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The authors study the nonlinear limit-point and limit-circle properties for the second order

nonlinear damped differential equation (a(t)|y/|P"'y")’ + b(t)|[y'|"'y + r(t)|ly[*'y = 0, where
0<A<p<g a(t) >0, and r(t) > 0. Some examples are given to illustrate the main results.

1. Introduction

In this paper, we study the nonlinear equation

(a®)ly'[""y) +b®ly |y + )]y 'y =0 (1.1)
and its special case

(aly 'y) + by [y + )]y 'y =0. (12)

We set R, = [0,00) and R = (-c0, 00) and assume throughout that 0 < A < p < g, a € C}(R,),
b e C'R,), a’Pr e C'(R,), a(t) > 0,and r(t) > 0.

We will only consider solutions defined on their maximal interval of existence to the
right.

Remark 1.1. The functions a, b, and r are smooth enough so that all nontrivial solutions of
(1.1) defined on R, are nontrivial in any neighborhood of oo (see Theorem 13(i) in [1]).
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Moreover, if either g = p or b(t) > 0 on R,, then all nontrivial solutions of (1.1) are defined on
R,.

We can write (1.1) as the equivalent system

yi = a P ()|ya|" sgnye,
(13)

vy = —bB)a P ()|ya|"" sgnys - (1) ya| sgn s,

where the relationship between a solution y of (1.1) and a solution (y1, ¥») of the system (1.3)
is given by

nt) =y, ) =a®|y O]y ®. (1.4)

We are interested in what is known as the nonlinear limit-point and nonlinear limit-
circle properties of solutions as given in the following definition (see the monograph [2] as
well as the papers [3-14]).

Definition 1.2. A solution y of (1.1) defined on R, is said to be of the nonlinear limit-circle
type if

J' ly(t)|*dt < oo, (NLC)
0
and it is said to be of the nonlinear limit-point type otherwise, that is, if
j ly(t)|*dt = 0. (NLP)
0

Equation (1.1) will be said to be of the nonlinear limit-circle type if every solution y of (1.1)
defined on R, satisfies (NLC) and to be of the nonlinear limit-point type if there is at least
one solution y for which (NLP) holds.

The properties defined above are nonlinear generalizations of the well-known linear
limit-point/limit-circle properties introduced by Weyl [15] more than 100 years ago. For the
history and a survey of what is known about the linear and nonlinear problems as well
as their relationships to other properties of solutions such as boundedness, oscillation, and
convergence to zero, we refer the reader to the monograph by Bartusek et al. [2] as well as
the recent papers of Bartusek and Graef [4, 6, 9-11].

Here, we are also interested in what we call the strong nonlinear limit-point and strong
nonlinear limit-circle properties of solutions of (1.1) as given in the following definitions.
These notions were first introduced in [7] and [8], respectively, and further studied, for
example, in [4, 6]. We define the function R: R, — R by

R(t) = a'/P(tr(t) (1.5)
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and let constant 6 be given by
p+1
5="1"—. (1.6)
p

Definition 1.3. A solution y of (1.1) defined on R, is said to be of the strong nonlinear limit-
point type if

* A+, °°|3/2(t)|6 _ SNLP
fo |y dt = oo, IO 0 dt = oo. ( )

Equation (1.1) is said to be of the strong nonlinear limit-point type if every nontrivial solution
defined on R, is of the strong nonlinear limit-point type and there is at least one nontrivial
solution defined on R,.

Definition 1.4. A solution y of (1.1) defined on R, is said to be of the strong nonlinear limit-
circle type if

* A+1 * |]/2(t)|6
fo ly(t)| " dt < oo, L 0 dt < oo. (SNLC)

Equation (1.1) is said to be of the strong nonlinear limit-circle type if every solution defined
on R, is of the strong nonlinear limit-circle type.

From the above definitions we see that for an equation to be of the nonlinear limit-
circle type, every solution must satisfy (NLC); whereas for an equation to be of the nonlinear
limit-point type, there needs to be only one solution satisfying (NLP). For an equation to be
of the strong nonlinear limit-point type, every solution defined on R, must satisfy (SNLP)
and there must be at least one such nontrivial solution.

Ifb(t) =0, (1.1) becomes

(a(t) |3/|p_1y’> +r®)|y| Ty =0, (1.7)
and moreover, if A = p, then (1.7) reduces to the well-known half-linear equation,

(at Iy'l”_ly’)' +r)|yly =0, (1.8)

a general discussion of which can be found in the monograph by Dogly and Rehék [16]. Using
terminology introduced by the authors in [5-7], if A > p, we say that (1.1) is of the super-half-
linear type, and if A < p, we will say that it is of the sub-half-linear type. Since in this paper we
are assuming that A < p, we are in the half-linear and sub-half-linear cases.

The limit-point/limit-circle problem for the damped equation

(at)y) +b(B)y +r(t)y* =0 (1.9)
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with b(t) > 0 was considered in the papers [17, 18], where A < 1 is the ratio of odd positive
integers and A > 1 is an odd integer, respectively. The results in both of these papers tend to
be modifications of results in [12-14] to accommodate the damping term.

It will be convenient to define the following constants:

B p+1 B A+Dp _p+tl
T pe1 Trop+1l YT a1y
_ P _ 1 up 170
ﬁl_(A+2)p+1’ wz_i+1+p+1’ m=ay ’

(1.10)

(A+D(p+1) for ith N )

= >

P> P17+ (0= DpaT) or eitherp>Aorov>1,
_op+1 3 ~ 1 p _q

wl—p+1, v =pi(v-1), W_A+1+p+1’ v—le

Noticethata =1-, wp —1 =1/, wr > wy, and w > 1. We define the function g : R, — R
by

a/P(H)R ()
£ = 1.11
g( ) Ra+l (t) 4 ( )
and in the reminder of this paper we will make use of the assumption that
tlimg(t) =0, f |g'(s)|ds < . (H)
— 00 0
If (H) holds, we define the constants
n=ay/Usuplg)],  p=6+n. (1.12)
seR,
For any solution y : R, — R of (1.1), we let
_pp a(t), , p+l A+1
F) =R | [y OF +yly®]
(1.13)

6
- Rﬁ(t)<|y123((tt))| +y|y(t)|“l>.

Note that F > 0 on R, for every solution of (1.1).
For any continuous function h : R, — R, we let h,(t) = max{h(t),0} and h_(t) =
max{—h(t),0} so that h(t) = hy(t) — h_(¢).
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2. Lemmas

In this section we present a number of lemmas that will facilitate proving our main results.
Lemma 2.1. For every nontrivial solution y of (1.1) defined on R, F(t) >0 for t > 0.

Proof. Suppose, to the contrary, that (1.1) has a nontrivial solution y such that F(ty) = 0 for a
number ty € R,. Then (1.13) implies y(ty) = ¥'(p) = 0 and so (1.1) has the solution ¥ defined
by

y(t) =y(t) forte[0,t], y(t)=0 fort>t. (2.1)
But this contradicts Remark 1.1 and proves the lemma. O

Lemma 2.2. Let y be a solution of (1.1). Then:

(i) for t € Ry, we have

ly®)] <y EDRPOFN ), Jya(b)] < RO PD(@). (2.2)

(ii) for 0 < T < t, we have

E(t) = F(1) — ag(T)y(T)y2(7) + ag(t)y () y(t)

~a [ EyEaeds
t . (2.3)
[ R @ o) sgnvato)
gy 7 O (e,
[ [6r " ©lya(o)" sena(s) - ag(s1y(6)] 7 2O va(e)ds
’ (2.4)
t t
<6 ) %R”l (s)F“'(s)ds + 11 ) lfv(—(ss))lel(s)F“’z(s)ds.
Proof. Let y be a solution of (1.1). Then it is a solution of the equation
<a(t)|z’|p_1z’>l +r®)|z" 'z = et) (2.5)

with e(t) = -b(#)|y' (D7 Y (£) = —(b(t) /a® (1) [y2(H)|°ya(t). Then (2.2) and (2.3) follow from
Lemma 1.2 in [5] applied to (2.5). Relation (2.4) follows from (2.2). O

The following two lemmas give us sufficient conditions for the boundedness of F from
above and from bellow by positive constants.
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Lemma 2.3. Let (H) hold and assume that

“1b(S)] o,
4[0 a”(s)R (s)ds < co. (2.6)

Then for any nontrivial solution y of (1.1) defined on R, the function F is bounded from bellow on
R, by a positive constant depending on y.

Proof. Suppose, to the contrary, that there is a nontrivial solution of (1.1) such that

hm g1fF(t) =0. (2.7)

By Lemma 2.1, F(t) > 0 on R,. Let f € R, be such that

b(s)l

21 sup Ig(s)|+a1f Ig(S)IdS+(Y1+6)f 5 K (s)ds < % (2.8)

s€[t,00)

the existence of such a f follows from (H) and (2.6). Then, for any t, > t such that F(t;) < 1,
there exist T and o such that t) < o < 7 and

2F(t) = F(o) = F(ty) > 0, F(t) < F(t) < F(o) (2.9)
for o <t < 7. Then (2.2) implies
lyOy2(5)| <y MVF(t) (2.10)

on R,. From this, (2.3) (with 7 = o and t = 1), (2.4), (2.9), and the fact that F(c) < 1, we have

F(o “ ! w
% = F(o) - F(1) < [a1|g(r)| +a1|g(o)| +m Ji lg (s)|ds]F (o)
, , (2.11)
n [ R s P (@) +6 [ EER (s F o),
Hence, using (2.8) and the facts that w, > w1 > 1, w > 1, and F(o) < 1, we obtain
1
F(o) < EF(O‘). (2.12)
This contradiction to F(o) > 0 proves the lemma. O
Lemma 2.4. Assume that b > 0 for large t, (H) holds,
J‘ bv((tt)) R (t)dt < oo, (2.13)
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and either (i) A = p = g, or (ii) g > A and

[ ot 255 o)) oof [ it

Then for every solution of (1.1) the function F is bounded on R..

0. (2.14)

Proof. Let y be a nontrivial solution of (1.1). Then according to Remark 1.1 and Lemma 2.1, y
is defined on R, and F(f) > 0 on R,. In view of (H) and (2.13), we can choose t € R, such
that

f [|g( )|+ va( )|ds < %[3a1+2“’16+2“’2y1]_1. (2.15)

Suppose that F is not bounded, that is,

lim sup F(t) = co. (2.16)

t— oo

Then, for any ty > t with F(ty) > 1, there exist o and 7 such that ty < 0 < 7, (1/2)F(7) =
F(o) = F(tp), and

1<F(o)<F(@{)<F(r) foroc<t<rT. (2.17)

Since g is of bounded variation and lim;_, ,,g(f) = 0, we see that
15(0)| = 18(0) - g(e0)| < [ Ig ®)]ds: 218)
o
Setting 7 = 0 and t = 7 in (2.2)—(2.4), we have (2.10) and

F(o) = F(1) - F(o) < [a1|g(0')| +a1|g(7)] +a1f |§'(s)|ds

) (2.19)
-~ f = (( )) RY (s )ds] Fe2 (1) + 6[ v((s)) RY (s)dsF“ (T).
From this, (2.8), (2.15), and (2.18), we obtain
F(o) < [30{1 J'°° |g’(s) |dS + (2w2Y1 4 oW1 6) J bv((S)) RY (s)ds] F“2 (o)
’ (2.20)

® ’ b 1 wo 1 wo
SKL [|g(s)| +av(_(ss))R (s)]ds F“*(0) < EF (0),

where K = 3a; + 216 + 2“2y;.
If A = p = g, then w, = 1 and (2.20) gives us a contradiction.
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Now let g > X and (2.14) hold. Then w, > 1 and (2.20) implies

F(ty) = F(o) zK‘ﬂ2<I [|g( )|+ )]ds) ) (2.21)

Hence,

F(t) 2 K1<f [Ig( s)| + (s )]ds) (2.22)

forall t > t such that F(t) > 1, where Ky = K%, At the same time, (2.20) implies F(t) > 2/ > 1
for these values of t. Thus, (2.22) holds for all t > . On the other hand, if z(t) = F(t)R(¢),
then (1.13) implies

2(t) = (R(0) |9a(0)]° - 677 () (b |y ()| sgny/ (1)

, (2.23)
< (R10) a0 < T RPOF® = T 200
for t > t. So,
2(t) < 2(F expf R'((S)) (2.24)

From this and (2.22),

SURCER

(s)]ds} <F(t) = Rﬂ<t>z<t><z<)Rﬂ(t>expf '()ds,
(2.25)

which contradicts (2.14). Hence, F is bounded from above on R,. Since F > 0 on R,, the

conclusion follows. O

Lemma 2.5. Let (H) and (2.6) hold. Then there exists a solution y of (1.1) defined on R, a constant
co >0, and ty € R, such that

0< ZCO < F(t) < %CO fOT’ t > 1. (226)

Moreover, cy can be chosen arbitrary small.
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Proof. Condition (H) implies that g is bounded, so we can choose M > 0, t; € R., and ¢y such
that

oo lee) b
|g(t)] <M fort >t |g'(s)|ds < M, I %R”l (s)ds < M,
. . (2.27)
1/3\™ -1/(A+1) - 2
MSZ(E) [36¥Y +6+Y1] , O<COS§.
Consider a solution y of (1.1) such that F(ty) = co. First, we will show that
3
F(t) < ECO <1 fort>ty. (2.28)
Suppose (2.28) does not hold. Then there exist t, > t; > o such that
3 3
F(tz) = ECO, F(tl) = Cp, Cco < F(t) < ECQ (229)

for t € (t1,t7). Lemma 2.2 (with 7 = #; and t = t;), and the facts that w < w,, w; < wy, and
co < 1imply

c _ E(t)
2 2

= F(ty) - F(t;) < 3ay™" <“1>M(§c0)
+ M(6F“1 (t2)) + y1 MF“(t5) (2.30)

wy 1
< M(3ayf1/(“1) +6+ y1> (;) ¢y < ZCS)'

Hence, c‘é’*l > 2 which contradicts the choice of ¢y, and so (2.28) holds.
Now, Lemma 2.2 (with t = ¢, 7 = t;) similarly implies

3\ & 3
<§) 6C0 + (E
3\ 170 <3 “ 3)"’2
< = - Z
_Mco[?)(z) ay {35 6+ o) n

and the statement of the lemma is proved. O

3 w
|[F(t) —co| < Say"l/(*"l)M(zco) +M

Lemma 2.6. Suppose that (H) and (2.6) hold and

Jw RP(t)dt = co. (2.32)
0
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In addition, assume that either
[ee]
J, (

e/ la'(s)] |b(s)] -
f (a(S)r(s) ' a”(s)r(s)R (S)>d5 < (2.34)

LN, PO ey
<r(s)) ‘ + av(s)r(s)R (s))ds < oo (2.33)

or

holds. If y is a solution of (1.1) with

asF#)<a (2.35)

on R, for some positive constants ¢y and c;, then
f ly()|"dt = oo. (2.36)
0

Moreover, if r does not tend to zero as t — oo, then

® lyp®)|®
L = (2.37)

Proof. Let y be a nontrivial solution of (1.1) satisfying (2.35). Then in view of (1.13), (2.32),
and (2.35)

C e (G| Fs) 2.38
only(s)l s+ | TR dS"JORﬂ(s)dSéoo 239

ast — oo. Now, (2.2) and (2.35) imply

ly()ya(t)] < y /D e € p, (2.39)
for t > 0 so there exists ty > 0 such that
C1
Hi< ———
EOlE v max(L7) (2.40)

for t > ty. It follows from (1.1) that

t
J‘|y(5)|“1d _ J’y(s)yz(s I b() )y(s)|y2(s)| yz(S)dS

r(s) a®(s)r(s

RRIONA0) ya(s)]°
R +D+L R()

(2.41)

ds+](t),
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where D = y(0)1,(0)r"1(0) and

J(#) = f; [(r(l—s)> - ﬂlyx@l”‘l]y(s)yz(sms (242)

a®(s)r(s)

Hence, from (2.39),

T 1N, PG s
|J(t)| < MiDy i <@)‘+—R (s)]ds (2.43)

a?(s)r(s)

with Dy =1+ céq_p)/(pﬂ) for t > ty. Moreover, (1.13), (2.35), and (2.38) imply

t t t
e L RP(s)ds < t |y(s)|md5+ft |y12z(( ))l ds < L R (s)ds (244)

fort >ty with ¢3 = ¢1/ max(1,y) and ¢4 = ¢/ min(1, y).
If (2.33) holds, then (2.43) implies J is bounded on R,, and in view of (2.41), we have

5
|y(s)|“1 _Lt |ly2(s)] gs + Y0020

t
R(s) ) <) +m| RF(s)ds (2.45)

to

for t >ty with J1(¢) = [J(#)| + (ly(0)y2(0)|/7(0)) and m = 0. Note, that J; is bounded on R,.
Now let (2.34) hold. Then, using (2.2), (2.35), and (2.40) and setting ¢s = max(1,
(q-p)/ (p+1)
c, ), we have

T () -
L)Kr(s))‘ @) 12O ]ds
1. BG) opioty, o @)/ D)
- <<R<s>>‘ aere @R >ds
@], O] o JECIM
f(pa(s)r(s) = (&)r() (S)>ds+£ﬂ Ri(s) ™

3 p
M2+2M1I RP(s)ds

(2.46)

IN

for t > ty, where M, = cs5 ff((|a’(s)|/pa(s)r(s)) + ((|b(s)|/a?(s)r(s))RP @D (s)))ds < oo
by (2.34). From (2.46) together with (2.39), (2.41), and (2.42), inequality (2.45) holds with
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m = c3/2 and J1(t) = M1 M;. Thus, (2.45) holds with m = ¢3/2 if either (2.33) or (2.34) holds,
and J; is bounded for t > ty. Moreover,

t t t o)
—hi(t) - CZ—SL RP(s)ds < | |y(s)|’\+1ds_f |lp20)]" L y®) ()

R(s) r(t)
o (2.47)
t
<+ 2 [ RAds
to
for t > ty. Adding the left hand inequalities in (2.44) and (2.47) gives
t . t t t
2 (o) as + YOO ﬁf RP(s)ds - J1(t) — oo (248)
to r(t) 2 to
ast — oo, and subtracting gives
S ACI OGN
2 _ > 2 RP _ 2.49
LD RG5) ds o 232 Lﬂ (s)ds = J1(t) — oo (2.49)

ast — co.

If ' is oscillatory, let {fc};2; — oo be a sequence of zeros of y'. Then letting ¢ = #; in
(2.48) and (2.49), it is clear that the conclusion of the lemma holds.

Let i’ be nonoscillatory. Then either

y(t)y2(t) >0 for large ¢ (2.50)

or

y(t)y2(t) <0 for large t. (2.51)

We first prove (2.36). It clearly holds if (2.50) does. So suppose (2.51) holds. Then
y(t) ya(t) r1(t) <O for large t and (2.48) gives us the contradiction. Hence, (2.36) holds.

Finally, we prove (2.37). From (2.49), (2.37) holds if (2.50) does. Let (2.51) hold and
assume that (2.37) does not. Then (2.49) implies

y(®) ya(b) _

lim = —oo. (2.52)

t— oo T(t)

In view of (2.39) and (2.51), y(t) y2(t) > —M;, so lim;_,r(t) = 0. This contradicts the
assumptions of the lemma and completes the proof. O

3. LP/LC Problem for (1.1)

In this section we present our main results for (1.1) and give some examples to illustrate
them.
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Theorem 3.1. Let b > O for large t and assume that (H) and (2.13) hold. In addition, if g > A, assume
that (2.14) also holds. Then (1.1) is of the strong nonlinear limit-circle type if and only if

F RP(t)dt < co. (3.1)
0

Proof. Let y be a nontrivial solution of (1.1). By Remark 1.1, y is defined on R.. The hypo-
theses of Lemmas 2.3 and 2.4 are satisfied, so there are constants ¢ and c¢; such that

0<c<F{l)<c (3.2)

on R,. Hence, from this and (1.13),

o % w |y (t)® %
cfo Rﬂ(t)dtsyfo |y(t)|“1dt+J'0 |y;(tt) |dt=f0 F(HRP(t)dt s

< f RP(t)dt.
0

The conclusion of the theorem then follows from (3.1). O

In case b(t) = 0, the results in this paper reduce to previously known results by the
present authors except that the necessary part of Theorem 3.1 is new.

Theorem 3.2. Let (H), (2.6), and either (2.33) or (2.34) hold. If

Iw RP(t)dt = oo, (3.4)
0

then (1.1) is of the nonlinear limit-point type.

Proof. The hypotheses of Lemmas 2.5 and 2.6 are satisfied, so if v is a solution given by
Lemma 2.5, then (2.36) holds, and the conclusion follows. O

Theorem 3.3. Let b > 0 for large t and let conditions (H), (2.13), and either (2.33) or (2.34) hold. In
addition, if g > A, assume that (2.14) holds. If

r RP(t)dt = oo, (3.5)
0

then every nontrivial solution of (1.1) is of the nonlinear limit-point type. If, moreover, r does not tend
to zeroast — oo, then (1.1) is of the strong nonlinear limit-point type.



14 Abstract and Applied Analysis
Proof. Note that the hypotheses of Lemmas 2.3, 2.4, and 2.6 are satisfied. Let y be a nontrivial

solution of (1.1). Then Remark 1.1 implies y is defined on R,, and by Lemmas 2.3 and 2.4,
there are positive constants C; and C; such that

0<Ci<F()<C, on R,. (3.6)

Thus, by Lemma 2.6, (2.36) holds, and if » does not tend to zero ast — oo, then (2.37) holds.
This proves the theorem. O

Remark 3.4. Note that Lemmas 2.1, 2.2, and 2.6 are valid without the assumption that A < p.

4. LP/LC Problem for (1.2)

One of the main assumptions in Section 3 is (2.6), which takes the form

“ |b(®)]
fo < (4.1)

for (1.2). It is possible to remove this condition when studying (1.2). The technique to
accomplish this is contained in the following lemma; a direct computation proves the lemma.

Lemma 4.1. Equation (1.2) and the equation
(a(t) |y'|p_1y'> +7 By 'y =0 (4.2)

are equivalent where

t t
a(t) =a(t) exp{J‘0 %ds}, r(t) =r(t) exp{fO %ds}. (4.3)

That is, every solution of (1.2) is a solution of (4.2) and vice versa.

Based on this lemma, results for (1.2) can be obtained by combining Lemma 4.1 and
known results for (4.2), such as those that can be found, for example, in [3, 5, 7, 9, 10]. Here
we only state a sample of the many such possible results.
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Define

R(t) =aP(#)7(t) = R(t) exp{6 t @ds},

0 a(s)
27O R 1/
= a "(OR() _ _a’P(t) l : b(t) ]
= - =- R(f) + 5——=R(t
B0 = T R RO O™
(4.4)
A-p "b(s)
) eXp{ A+2)p+1 ,[0 as) [
A+1 1
W3:M forp> A, w3 =0 forp=.L
p—-A
Theorem 4.2. Assume that
limg(t) =0, f |5 (s)|ds < oo, (4.5)
— 00 0
and either (i) A = p or (ii) A < p and
—p ®© w3 t _ 1 r_
lim inf R (¢) (J' |§’(s)|ds) exp{f (R (o)) R(o)da} = 0. (4.6)
—® t 0 +
Then (1.2) is of the strong nonlinear limit-circle type if and only if
b
f R "(0)do < oo. (4.7)
0

Proof. The conclusion follows from Theorem 2.11 in [5] applied to (4.2) and Lemma 4.1. O
Our next result follows from Theorem 3.2 being applied to (4.2) and Lemma 4.1.
Theorem 4.3. Let (4.5) and either

J, () fer<e= f, El(atl)(;()tl)dt <o (48)

hold. If

F R (0)do = o, (4.9)
0

then (1.2) is of the nonlinear limit-point type.

Our final theorem is a strong nonlinear limit-point result for (1.2).
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Theorem 4.4. Assume that (4.5) holds and

m 2B +b) exp{ ! J‘t Mds} =0. (4.10)

1 —_—
Sea () L | ws o as)
Iffy R’ (0)do = oo, then (1.1) is of the nonlinear limit-point type. If, in addition, r does not tend to

zero as t — oo, then (1.2) is of the strong nonlinear limit-point type.

Proof. This result follows from Theorem 2.16 in [5] and Lemma 4.1 above. Note that
Theorem 2.16 in [5] is proved for r(t) > rp > 0 for t € R,, but it is easy to see from (2.34)
in [5] and the end of its proof that Theorem 2.16 holds as long as r does not tend to zero as
t — oo. O

We conclude the paper with some examples to illustrate our main results.

Example 4.5. Consider the equation
-1\’ -1, o1, A1
(Iy1"'y) +b@ly |y + |y Ty =0, t21. (4.11)
Assume that oa > -1 and po < 1. If b satisfies either

>0, j 179 b(t)|dt < oo, (4.12)
1

or

0 <0, f 1@ D|p(t)|dt < oo, (4.13)
1

then the conditions of Theorem 3.2 are satisfied, so (4.11) is of the nonlinear limit-point type.

Example 4.6. Consider the special case of (4.11) with p = 1, namely,
y'+ b(t)|y'|q_ly' + t°|y|A_1y =0, t>1. (4.14)

Then wehave 0 <A <1<g,so0if

A+3 A+3
- <

415
2 957171 (415

and either

c>0, f o@D/ 3 (1) |dt < oo (4.16)
1
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or

0<0, f H@-A=0/ 4300 b ()| dt < oo (4.17)
1

holds, (4.14) is of the nonlinear limit-point type.

Example 4.7. Consider the equation
y' +b(t)y +t°y =0, t>1, (4.18)

with b(t) > 0. Note that here p = g = A = 1. Assume that

f " b(t)dt < . (4.19)
1

Then by Theorem 3.1, (4.18) is of the strong nonlinear limit-circle type if and only if o > 2. By
Theorem 3.3, (4.18) is of the strong nonlinear limit-point type if 0 < o < 2. It is worth noting
that this agrees with the well-known limit-circle criteria

fw r V2(H)dt < o (4.20)
0

of Dunford and Schwartz [19, page 1414] (also see the discussion in [2]).

For our next example we consider the case where p = g = A. It may be convenient to
refer to this case as the fully half-linear equation.

Example 4.8. Consider the equation
!
(1y17Y) + 21y |y + ey Ty =0, £, (421)

wheree > 0.If o+e+1 > a > max{b+1,e(1-0)+1}, then (4.21) is of the strong nonlinear limit-
circle type by Theorem 3.1. On the other hand, if 0 > 0 and b+1 < a < min{o+e+1,e(1-0)+1},
then (4.21) is of the strong nonlinear limit-point type by Theorem 3.3.

Our final example will illustrate several of our theorems as well allow us to compare
our results to those in [17, 18].

Example 4.9. Consider the equation
y' +y + t"|y|A71y =0, t>1, (4.22)

with s € R, 0 >0, and 0 < A < 1. Calculations show the following.
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(i) Equation (4.22) is of the nonlinear limit-circle type if

(a) A =1and s > -1 (by Theorem 4.2);

(b) A <land -1 < s <o0/2 (by Theorem 4.2);

(c)s=-land o> (1-1)/(X+1) (by Theorem 4.2);

(d)r=1s<-1,and 0 > (A +3)/(L + 1) (by Theorem 3.1);
(e)A<1l,0>(A+3)/(A+1),ands<-1-0((1-1)/(L+3)) (by Theorem 3.1).

(ii) Equation (4.22) is of the nonlinear limit-point type if

(f)s=-land o < (1-1)/(X+1) (by Theorem 4.3);
(g) s<-land o < (A +3)/(A+1) (by Theorem 3.2).

Now by [17, Corollary 2.3], (4.22) is of the nonlinear limit-circle type if s < —o(1 -
A)/2(A +3) and o > (A +3)/(A + 1). The nonlinear limit-point result [17, Theorem 2.6] does
not apply to (4.22). This shows that our results substantially extend the ones in [17] in the
case of nonlinear limit-circle type results and are new in the case of nonlinear limit-point
results. The results in [17] follow from ours if s > —1 and for s < =1 and A = 1. There are
errors in the proofs of the results in [18].

More specifically, for (4.22) with A = 1, that is,
y' +t°y +t°y =0, t>1, (4.23)

the results in [17, 18] show that (4.23) is of the nonlinear limit-circle type if s < 0 and o > 2.
and by results in the present paper (4.23) is of the nonlinear limit-point type if and only if

(h) s<-land o > 2;
(i) s=-land o > 0;
(j) s > -1 and o is arbitrary.

Hence, the results in [17, 18] follow from ours, and our results are substantially better;
note that we obtain necessary and sufficient condition for (4.23) to be of the nonlinear limit-
circle type.
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