Research Article

The Intuitionistic Fuzzy Normed Space of Coefficients

B. T. Bilalov, S. M. Farahani, and F. A. Guliyeva

Institute of Mathematics and Mechanics of Azerbaijan, National Academy of Sciences, 1141 Baku, Azerbaijan

Correspondence should be addressed to B. T. Bilalov, bilalov.bilal@gmail.com
Received 25 January 2012; Accepted 19 March 2012
Academic Editor: Gabriel Turinici
Copyright © 2012 B. T. Bilalov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Intuitionistic fuzzy normed space is defined using concepts of t-norm and t-conorm. The concepts of fuzzy completeness, fuzzy minimality, fuzzy biorthogonality, fuzzy basicity, and fuzzy space of coefficients are introduced. Strong completeness of fuzzy space of coefficients with regard to fuzzy norm and strong basicity of canonical system in this space are proved. Strong basicity criterion in fuzzy Banach space is presented in terms of coefficient operator.

1. Introduction

The fuzzy theory, dating back to Zadeh [1], has emerged as the most active area of research in many branches of mathematics and engineering. Fuzzy set theory is a powerful handset for modeling uncertainty and vagueness in various problems arising in the field of science and engineering. The concept of fuzzy topology may have very important applications in quantum particle physics, particularly in connection with both string and $\varepsilon^{(\infty)}$ theories introduced and studied by El Naschie [2-4] and further developed in [5]. So, further development in E-Infinity may lead to a set transitional resolution of quantum entanglement [6]. A large number of research works are appearing these days which deal with the concept of fuzzy set numbers, and the fuzzification of many classical theories has also been made. The concept of Schauder basis in intuitionistic fuzzy normed space and some results related to this concept have recently been studied in [7-9]. These works introduced the concepts of strongly and weakly intuitionistic fuzzy (Schauder) basis in intuitionistic fuzzy Banach spaces (IFBS in short). Some of their properties are revealed. The concepts of strongly and weakly intuitionistic fuzzy approximation properties (sif-AP and wif-AP in short, resp.) are also introduced in these works. It is proved that if the intuitionistic fuzzy space has a sif-basis, then it has a sif-AP.

All the results in these works are obtained on condition that IFBS admits equivalent topology using the family of norms generated by t-norm and t-conorm (we will define them later).

In our work, we define the basic concepts of classical basis theory in intuitionistic fuzzy normed spaces (IFNS in short). Concepts of weakly and strongly fuzzy spaces of coefficients are introduced. Strong completeness of these spaces with regard to fuzzy norm and strong basicity of canonical system in them is proved. Strong basicity criterion in fuzzy Banach space is presented in terms of coefficient operator.

In Section 2, we recall some notations and concepts. In Section 3, we state our main results. We first define the fuzzy space of coefficients and then introduce the corresponding fuzzy norms. We prove that for nondegenerate system the corresponding fuzzy space of coefficients is strongly fuzzy complete. Moreover, we show that the canonical system forms a strong basis for this space.

2. Some Preliminary Notations and Concepts

We will use the usual notations: N will denote the set of all positive integers, R will be the set of all real numbers, C will be the set of complex numbers, and K will denote a field of scalars $(K \equiv R$, or $K \equiv C), R_{+} \equiv(0,+\infty)$. We state some concepts and facts from IFNS theory to be used later.

One of the most important problems in fuzzy topology is to obtain an appropriate concept of intuitionistic fuzzy normed space. This problem has been investigated by Park [10]. He has introduced and studied a notion of intuitionistic fuzzy metric space. We recall it.

Definition 2.1. A binary operation $*:[0,1]^{2} \rightarrow[0,1]$ is a continuous t-norm if it satisfies the following conditions:
(a) $*$ is associative and commutative,
(b) $*$ is continuous,
(c) $a * 1=a, \forall a \in[0,1]$,
(d) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d, \forall a, b, c, d \in[0,1]$.

Example 2.2. Two typical examples of continuous t-norm are $a * b=a b$ and $a * b=\min \{a ; b\}$.
Definition 2.3. A binary operation $\diamond:[0,1]^{2} \rightarrow[0,1]$ is a continuous t-conorm if it satisfies the following conditions:
$(\alpha) \diamond$ is associative and commutative,
$(\beta) \diamond$ is continuous,
$(\gamma) a \diamond 0=a, \forall a \in[0,1]$,
$(\eta) a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d, \forall a, b, c, d \in[0,1]$.
Example 2.4. Two typical examples of continuous t-conorm are $a \diamond b=\min \{a+b ; 1\}$ and $a \diamond b=\max \{a ; b\}$.

Definition 2.5. Let X be a linear space over a field K. Functions $\mu ; v: X \times R \rightarrow[0,1]$ are called fuzzy norms on X if they hold the following conditions:
(1) $\mu(x ; t)=0, \forall t \leq 0, \forall x \in X$,
(2) $\mu(x ; t)=1, \forall t>0 \Rightarrow x=0$,
(3) $\mu(c x ; t)=\mu(x ; t /|c|), \forall c \neq 0$,
(4) $\mu(x ; \cdot): R \rightarrow[0,1]$ is a nondecreasing function of t for $\forall x \in X$ and $\lim _{t \rightarrow \infty} \mu(x ; t)=$ $1, \forall x \in \mathrm{X}$,
(5) $\mu(x ; s) * \mu(y ; t) \leq \mu(x+y ; s+t), \forall x, y \in X, \forall s, t \in R$,
(6) $v(x ; t)=1, \forall t \leq 0, \forall x \in X$,
(7) $\mathcal{v}(x ; t)=0, \forall t<0 \Rightarrow x=0$,
(8) $v(c x ; t)=v(x ; t /|c|), \forall c \neq 0$,
(9) $\mathcal{v}(x ; \cdot): R \rightarrow[0,1]$ is a nonincreasing function of t for $\forall x \in X$ and $\lim _{t \rightarrow \infty} \mathcal{v}(x ; t)=0$, $\forall x \in X$,
(10) $\mathcal{v}(x ; s) \diamond v(y ; t) \geq v(x+y ; s+t), \forall x, y \in X, \forall s, t \in R$,
(11) $\mu(x ; t)+v(x ; t) \leq 1, \forall x \in X, \forall t \in R$.

Then the 5 -tuple $(X ; \mu ; v ; * ; \diamond)$ is said to be an intuitionistic fuzzy normed space (shortly IFNS).

Example 2.6. Let $(X ;\|\cdot\|)$ be a normed space. Denote $a * b=a b$ and $a \diamond b=\min \{a+b ; 1\}$, for $\forall a, b \in[0,1]$, and define μ and v as follows:

$$
\begin{align*}
& \mu(x ; t)= \begin{cases}\frac{t}{t+\|x\|}, & t>0 \\
0, & t \leq 0\end{cases} \\
& \mathcal{v}(x ; t)= \begin{cases}\frac{t}{t+\|x\|}, & t>0 \\
1, & t \leq 0\end{cases} \tag{2.1}
\end{align*}
$$

Then $(X ; \mu ; v ; * ; \diamond)$ is an IFNS.
The above concepts allow to introduce the following kinds of convergence (or topology) in IFNS.

Definition 2.7. Let $(X ; \mu ; v)$ be a fuzzy normed space, and let $\left\{x_{n}\right\}_{n \in N} \subset X$ be some sequence, then it is said to be strongly intuitionistic fuzzy convergent to $x \in X$ (denoted by $x_{n} \xrightarrow{s} x$, $n \rightarrow \infty$ or $s-\lim _{n \rightarrow \infty} x_{n}=x$ in short) if and only if for $\forall \varepsilon>0, \exists n_{0}=n_{0}(\varepsilon): \mu\left(x_{n}-x ; t\right) \geq 1-\varepsilon$, $v\left(x_{n}-x ; t\right) \leq \varepsilon, \forall n \geq n_{0}, \forall t \in R$.

Definition 2.8. Let $(X ; \mu ; v)$ be a fuzzy normed space, and let $\left\{x_{n}\right\}_{n \in N} \subset X$ be some sequence, then it is said to be weakly intuitionistic fuzzy convergent to $x \in X$ (denoted by $x_{n} \xrightarrow{w} x, n \rightarrow$ ∞, or $w-\lim _{n \rightarrow \infty} x_{n}=x$ in short) if and only if for $\forall t \in R_{+}, \forall \varepsilon>0, \exists n_{0}=n_{0}(\varepsilon ; t): \mu\left(x_{n}-x ; t\right) \geq$ $1-\varepsilon, v\left(x_{n}-x ; t\right) \leq \varepsilon, \forall n \geq n_{0}$. More details on these concepts can be found in [10-19].

Let $(X ; \mu ; v)$ be an IFNS, and let $M \subset X$ be some set. By $L[M]$, we denote the linear span of M in X. The weakly (strongly) intuitionistic fuzzy convergent closure of $L[M]$ will be denoted by $\overline{L_{s}[M]}\left(\overline{L_{w}[M]}\right)$. If X is complete with respect to the weakly (strongly) intuitionistic fuzzy convergence, then we will call it intuitionistic fuzzy weakly (strongly) Banach space ($I F B_{w} S$ or $X_{w}\left(I F B_{s} S\right.$ or $\left.X_{s}\right)$ in short). Let X be an $I F B_{S} S\left(I F B_{w} S\right)$. We denote by $X_{s}^{*}\left(X_{w}^{*}\right)$ the linear space of linear and continuous in $I F B_{S} S\left(I F B_{w} S\right)$ functionals over the same field K.

Now, we define the corresponding concepts of basis theory for IFNS. Let $\left\{x_{n}\right\}_{n \in N} \subset X$ be some system.

Definition 2.9. System $\left\{x_{n}\right\}_{n \in N}$ is called s-complete (w-complete) in X_{s} (in X_{w}) if $\overline{L_{s}\left[\left\{x_{n}\right\}_{n \in N}\right]} \equiv X_{s}\left(\overline{L_{w}\left[\left\{x_{n}\right\}_{n \in N}\right]} \equiv X_{w}\right)$.

Definition 2.10. System $\left\{x_{n}^{*}\right\}_{n \in N} \subset X_{s}^{*}\left(\left\{x_{n}^{*}\right\}_{n \in N} \subset X_{w}^{*}\right)$ is called s-biorthogonal (wbiorthogonal) to the system $\left\{x_{n}\right\}_{n \in N}$ if $x_{n}^{*}\left(x_{k}\right)=\delta_{n k}, \forall n, k \in N$, where $\delta_{n k}$ is the Kronecker symbol.

Definition 2.11. System $\left\{x_{n}\right\}_{n \in N} \subset X_{s}\left(\left\{x_{n}\right\}_{n \in N} \subset X_{w}\right)$ is called s-linearly (w-linearly) independent in X if $\sum_{n=1}^{\infty} \lambda_{n} x_{n}=0$ in $X_{s}\left(\right.$ in $\left.X_{w}\right)$ implies $\lambda_{n}=0, \forall n \in N$.

Definition 2.12. System $\left\{x_{n}\right\}_{n \in N} \subset X_{s}\left(\left\{x_{n}\right\}_{n \in N} \subset X_{w}\right)$ is called s-basis (w-basis) for X_{s} (for X_{w}) if $\forall x \in X, \exists!\left\{\lambda_{n}\right\}_{n \in N} \subset K: \sum_{n=1}^{\infty} \lambda_{n} x_{n}=x$ in $X_{s}\left(\right.$ in $\left.X_{w}\right)$.

We will also need the following concept.
Definition 2.13. System $\left\{x_{n}\right\}_{n \in N} \subset X$ is called nondegenerate if $x_{n} \neq 0, \forall n \in N$.

3. Main Results

3.1. Space of Coefficients

Let X be an IFNS, and let $\left\{x_{n}\right\}_{n \in N} \subset X$ be some system.
Assume that

$$
\begin{align*}
& \mathcal{K}_{\bar{x}}^{w} \equiv\left\{\left\{\lambda_{n}\right\}_{n \in N} \subset C: \sum_{n=1}^{\infty} \lambda_{n} x_{n} \text { converges in } X_{w}\right\}, \\
& \boldsymbol{K}_{\bar{x}}^{s} \equiv\left\{\left\{\lambda_{n}\right\}_{n \in N} \subset C: \sum_{n=1}^{\infty} \lambda_{n} x_{n} \text { converges in } X_{s}\right\} \tag{3.1}
\end{align*}
$$

It is not difficult to see that $\mathcal{K}_{\bar{x}}^{w}$ and $\mathcal{K}_{\bar{x}}^{s}$ are linear spaces with regard to componentspecific summation and component-specific multiplication by a scalar. Take $\forall \lambda \equiv\left\{\lambda_{n}\right\}_{n \in N} \in$ $\mathcal{K}_{\bar{x}}^{w}$, and assume that

$$
\begin{equation*}
\mu_{K}(\bar{\lambda} ; t)=\inf _{m} \mu\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; t\right) ; \quad v_{K}(\bar{\lambda} ; t)=\sup _{m} v\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; t\right) \tag{3.2}
\end{equation*}
$$

Let us show that μ_{K} and v_{K} satisfy the conditions (1)-(11).
(1) It is clear that $\mu_{K}(\bar{\lambda} ; t)=0, \forall t \leq 0$.
(2) Let $\mu_{K}(\bar{\lambda} ; t)=1, \forall t>0$. Hence, $\mu\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; t\right)=1, \forall m \in N, \forall t>0$. Suppose that the system $\left\{x_{n}\right\}_{n \in N}$ is nondegenerate. It follows from the above-stated relations that, for $m=1$, we have $\mu\left(\lambda_{1} x_{1} ; t\right)=1, \forall t>0$. Hence, $\lambda_{1} x_{1}=0 \Rightarrow \lambda_{1}=0$. Continuing this way, we get at the end of this process that $\lambda_{n}=0, \forall n \in N$, that is, $\bar{\lambda}=0$.
(3) The validity of relation $\mu_{K}(A \bar{\lambda} ; t)=\mu_{K}(\bar{\lambda} ; t /|c|), \forall c \neq 0$ is beyond any doubt.
(4) As $\mu(x ; \cdot)$ is a nondecreasing function on R it is not difficult to see that $\mu_{K}(\bar{\lambda} ; \cdot)$ has the same property. Let us show that $\lim _{t \rightarrow \infty} \mu_{K}(\bar{\lambda} ; t)=1$. Take $\forall \varepsilon>0$. Let $S_{m}=$ $\sum_{n=1}^{m} \lambda_{n} x_{n}$ and $w-\lim _{m \rightarrow \infty} S_{m}=S \in X_{w}$. It is clear that $\exists t_{0}>0: \mu\left(S ; t_{0}\right) \geq 1-\varepsilon$. Then it follows from the definition of $w-$ lim $_{m}$ that $\exists m_{0}\left(\varepsilon ; t_{0}\right): \mu\left(S_{m}-S ; t_{0}\right) \geq 1-\varepsilon, \forall m \geq$ $m_{0}\left(\varepsilon ; t_{0}\right)$. Property (4) implies

$$
\begin{equation*}
\mu\left(S_{m} ; 2 t_{0}\right)=\mu\left(S_{m}-S+S ; t_{0}+t_{0}\right) \geq \mu\left(S_{m}-S ; t_{0}\right) * \mu\left(S ; t_{0}\right) . \tag{3.3}
\end{equation*}
$$

As a result, we get

$$
\begin{equation*}
\mu\left(S_{m} ; t_{0}\right) \geq 1-\varepsilon, \quad \forall m \geq m_{0}\left(\varepsilon ; t_{0}\right) . \tag{3.4}
\end{equation*}
$$

As $\mu(x ; \cdot)$ is a nondecreasing function of t, it follows from (3.4) that

$$
\begin{equation*}
\mu\left(S_{m} ; t\right) \geq 1-\varepsilon, \quad \forall m \geq m_{0}\left(\varepsilon ; t_{0}\right), \forall t \geq t_{0} . \tag{3.5}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mu_{K}(\bar{\lambda} ; t)=\inf _{m} \mu\left(S_{m} ; t\right)=\min \left\{\mu\left(S_{1} ; t\right) ; \ldots ; \mu\left(S_{m_{0}-1} ; t\right) ; \inf _{m \geq m_{0}} \mu\left(S_{m} ; t\right)\right\}, \tag{3.6}
\end{equation*}
$$

where $m_{0}=m_{0}\left(\varepsilon ; t_{0}\right)$. As $\lim _{t \rightarrow \infty} \mu\left(S_{k} ; t\right)=1$ for $\forall k \in N$, we have $\exists t_{k}(\varepsilon) ; \forall t \geq$ $t_{k}(\varepsilon): \mu\left(S_{k} ; t\right) \geq 1-\varepsilon, k=\overline{1, m_{0}-1}$. Let $t_{\varepsilon}^{0}=\max \left\{t_{k}(\varepsilon), k=\overline{1, m_{0}-1}\right\}$, then it is clear that

$$
\begin{equation*}
\mu\left(S_{k} ; t\right) \geq 1-\varepsilon, \quad \forall t \geq t_{\varepsilon}^{0} . \tag{3.7}
\end{equation*}
$$

It follows from (3.5) and (3.6) that

$$
\begin{equation*}
\inf _{m \geq m_{0}} \mu\left(S_{m} ; t\right) \geq 1-\varepsilon, \quad \forall t \geq t_{0} . \tag{3.8}
\end{equation*}
$$

Let $t_{\varepsilon}=\max \left\{t_{0} ; t_{\varepsilon}^{0}\right\}$. Hence, we obtain from (3.6) and (3.7) that

$$
\begin{equation*}
\mu_{K}(\bar{\lambda} ; t) \geq 1-\varepsilon, \quad \forall t \geq t_{\varepsilon} . \tag{3.9}
\end{equation*}
$$

Thus, $\lim _{t \rightarrow \infty} \mu_{K}(\bar{\lambda} ; t)=1, \forall \bar{\lambda} \in \mathcal{K}_{\bar{x}}^{w}$.
(5) Let $\bar{\lambda}, \bar{\mu} \in \mathcal{K}_{\bar{x}}^{w}\left(\bar{\lambda} \equiv\left\{\lambda_{n}\right\}_{n \in N} ; \bar{\mu} \equiv\left\{\mu_{n}\right\}_{n \in N}\right)$ and $s, t \in R$. We have

$$
\begin{align*}
\mu_{K}(\bar{\lambda}+\bar{\mu} ; s+t) & =\inf _{m} \mu\left(\sum_{n=1}^{m}\left(\lambda_{n}+\mu_{n}\right) x_{n} ; s+t\right) \\
& =\inf _{m} \mu\left(\sum_{n=1}^{m} \lambda_{n} x_{n}+\sum_{n=1}^{m} \mu_{n} x_{n} ; s+t\right) \\
& \geq \inf _{m}\left[\mu\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; s\right) * \mu\left(\sum_{n=1}^{m} \mu_{n} x_{n} ; t\right)\right] \tag{3.10}\\
& =\left[\inf _{m} \mu\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; s\right)\right] *\left[\inf _{m} \mu\left(\sum_{n=1}^{m} \mu_{n} x_{n} ; t\right)\right] \\
& =\mu(\bar{\lambda} ; s) * \mu(\bar{\mu} ; t)
\end{align*}
$$

(6) As $\mathcal{v}(x ; t)=1, \forall t \leq 0$, it is clear that $\mathcal{V}_{K}(\bar{\lambda} ; t)=1, \forall t \leq 0, \forall \bar{\lambda} \in \mathcal{K}_{\bar{x}}^{w}$.
(7) Let the system $\left\{x_{n}\right\}_{n \in N}$ be nondegenerate. Assume that $\nu_{K}(\bar{\lambda} ; t)=0, \forall t>0$, then $v\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; t\right)=0, \forall t>0, \forall m \in N$. For $m=1$, we have $v\left(\lambda_{1} x_{1} ; t\right)=0, \forall t>$ $0 \Rightarrow \lambda_{1} x_{1}=0 \Rightarrow \lambda_{1}=0$. Continuing this process, we get $\lambda_{n}=0, \forall n \in N \Rightarrow \bar{\lambda}=0$.
(8) Clearly, $v_{K}(c \bar{\lambda} ; t)=\mathcal{v}_{K}(\bar{\lambda} ; t /|c|), \forall c \neq 0$.
(9) It follows from the property (9) that $v(x ; \cdot)$ is a nonincreasing function on R. Therefore, $v_{K}(\bar{\lambda} ; \cdot)$ is a nonincreasing function on R. Let us show that $\lim _{t \rightarrow \infty} \mathcal{V}_{K}(\bar{\lambda} ; t)=0$. Let $S_{m}=\sum_{n=1}^{m} \lambda_{n} x_{n}$ and $w-\lim _{m \rightarrow \infty} S_{m}=S \in X$. Take $\forall \varepsilon>0$. It is clear that $\exists t_{0}>0: \mathcal{v}\left(S ; t_{0}\right) \leq \varepsilon$. Then it follows from the definition of w - $\lim _{m}$ that $\exists m_{0}=m_{0}\left(\varepsilon ; t_{0}\right): \mathcal{v}\left(S_{m}-S ; t_{0}\right) \leq \varepsilon, \forall m \geq m_{0}$. We have

$$
\begin{equation*}
v\left(S_{m} ; t_{0}\right)=v\left(S_{m}-S+S ; t_{0}+t_{0}\right) \leq v\left(S_{m}-S ; t_{0}\right) \diamond v\left(S ; t_{0}\right) \leq \varepsilon, \quad \forall m \geq m_{0} \tag{3.11}
\end{equation*}
$$

As $v(x ; \cdot)$ is a nonincreasing function, it is clear that

$$
\begin{equation*}
v\left(S_{m} ; t\right) \leq \varepsilon, \quad \forall m \geq m_{0}, \quad \forall t \geq t_{0} . \tag{3.12}
\end{equation*}
$$

We have

$$
\begin{equation*}
v_{K}(\bar{\lambda} ; t)=\sup _{m} v\left(S_{m} ; t\right)=\max \left\{v\left(S_{1} ; t\right) ; \ldots ; v\left(S_{m_{0}-1} ; t\right) ; \sup _{m \geq m_{0}} v\left(S_{m} ; t\right)\right\} . \tag{3.13}
\end{equation*}
$$

As $\lim _{t \rightarrow \infty} \mathcal{V}\left(S_{k} ; t\right)=0$ for $\forall k \in N$, we have $\exists t_{k}(\varepsilon) ; \forall t \geq t_{k}(\varepsilon): \mathcal{v}\left(S_{k} ; t\right) \leq \varepsilon, k=$ $\overline{1, m_{0}-1}$. Let $t_{\varepsilon}^{0}=\max \left\{t_{k}(\varepsilon), k=\overline{1, m_{0}-1}\right\}$. It is clear that $\mathcal{v}\left(S_{k} ; t\right) \leq \varepsilon, \forall t \geq t_{\varepsilon}^{0}$. It follows from (3.12) that $\sup _{m \geq m_{0}} \mathcal{v}\left(S_{m} ; t\right) \leq \varepsilon, \forall t \geq t_{0}$. Let $t_{\varepsilon}=\max \left\{t_{0} ; t_{\varepsilon}^{0}\right\}$, then it is clear that $\mathcal{v}_{K}(\bar{\lambda} ; t) \leq \varepsilon, \forall t \geq t_{\varepsilon} \Rightarrow \lim _{t \rightarrow \infty} \mathcal{v}_{K}(\bar{\lambda} ; t)=0$.
(10) Let $\bar{\lambda}, \bar{\mu} \in \mathcal{K}_{\bar{x}}^{w}\left(\bar{\lambda} \equiv\left\{\lambda_{n}\right\}_{n \in N} ; \bar{\mu} \equiv\left\{\mu_{n}\right\}_{n \in N}\right)$ and $s, t \in R$. We have

$$
\begin{align*}
v_{K}(\bar{\lambda}+\bar{\mu} ; s+t) & =\sup _{m} v\left(\sum_{n=1}^{m}\left(\lambda_{n}+\mu_{n}\right) x_{n} ; s+t\right) \\
& \leq \sup _{m}\left[v\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; s\right) \diamond v\left(\sum_{n=1}^{m} \mu_{n} x_{n} ; t\right)\right] \tag{3.14}\\
& =\left[\sup _{m} v\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; s\right)\right] \diamond\left[\sup _{m} v\left(\sum_{n=1}^{m} \mu_{n} x_{n} ; t\right)\right] \\
& =v_{K}(\bar{\lambda} ; s) \diamond v_{K}(\bar{\mu} ; t) .
\end{align*}
$$

(11) Consider the following:

$$
\begin{align*}
\mu_{K}(\bar{\lambda} ; t)+v_{K}(\bar{\lambda} ; t) & =\inf _{m} \mu\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; t\right)+\sup _{m}\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; t\right) \\
& \leq \sup _{m}\left[\mu\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; t\right)+v\left(\sum_{n=1}^{m} \lambda_{n} x_{n} ; t\right)\right] \tag{3.15}
\end{align*}
$$

$$
\leq 1, \quad \forall \bar{\lambda} \in \mathcal{K}_{\bar{x}}^{w}, \forall \lambda \in R .
$$

Thus, we have proved the validity of the following.
Theorem 3.1. Let $(X ; \mu ; v)$ be a fuzzy normed space, and let $\left\{x_{n}\right\}_{n \in N} \subset X$ be a nondegenerate system, then the space of coefficients ($\mathcal{X}_{\bar{x}}^{s} ; \mu_{K} ; \boldsymbol{v}_{K}$) is also strongly fuzzy normed space.

The following theorem is proved in absolutely the same way.
Theorem 3.2. Let $(X ; \mu ; v)$ be a fuzzy normed space, and let $\left\{x_{n}\right\}_{n \in N} \subset X$ be a nondegenerate system, then the space of coefficients $\left(\mathcal{K}_{\bar{x}}^{w} ; \mu_{K} ; \boldsymbol{v}_{K}\right)$ is also weakly fuzzy normed space.

3.2. Completeness of the Space of Coefficients

Subsequently, we assume that ($X ; \mu ; v)$ is IFBS. Let us show that $\left(\mathcal{K}_{\bar{x}^{\prime}}^{s} \mu_{K} ; v_{K}\right)$ is a strongly fuzzy complete normed space. First, we prove the following.

Lemma 3.3. Let $x_{0} \neq 0, x_{0} \in X$, and let $\left\{\lambda_{n}\right\}_{n \in N} \subset R$ be some sequence. If $s-\lim _{n \rightarrow \infty}\left(\lambda_{n} x_{0}\right)=0$, that is, $\forall \varepsilon>0, \exists n_{0}=n_{0}(\varepsilon): \mu\left(\lambda_{n} x_{0} ; t\right)>1-\varepsilon, v\left(\lambda_{n} x_{0} ; t\right)<\varepsilon, \forall t \in R_{+}$, and $\forall n \geq n_{0}$, then $\lambda_{n} \rightarrow 0$, $n \rightarrow \infty$.

Proof. As $x_{0} \neq 0$, it is clear that $\exists t_{0}>0: \mu\left(x_{0} ; t_{0}\right)<1$. We have $\mu\left(\lambda_{n} x_{0} ; t\right)=\mu\left(x_{0} ;(t) /\left|\lambda_{n}\right|\right)$ for $\lambda_{n} \neq 0$. Assume that the relation $\lim _{n \rightarrow \infty} \lambda_{n}=0$ is not true, then $\exists\left\{\lambda_{n_{k}}\right\}_{k \in N}$ and $\exists \delta>0$: $\left|\lambda_{n_{k}}\right| \geq \delta, \forall k \in N$. It is clear that $\lim _{k \rightarrow \infty} \mu\left(\lambda_{n_{k}} x_{0} ; t\right)=1$ uniformly in t. On the other hand, for $t_{k}=\left|\lambda_{n_{k}}\right| t_{0}$, we have $\mu\left(\lambda_{n_{k}} x_{0} ; t_{k}\right)=\mu\left(x_{0} ; t_{0}\right)<1$. So we came upon a contradiction which proves the lemma.

Further, we assume that the following condition is also fulfilled.
(12) The functions $\mu(x ; \cdot), v(x ; \cdot): R \rightarrow[0,1]$ are continuous for $\forall x \in X$.

Take s-fundamental sequence $\left\{\bar{\lambda}_{n}\right\}_{n \in N} \subset \mathcal{K}_{\bar{x}^{\prime}}^{s} \bar{\lambda}_{n} \equiv\left\{\lambda_{k}^{(n)}\right\}_{k \in N}$. Then $\lim _{n, m \rightarrow \infty} \mu_{K}\left(\bar{\lambda}_{n}-\right.$ $\left.\bar{\lambda}_{m} ; t\right)=1$ uniformly in $t \in R$, that is,

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \inf _{r} \mu\left(\sum_{k=1}^{r}\left(\lambda_{k}^{(n)}-\lambda_{k}^{(m)}\right) x_{k}\right)=1 \tag{3.16}
\end{equation*}
$$

uniformly in $t \in R$. Take $\forall k_{0} \in N$ and fix it. We have

$$
\begin{equation*}
\left(\lambda_{k_{0}}^{(n)}-\lambda_{k_{0}}^{(m)}\right) x_{k_{0}}=\sum_{k=1}^{k_{0}}\left(\lambda_{k}^{(n)}-\lambda_{k}^{(m)}\right) x_{k}-\sum_{k=1}^{k_{0}-1}\left(\lambda_{k}^{(n)}-\lambda_{k}^{(m)}\right) x_{k} . \tag{3.17}
\end{equation*}
$$

Then from property (5), we get

$$
\begin{equation*}
\mu\left(\left(\lambda_{k_{0}}^{(n)}-\lambda_{k_{0}}^{(m)}\right) x_{k_{0}} ; t\right) \geq \mu\left(\sum_{k=1}^{k_{0}}\left(\lambda_{k}^{(n)}-\lambda_{k}^{(m)}\right) x_{k} ; \frac{t}{2}\right) * \mu\left(\sum_{k=1}^{k_{0}-1}\left(\lambda_{k}^{(n)}-\lambda_{k}^{(m)}\right) x_{k} ; \frac{t}{2}\right) \tag{3.18}
\end{equation*}
$$

It follows directly from this relation that $\lim _{n, m \rightarrow \infty} \mu\left(\left(\lambda_{k_{0}}^{(n)}-\lambda_{k_{0}}^{(m)}\right) x_{k_{0}} ; t\right)=1$ uniformly in t. As $x_{k_{0}} \neq 0$, Lemma 3.3 implies $\lim _{n, m \rightarrow \infty}\left|\lambda_{k_{0}}^{(n)}-\lambda_{k_{0}}^{(m)}\right|=0$, that is, the sequence $\left\{\lambda_{k_{0}}^{(n)}\right\}_{n \in N}$ is fundamental in R. Let $\lambda_{k_{0}}^{(n)} \rightarrow \lambda_{k_{0}}$, as $n \rightarrow \infty$. Denote $\bar{\lambda} \equiv\left\{\lambda_{n}\right\}_{n \in N}$. Let us show that $\lim _{n \rightarrow \infty} \underline{\mu_{K}}\left(\bar{\lambda}_{\underline{n}}-\bar{\lambda} ; t\right)=1$ uniformly in t. Take $\forall \varepsilon>0$. It is clear that $\exists n_{0}, \forall n \geq n_{0}$, $\forall p \in N: \mu_{K}\left(\bar{\lambda}_{n}-\bar{\lambda}_{n+p} ; t\right)>1-\varepsilon, \forall t \in R$. Consequently,

$$
\begin{equation*}
\inf _{r} \mu\left(\sum_{k=1}^{r}\left(\lambda_{k}^{(n)}-\lambda_{k}^{(n+p)}\right) x_{k} ; t\right)>1-\varepsilon, \quad \forall n \geq n_{0}, \forall p \in N, \forall t \in R_{+} . \tag{3.19}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\mu\left(\sum_{k=1}^{r}\left(\lambda_{k}^{(n)}-\lambda_{k}^{(n+p)}\right) x_{k} ; t\right)>1-\varepsilon, \quad \forall n \geq n_{0}, \forall r, p \in N, \forall t \in R_{+} \tag{3.20}
\end{equation*}
$$

As shown above, $\lim _{n, m \rightarrow \infty} \mu\left(\left(\lambda_{k}^{(n)}-\lambda_{k}^{(m)}\right) x_{k} ; t\right)=1$ uniformly in $t \in R_{+}$. Now let us take into account the fact that $\lim _{m \rightarrow \infty} \mu\left(\lambda_{k}^{(m)} x_{k} ; t\right)=\mu\left(\lambda_{k} x_{k} ; t\right), \forall t \in R_{+}$. Indeed, if $\lambda_{k}=0$, then $\mu(0 ; t)=$ $1, \forall t \in R_{+}$, and clearly, $\lim _{m \rightarrow \infty} \mu\left(\lambda_{k}^{(m)} x_{k} ; t\right)=1$ for $\forall t \in R_{+}$. If $\lambda_{k} \neq 0$, then for sufficiently large values of m we have $\lambda_{k}^{(m)} \neq 0$, and as a result,

$$
\begin{equation*}
\mu\left(\lambda_{k}^{(m)} x_{k} ; t\right)=\mu\left(x_{k} ; \frac{t}{\left|\lambda_{k}^{(m)}\right|}\right) \stackrel{m \rightarrow \infty}{\longrightarrow} \mu\left(x_{k} ; \frac{t}{\left|\lambda_{k}\right|}\right)=\mu\left(\lambda_{k} x_{k} ; t\right), \quad \forall t \in R_{+} . \tag{3.21}
\end{equation*}
$$

Passage to the limit in the inequality (3.20) as $p \rightarrow \infty$ yields

$$
\begin{equation*}
\mu\left(\sum_{k=1}^{r}\left(\lambda_{k}^{(n)}-\lambda_{k}\right) x_{k} ; t\right) \geq 1-\varepsilon, \quad \forall n \geq n_{0}, \forall r \in N, \forall t \in R_{+} \tag{3.22}
\end{equation*}
$$

We have

$$
\begin{align*}
\mu\left(\sum_{k=r}^{r+p}\left(\lambda_{k}^{(n)}-\lambda_{k}\right) x_{k} ; t\right) & =\mu\left(\sum_{k=1}^{r+p}\left(\lambda_{k}^{(n)}-\lambda_{k}\right) x_{k}-\sum_{k=1}^{r-1}\left(\lambda_{k}^{(n)}-\lambda_{k}\right) x_{k} ; t\right) \\
& \geq \mu\left(\sum_{k=1}^{r+p}\left(\lambda_{k}^{(n)}-\lambda_{k}\right) x_{k} ; \frac{t}{2}\right) * \mu\left(\sum_{k=1}^{r-1}\left(\lambda_{k}^{(n)}-\lambda_{k}\right) x_{k} ; \frac{t}{2}\right) \tag{3.23}\\
& \geq 1-\varepsilon, \quad \forall n \geq n_{0}, \forall r, p \in N, \forall t \in R_{+}
\end{align*}
$$

As $\bar{\lambda}_{n} \in \mathcal{K}_{\bar{x}}^{s}$, it is clear that $\exists m_{0}^{(n)}: \forall m \geq m_{0}^{(n)}, \forall p \in N:$

$$
\begin{equation*}
\mu\left(\sum_{k=m}^{m+p} \lambda_{k}^{(n)} x_{k} ; t\right)>1-\varepsilon, \quad \forall t \in R_{+} . \tag{3.24}
\end{equation*}
$$

We have

$$
\begin{align*}
\mu\left(\sum_{k=m}^{m+p} \lambda_{k} x_{k} ; t\right) & =\mu\left(\sum_{k=m}^{m+p}\left(\lambda_{k}-\lambda_{k}^{(n)}\right) x_{k}+\sum_{k=m}^{m+p} \lambda_{k}^{(n)} x_{k} ; t\right) \\
& \geq \mu\left(\sum_{k=m}^{m+p}\left(\lambda_{k}-\lambda_{k}^{(n)}\right) x_{k} ; \frac{t}{2}\right) * \mu\left(\sum_{k=m}^{m+p} \lambda_{k}^{(n)} x_{k} ; \frac{t}{2}\right) \tag{3.25}\\
& \geq 1-\varepsilon, \quad \forall m \geq m_{0}^{(n)}, \quad \forall p \in N, \quad \forall t \in R_{+} .
\end{align*}
$$

It follows that the series $\sum_{k=1}^{\infty} \lambda_{k} x_{k}$ is strongly fuzzy convergent, that is, $\exists s$ $\lim _{m \rightarrow \infty} \sum_{\mathrm{k}=1}^{\mathrm{m}} \lambda_{k} \mathrm{x}_{k}$. Consequently, $\bar{\lambda} \in \boldsymbol{K}_{\bar{x}^{\prime}}^{s}$ and the relation (3.22) implies that $\lim _{n \rightarrow \infty} \mu_{K}\left(\bar{\lambda}_{n}-\right.$ $\bar{\lambda} ; t)=1$ uniformly in, $\forall t \in R_{+}$. It can be proved in a similar way that $\lim _{n \rightarrow \infty} \nu_{K}\left(\bar{\lambda}_{n}-\bar{\lambda} ; t\right)=0$ uniformly in $\forall t \in R_{+}$. As a result, we obtain that the space ($\boldsymbol{K}_{\bar{x}}^{s} ; \mu_{K} ; \boldsymbol{v}_{K}$) is strongly fuzzy complete. Thus, we have proved the following.

Theorem 3.4. Let $(X ; \mu ; v)$ be a fuzzy Banach space with condition (12), and let $\left\{x_{n}\right\}_{n \in N} \subset X$ be a nondegenerate system, then the space of coefficients $\left(\boldsymbol{K}_{\bar{x}}^{s} ; \mu_{K} ; \mathcal{v}_{K}\right)$ is a strongly fuzzy complete normed space.

Consider operator $T: \boldsymbol{K}_{\bar{x}}^{s} \rightarrow X$ defined by

$$
\begin{equation*}
T \overline{\mathcal{\lambda}}=\sum_{n=1}^{\infty} \lambda_{n} x_{n}, \quad \bar{\lambda} \equiv\left\{\lambda_{n}\right\}_{n \in N} \in \mathcal{K}_{\bar{x}}^{s} . \tag{3.26}
\end{equation*}
$$

Let $s-\lim _{n \rightarrow \infty} \bar{\lambda}_{n}=\bar{\lambda}$ in $\mathcal{K}_{\bar{x}^{\prime}}^{s}$ where $\bar{\lambda}_{n} \equiv\left\{\lambda_{k}^{(n)}\right\}_{k \in N} \in \mathcal{K}_{x}^{s}$. We have

$$
\begin{align*}
\mu\left(T \bar{\lambda}_{n}-T \bar{\lambda} ; t\right) & =\mu\left(\sum_{k=1}^{\infty}\left(\lambda_{k}^{(n)}-\lambda_{k}\right) x_{k} ; t\right) \geq \inf _{m} \mu\left(\sum_{k=1}^{m}\left(\lambda_{k}^{(n)}-\lambda_{k}\right) x_{k} ; t\right) \tag{3.27}\\
& =\mu\left(\bar{\lambda}_{n}-\bar{\lambda} ; t\right) .
\end{align*}
$$

It follows directly that $s-\lim _{n \rightarrow \infty} T \bar{\lambda}_{n}=T \bar{\lambda}$, that is, the operator T is strongly fuzzy continuous. Let $\bar{\lambda} \in \operatorname{Ker} T$, that is, $T \bar{\lambda}=0 \Rightarrow \sum_{n=1}^{\infty} \lambda_{n} x_{n}=0$, where $\bar{\lambda} \equiv\left\{\lambda_{n}\right\}_{n \in N} \in \mathcal{K}_{\bar{x}}^{s}$. It is clear that if the system $\left\{x_{n}\right\}_{n \in N}$ is s-linearly independent, then $\lambda_{n}=0, \forall n \in N$, and as a result, $\operatorname{Ker} T=\{0\}$. In this case, $\exists T^{-1}: \operatorname{ImT} \rightarrow \mathcal{K}_{\bar{x}}^{s}$. If, in addition, ImT is s-closed in X, then T^{-1} is also continuous.

Denote by $\left\{\bar{e}_{n}\right\}_{n \in N} \subset \mathcal{X}_{\bar{x}}^{s}$ a canonical system in $\boldsymbol{K}_{\bar{x}^{\prime}}^{s}$, where $\bar{e}_{n}=\left\{\delta_{n k}\right\}_{k \in N} \in \mathcal{X}_{\bar{x}}^{s}$. Obviously, $T \bar{e}_{n}=x_{n}, \forall n \in N$. Let us prove that $\left\{\bar{e}_{n}\right\}_{n \in N}$ forms an s-basis for $\mathcal{K}_{\bar{x}}^{s}$. Take $\forall \bar{\lambda} \equiv\left\{\lambda_{n}\right\}_{n \in N} \in \mathcal{K}_{\bar{x}}^{s}$ and show that the series $\sum_{n=1}^{\infty} \lambda_{n} \bar{e}_{n}$ is strongly fuzzy convergent in $\mathcal{K}_{\bar{x}}^{s}$. In fact, the existence of $s-\lim _{m \rightarrow \infty} \sum_{\mathrm{n}=1}^{\mathrm{m}} \lambda_{n} x_{n}$ in X_{s} implies that $\forall \varepsilon>0, \exists m_{0} \in N$,

$$
\begin{equation*}
\mu\left(\sum_{n=m}^{m+p} \lambda_{n} x_{n} ; t\right)>1-\varepsilon, \quad \forall m \geq m_{0}, \forall p \in N, \forall t \in R_{+} . \tag{3.28}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mu_{K}\left(\sum_{n=m}^{m+p} \lambda_{n} \bar{e}_{n} ; t\right)=\inf _{r}\left(\sum_{n=m}^{r} \lambda_{n} x_{n} ; t\right) \geq 1-\varepsilon, \quad \forall m \geq m_{0}, \forall p \in N, \forall t \in R_{+} . \tag{3.29}
\end{equation*}
$$

It follows that the series $\sum_{n=1}^{\infty} \lambda_{n} \bar{e}_{n}$ is strongly fuzzy convergent in $\mathcal{K}_{\bar{x}}^{s}$. Moreover,

$$
\begin{align*}
\mu_{K}\left(\bar{\jmath}-\sum_{n=1}^{m} \lambda_{n} \bar{e}_{n} ; t\right) & =\mu_{K}\left(\left\{\ldots ; 0 ; \lambda_{m+1} ; \ldots\right\} ; t\right)=\inf _{r} \mu\left(\sum_{n=m+1}^{r} \lambda_{n} x_{n} ; t\right) \tag{3.30}\\
& \geq 1-\varepsilon, \quad \forall m \geq m_{0}, \forall t \in R_{+} .
\end{align*}
$$

Consequently, $s-\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \lambda_{n} \bar{e}_{n}=\bar{\lambda}$, that is, $\bar{\lambda} \stackrel{s}{=} \sum_{n=1}^{m} \lambda_{n} \bar{e}_{n}$. Consider the functionals $e_{n}^{*}(\bar{\lambda})=\lambda_{n}, \forall n \in N$. Let us show that they are s-continuous. Let $s-\lim _{n \rightarrow \infty} \bar{\lambda}_{n}=\bar{\lambda}$, where $\bar{\lambda}_{n} \equiv\left\{\lambda_{k}^{(n)}\right\}_{k \in N} \in \mathcal{K}_{\bar{x}}^{s}$. As established in the proof of Theorem 3.4, we have $\lambda_{k}^{(n)} \rightarrow \lambda_{k}$ as $n \rightarrow \infty$, that is, $e_{k}^{*}\left(\bar{\lambda}_{n}\right) \rightarrow e_{k}^{*}(\bar{\lambda})$ as $n \rightarrow \infty$ for $\forall k \in N$. Thus, e_{k}^{*} is s-continuous in $\mathcal{K}_{\bar{x}}^{s}$ for $\forall k \in N$. On the other hand, it is easy to see that $e_{n}^{*}\left(\bar{e}_{k}\right)=\delta_{n k}, \forall n, k \in N$, that is, $\left\{e_{n}^{*}\right\}_{n \in N}$ is s-biorthogonal to $\left\{\bar{e}_{n}\right\}_{n \in N}$. As a result, we obtain that the system $\left\{\bar{e}_{n}\right\}_{n \in N}$ forms an s-basis for $\mathcal{K}_{\bar{x}}^{s}$. So we get the validity of the following.

Theorem 3.5. Let ($X ; \mu ; \boldsymbol{v}$) be a fuzzy Banach space with condition (12), and let $\left\{x_{n}\right\}_{n \in N} \subset X$ be a nondegenerate system. Then the corresponding space of coefficients ($\mathcal{K}_{\bar{x}^{\prime}}^{s} \mu_{K} ; \nu_{K}$) is strongly fuzzy complete with canonical s-basis $\left\{\bar{e}_{n}\right\}_{n \in N}$.

Suppose that the system $\left\{x_{n}\right\}_{n \in N}$ is s-linearly independent and ImT is closed, then it is easily seen that $\left\{x_{n}\right\}_{n \in N}$ forms an s-basis for ImT, and in case of its s-completeness in X_{s}, it
forms an s-basis for X_{s}. In this case, $\mathcal{K}_{\bar{x}}^{s}$ and X_{s} are isomorphic, and T is an isomorphism between them. The opposite of it is also true, that is, if the above-defined operator T is an isomorphism between $\mathcal{K}_{\bar{x}}^{s}$ and X_{s}, then the system $\left\{x_{n}\right\}_{n \in N}$ forms an s-basis for X_{s}. We will call T a coefficient operator. Thus, the following theorem holds.

Theorem 3.6. Let $(X ; \mu ; v)$ be a fuzzy Banach space with condition (12), let $\left\{x_{n}\right\}_{n \in N} \subset X$ be a nondegenerate system, let $\left(\mathcal{K}_{\bar{x}^{\prime}}^{s} ; \mu_{K} ; \mathcal{v}_{K}\right)$ be a corresponding strongly fuzzy complete normed space, and let $T: \mathcal{K}_{\bar{x}}^{s} \rightarrow X_{s}$ be a coefficient operator. System $\left\{x_{n}\right\}_{n \in N}$ forms an s-basis for X_{s} if and only if the operator T is an isomorphism between $\mathbb{K}_{\bar{x}}^{s}$ and X_{s}.

References

[1] L. A. Zadeh, "Fuzzy sets," Information and Computation, vol. 8, pp. 338-353, 1965.
[2] M. S. El Naschie, "On the uncertainty of Cantorian geometry and the two-slit experiment," Chaos, Solitons and Fractals, vol. 9, no. 3, pp. 517-529, 1998.
[3] M. S. El Naschie, "On a fuzzy Kähler-like manifold which is consistent with the two slit experiment," International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 95-98, 2005.
[4] M. S. El Naschie, "A review of E infinity theory and the mass spectrum of high energy particle physics," Chaos, Solitons and Fractals, vol. 19, no. 1, pp. 209-236, 2004.
[5] Y. Tanaka, Y. Mizuno, and T. Kado, "Chaotic dynamics in the Friedmann equation," Chaos, Solitons and Fractals, vol. 24, no. 2, pp. 407-422, 2005.
[6] M. S. El Naschie, "Quantum Entanglement as a consequence of a Cantorian micro spacetime geometry," Journal of Quantum Information Science, vol. 1, no. 2, pp. 50-53, 2011.
[7] M. Mursaleen, V. Karakaya, and S. A. Mohiuddine, "Schauder basis, separability, and approximation property in intuitionistic fuzzy normed space," Abstract and Applied Analysis, vol. 2010, Article ID 131868, 14 pages, 2010.
[8] Y. Yılmaz, "Schauder bases and approximation property in fuzzy normed spaces," Computers \mathcal{E} Mathematics with Applications, vol. 59, no. 6, pp. 1957-1964, 2010.
[9] P. Debnath and M. Sen, "A remark on the separability and approximation property in intuitionistic fuzzy n-normed linear spaces," International Mathematical Forum, vol. 6, no. 37-40, pp. 1933-1940, 2011.
[10] J. H. Park, "Intuitionistic fuzzy metric spaces," Chaos, Solitons and Fractals, vol. 22, no. 5, pp. 1039-1046, 2004.
[11] T. Bag and S. K. Samanta, "Fuzzy bounded linear operators," Fuzzy Sets and Systems, vol. 151, no. 3, pp. 513-547, 2005.
[12] B. Schweizer and A. Sklar, "Statistical metric spaces," Pacific Journal of Mathematics, vol. 10, pp. 313334, 1960.
[13] R. Saadati and J. H. Park, "On the intuitionistic fuzzy topological spaces," Chaos, Solitons and Fractals, vol. 27, no. 2, pp. 331-344, 2006.
[14] I. Kramosil and J. Michálek, "Fuzzy metrics and statistical metric spaces," Kybernetika, vol. 11, no. 5, pp. 336-344, 1975.
[15] Z. Deng, "Fuzzy pseudo-metric spaces," Journal of Mathematical Analysis and Applications, vol. 86, no. 1, pp. 74-95, 1982.
[16] M. A. Erceg, "Metric spaces in fuzzy set theory," Journal of Mathematical Analysis and Applications, vol. 69, no. 1, pp. 205-230, 1979.
[17] R. Saadati and S. M. Vaezpour, "Some results on fuzzy Banach spaces," Journal of Applied Mathematics \& Computing, vol. 17, no. 1-2, pp. 475-484, 2005.
[18] R. Lowen, Fuzzy Set Theory: Basic Concepts, Techniques and Bibliography, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[19] R. E. Megginson, An Introduction to Banach Space Theory, vol. 183 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1998.

