where Q is defined as in Lemma 2.11. Since Q is
nonexpansive. Then, we have

lon — Quall = ”](erpl) (yn - PlBlyn) - Qvn”
= [Ty p0) Uiz 0) (20 = p2B2zn) = prBiJ (st o) (20 = p2B2aza)] — Qua|
= ”an - Qvn”

< Hlzn = vl

(3.65)

From (3.59), we have lim,, _, - ||v;, — Quy| = 0. Since x,, — X and from (3.61), we also have
vy, — X. Hence, we obtain by Lemma 2.5 that X € F(Q).

Next, we show that {x,} is sequentially compact, namely, there is a subsequence
{xn;} C {xn} that converges strongly to X € Q as j — oo. From (3.23), replacing X by X
to obtain

Yo (lxn = X (lxn = X)) < (u+yf(X) - (I +pA)X, x, — X). (3.66)

Now, replacing n with n; in (3.66) and letting j — oo, since x,,, — X, we obtain that x,; — X
asj — oo.
Next, we show that X is the unique solution of the variational inequality (3.5). Since

Xn = 0y (U+Yf(xn)) + Puxn+ (1= Pp)] —an(I+ ‘uA))% J:n T(s)v, ds, (3.67)

we derive that

(~u+(I+pA-yf)x,) = _(1_—ﬂ”)<xn - tl f ' T(s)v, ds>

299 nJo

(3.68)
1 ("
+ (I +puA) (xn s fo T(s)v, ds).
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For all z € Q, it follows that

(—u+ (I+pA—-yf)xn X, —z)

 (1-Bn) 1 (" 1 ("
i <<I o fo T(s)QV,des>xn - <I e Io T(s)QV,des> Z, Xy — Z> (3.69)
+ <(I + pA) <xn - tl ft” T(s)vnds>,xn - z>.
nJo

By Lemma 2.10, we obtain that I — o;(-) is monotone, where o;(-) := (1/t) fé T(s)ds.
Then, from (3.69), we have

(mu+ (I+pA=yf)xnx,—2z) < ((I+pA)(x, — 0¢(vn)), X — 2). (3.70)

Now, replacing n by n; in (3.70) and letting j — oo and x,, — X, we notice that

t
Xy — ti " T(s)v,, ds — 0. (3.71)
nj 0
Then, we have
(u+ (yf- (I+pA))%,z-%)<0, VzeQ. (3.72)

That is, X is the solution of variational inequality (3.5).

Finally, we show that {x,} converges strongly to X € Q. Suppose that there exists
another subsequence x,, — X as k — oo. We note Lemma 2.5 that X € Q is the solution
of the variational inequality (3.5). Hence X = X = x* by uniqueness. In summary, we have
shown that {x,} is sequentially compact and each cluster point of the sequence {x,} is equal
to x*. Then, we conclude that x, — x* asn — oo. This completes the proof. O

From Theorem 3.2, we can deduce the following result.

Theorem 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let ¢; : C —
R (i =1,2,...,N) be a finite family of lower semicontinuous and convex function, ©; : C x C —
R (i=1,2,...,N) bea finite family of bifunctions satisfying (H1)-(H5), 1; : Cx H — H be a finite
family of Lipschitz continuous mappings with a constant o; (i =1,2,...,N).Let S = {T(t) : t € R*}
be a nonexpansive semigroup from C into H and B; : H — H (i = 1,2) be an L;-Lipschitzian and
relaxed (c;, d;)-cocoercive mapping with p; € (0,2(d; — ciLiz)/Lf]for alli=1,2. Let @ :C — Cbe
a mapping defined by

Qx = Pc [Pc(x — p2Box) = p1B1Pc(x — paBox)]. (3.73)

Assume that Q = F(S) N ﬂszlMEP(@k,(pk) N F(Q) #0. Let f + H — H be a ¢-strongly
pseudocontractive mapping with lim;_, ¢ (f) = +oo and A be a strongly positive linear
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bounded operator on H with a coefficient y > 0. Let 4 > 0 and y > 0 be two constants
such that 0 <y <1+ puy. Let {r;,}(i =1,2,...,N) be a finite family of positive real sequence
such that liminf, _, 7, > 0, {a,} and {p,} be two sequences in [0,1], and {t,} be a positive
real divergent sequence. For any fixed u € H, let {x,} be the sequence defined by

@1<un X >+(p1(x) (p1<u£,)> r11 <K’< m)—K'l(xn),111<x,u£ll)>>20, Vx € C,

@2<un X > +@a(x) - (p2< (2)> 1n <K'2<u,(12)> - K’2< (1)> m <x u§2)>> >0, VxeC,

()7 2 (L ()1, ()0, Ve
yn = Pc <M51N) - PszuilN)),

tn
Xn = 0y (U+Yf(xn)) + Puxn+ (1= Pp)] —an(I+ ‘uA))tl -[0 T(s)Pc(yn — p1Biyn) ds,

(3.74)
where
D -V,
U — VORI _ Oy Ot D _ @) (e ) (3.75)

USRIV, 225, N,

and V ©w).c - Ci=1,2,...,Nisthe mapping defined by (2.8). Assume the following.

(i) 7 : C x C — R is Lipschitz continuous with constant o; > 0 (i = 1,2,...,N) such
that

(a) mi(x,y) +ni(y,x) =0forall x,y € C,

(b) 7i(:,-) is affine in the first variable,

(c) for each fixed y € C, x — 17;(y, x) is sequentially continuous from the weak
topology to the weak topology.

(i) K;: C — Ris n;—strongly convex with constant y; > 0, and its derivative K is not
only continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant v; such that y; > o;v;.

(iii) For alli = 1,2,..., N and for all x € C, there exists a bounded subset D, C C and
zx € Csuch that forall y ¢ D,,

©i(y, zn) +¢i(zx) — i (y) + r}—n<1<§ (v) - Ki(x),1i(zx,y)) <0. (3.76)
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If the following conditions are satisfied:

(C1) lim, _, o, =0,

(C2) 0 < liminf, ., p, < limsup,_, pBn <1,

then the sequence {x,} defined by (3.74) converges strongly to x* € Q := F(S) n
N, MEP(©y, px) N F(Q), provided Vr(ii)i’(’)i) is firmly nonexpansive, where x* is the unique
solution of the variational inequality

(u+(yf-(I+pA))x",z-x")<0, VYzeQ, (3.77)
or, equivalently, x* is the unique solution of the optimization problem

.M 1 2
s Ml — _ 7
riggr;z (Ax,x) + 2||x ul|” = h(x), (3.78)

where h is a potential function for yf and (x*,y*) is the solution of general system of
variational inequality problem

(p1Biy* +x* —y*,x—x*) >0, VxeC, 3.79)
(p2Box* +y* —x*,x-y*) >0, VxeC. .

Proof. From Theorem 3.2, taking M; = M, = 06c, where C is a nonempty closed convex
subset of H and 6¢c : H — [0, +o0) is the indicator function of C, then, we have Jr, ) =
JMsp) = Pc and the quasivariational inclusion problem (1.17) is equivalent to the classical
variational inequality (1.19). Thus, we can get the desired conclusion immediately. O
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