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We study the algebraic properties of Toeplitz operators on the Dirichlet space of the unit ball B,,.
We characterize pluriharmonic symbol for which the corresponding Toeplitz operator is normal or
isometric. We also obtain descriptions of conjugate holomorphic symbols of commuting Toeplitz
operators. Finally, the commuting problem of Toeplitz operators whose symbols are of the form
2PZ9¢(|z]*) is studied.

1. Introduction

For any integer n > 1, let B, = {z € C" : |z| < 1} denote the open unit ball of C" and dm
denote the normalized Lebesgue measure on B,,. The Sobolev space w'? is defined to be the
completion of smooth functions on B, which satisfy
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The inner product (-, -) on w'? is defined by
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The Dirichlet space @ of B, is the closed subspace consisting of all holomorphic functions
in w!?. It is easily verified that each point evaluation is a bounded linear functional on ®.
Hence, for each z € B, there exists a unique reproducing kernel K (w) € @ such that

f(z) = (f(w),K.(w)), VfeD. (1.3)

Actually, it can be calculated that K, (w) = 1+ 3,z (((la] + n — 1)!/|a|nlal)w*z"), where
a=(ay,...,a,)is a multi-index, a; € Z*, |a| = 37, a; and z% = 2" - - - z". For multi-indexes a

and f, the notation a > f means that
(XiZﬁi, i=1,...,n (14)

and a > f means that a > fand a # .
Let P be the orthogonal projection from w'? onto @. By the explicit formula for K (w),
we have

9y 9K,

12
5w, 0w, dm(w), Yy ew .

Py(z) = (Pq;, KZ> = <qr, KZ> = ’[B pdm ’[B K.dm + Zl IB
(1.5)

Let Q = {9 € w'? : ¢,0¢/0z;,0¢p/0z; € L*(B,)}. Given ¢ € Q, the Toeplitz operator T, with
symbol ¢ is the linear operator on ® defined by

T,f = P(gf), Vfe®. (16)

It is easy to verify that the Toeplitz operator T, : @ — D is always bounded, whenever ¢ € Q.

The algebric properties of Toeplitz operators on the classical Hardy spaces and
Bergman spaces have been well studied, for example, as in [1-5].

On the Hardy space of the unit circle, a well-known theorem of Brown and Halmos
[1] has shown that two Toeplitz operators with bounded symbols commute if and only
if one of the followings holds: (i) both symbols are holomorphic; (ii) both symbols are
antiholomorphic; (iii) a nontrivial linear combination of the symbols is constant.

On the Bergman space, the commuting problem is more complicated. Axler and
Cutkovi¢ [2] proved that Brown-Halmos Theorem also holds for Toeplitze operators with
bounded harmonic symbols. However, the corresponding problem for Toeplitz operator with
general symbol remains open.

In recent years, more and more attention has been paid to the Toeplitz operators on
Dirichlet spaces. The algebric properties of the Toeplitz operators on the classical Dirichlet
spaces of the unit disc have been investigated intensively in [6-13]. Cao considered Fredholm
properties of Toeplitz operators with C!(D) symbols in [6]. Lee showed in [8] that Brown-
Halmos'’s result with harmonic symbols remains vaild on the Dirichlet space of the unit disc.
In [12], Duistermaat and Lee gave the following characterizations of the harmonic symbols
for which the associated Toeplitz operators are commuting, self-adjoint, or isometric: (1) for
a harmonic symbol u € Q' = {u € C}(D) : u,0u/dz,0u/0z € L*(D,dA)}, T, is self-adjoint if
and only if u is a real constant function; (2) for a harmonic symbol u € Q', T, is an isometry
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if and only if u is a constant function of modulus 1; (3) for two harmonic symbols u, v €
', T, and T, commute if and only if either u and v are holomorphic or a nontrivial linear
combination of u and v is constant on D. In [13], the corresponding problems have been inves-
tigated on the polydisc Dirichlet spaces and similar results have been obtained.

Motivated by the work of [12, 13], we study the corresponding problems on the
Dirichlet spaces of B,,.. In Section 2, we give the characterizations of the pluriharmonic symbol
for which the associated Toeplitz operator is self-adjoint or an isometry. In Section 3, we
discuss when two Toeplitz operators with conjugate holomorphic symbols commute. At last,
we concern with the commuting Toeplitz operators with symbols zPZ7¢(|z[?).

2. Characterization of Normality and Isometry

In this section, we will give the condition under which Toeplitz operators with pluriharmonic
symbols are self-adjoint or isometric on 9. Before doing this, we first exhibit some properties
of Toeplitz operators on D.

Lemma 2.1. Let f = 3 5c7m fpzP € Q be holomorphic. Then the following statements hold:
1) T4l = £(0);
(2) ;1= £(0);
3) T =, fKzdm = f(0) + 3o ((fp/181(n + |B))2P).

Proof. By the definition of the Toeplitz operators and the properties of the reproducing kernel,
we obtain that

TA = (T71,K) = <P<7),KZ> <f 0), K» > £(0),
Tl = <T*1 K, > (1, fK.) j FK.dm = f fK.dm = £(0),
T2l = <Tf11,1<z> - <1,7KZ> - f fK.dm
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Lemma 2.2. Let u = f + g € Q, where f and g are holomorphic. If T,, is normal, then

2
dm,

2.

=3l e

aZl azl

where G = Tg(l).

Proof. By assumption, we have T’ f g
(Tr.aTpal1) = (TreaTjgl 1),

That is,

<Tf‘*‘§1’ Tf+§1> = < f+g1 T;+g1>

It follows from Lemma 2.1 that

(f+30),f+30)) = (F0) + G, F0) +G).

Hence,

o s0[ 3 [ 2]
i=1

B, 0z;

On the other hand, by the reproducing property and Lemma 2.1, we have

G(0) = T21(0) = <:r§1,1<0> = <T§1,1> = 2(0).

Then,

a_GZ

oz dm.

zn:.[ 2 _gjmn

i=1

azl

This completes the proof.

Trig= Tf+§Tf* e In particular,

dm = |W+G(0)|2+§JB —

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

O

The next lemma shows there is only trivial normal Toeplitz operator with holomorphic

(or antiholomorphic) symbols.

Lemma 2.3. Let f = 3 g fpzP € Q be holomorphic. Then the following statements are equivalent:

(1) Ty is normal;
(2) Tf is normal;
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) Ty.5

4) f is a constant function on B,,.

is normal;

Proof. (1) = (4) By Lemma 2.2 (with g = 0), we have that

2 Jezl =2, |5

This along with the fact that

DN

proves that fs = 0, for || > 0. This shows that f is a constant.
(2) = (4) Since Tf is normal, it follows from Lemma 2.2 that

2. [&

which implies that G is a constant function for G is holomorphic.
On the other hand, Lemma 2.1 ensures that

dm 0.

azl

dmO

621

o
G= T*l 0
F0+ 3 e o

It follows that fs = 0, for all || > 0. Hence f is a constant, as desired.
(3) = (4) Suppose T 47 is normal. Using Lemma 2.2,

2 Jal =20, 15

aZl azl

= IlF - F01* = S 15|
1AI>0

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

where G = T}(l). We conclude that fg = 0, for || > 0, since by direct computation and

Lemma 2.1
N of ” 2
2. Ial an= Sl

| fol”

_ /
0z |%0|ﬁ| (n+p])° 1

n
i=1 J‘
Hence f is a constant.
The converse implications are clear. The proof is complete.

(2.14)
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Since ||T?1|| > ||T;1|| for hyponormal Toeplitz operator Tf! using Lemma 2.1, T? is

hyponormal if and only if f is a constant. Consequently, normality of T can be replaced by
hyponormality in Lemma 2.3.

On the Hardy space and the Bergman space, we always have T;; = T. So it is easy to
see that T, is self-adjoint (i.e., T;, = T};) if and only if u is a real-valued function. However, on
the Dirichlet space of disc and polydisc, the situations are different because T}, is not equal
to Tx in both cases. In the following, we will study the adjoint of Toeplitz operators with
pluriharmonic symbols on the Dirichlet space of B,,.

Theorem 2.4. Let u = f + g € Q, where f and g are holomorphic. Then T,; = Ty; if and only if u is a
constant function.

Proof. First, assume that u = 3¢5 apz? is holomorphic. Since T}, = Ty, for each multi-index
a=(a,a,...,a,), we have

T'z% = Taz% Vla| > 0. (2.15)

Moreover,
(T;z",1) = (Tyz", 1). (2.16)

In fact, for |a| > 0,

|a|nlax!

T*txl — uTul _ u, :—a u2:—a. ) .
(Tiz 1) = {2 1) = (2% w) =Tl =T gy 2.17)
On the other hand,
nla!
(ng“,l):(ﬁz“,l):f ﬁz"‘dmzj G|z Pdm=a,  ————. 2.18
. ,, (n+ )] (218)
Note that
|a|n!a! nlal (2.19)

(n+la|-1)!  (n+|a])! >0,
we conclude that, a, = 0, for |a| > 0.

Second, assume that u = f + g is the general pluriharmonic symbol and T;; = Ty. In
particular, we have

(T; + Tg)l = T +T,l. (2.20)

By Lemma 2.1, we get that

£(0) + LB gK.dm = f(0) + g. (2.21)
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Since

— 8p
K.dm = ¢(0 S ——
ang " g(“%ownwm)z (222)

where g = 357 gpz?, it follows that

S e~ 2 2.23)

1B1>0 1B1>0

Equivalently,

1 Nosl,
|ﬂ|§>:0<1 |ﬁ|(n+|ﬂ|)>gﬂ : (2.24)

This implies that gg = 0, for |f| > 0. So u = f + g(0) is holomorphic. The desired result follows
immediately from the previous holomorphic case.
The converse implication is clear. The proof is complete. O

We now characterize pluriharmonic symbols inducing self-adjoint Toeplitz operators.

Theorem 2.5. Let u = f +g € Q, where f, g are holomorphic. Then T,, = T}, if and only if u is a real
constant function.

Proof. The “if” part is clear. Suppose f = ¥ sz fpzf and g = e gp2P. It follows from
Lemma 2.1 that

T,1=Tpgl = f+g(0) = £(0) +g(0) + D fszf,
B1>0
(2.25)

T,1=T; - 1=T;1+T=1 = f(0 0
it =TT =080+ 3 e

Since T,,1 = T};;1, by comparing the coefficients of the above two equations, we have that

8
|B](n+1B])

£(0) +g(0) = £(0) + g(0). (2.27)

=fs 1Bl >0, (2.26)
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Let w; = w*, where e; = (0,0,...,0,1,0,...,0). Then we have
—_——

i

0(gwi) 3K (w) aK OK:(w) ,
aw] ]'

(gwi, K (w)) = J‘B qw;dm + ZJ
" j=

f Z gﬂwﬂwldm+j gaK (w) dm
B IBVI

+n a’Z‘Ul
" (2.28)
— 1)! _
= Qo - w|"dm + I wh - (al +n - a;we ez dm
8| o [ 3 gt SIS
= ge‘ - +3(0) =
This shows that
(Tpzwi) (2) = (Trwi) (2) + (Tgwi) (2) = 3, fpz™e + 22+ g(0) - 2 (229
n+ 1
ﬂeZ+n
On the other hand, if h = 3}45c7 hgwt is holomorphic, then
%d’” LB D hypieof~etdm = b, (230)
t n Pre;
Therefore,
O(fK. .
J wdm = fo + f(0) - Z°. (2.31)
n 1
A direct computation shows that
+ 1
J‘ § aKZ(w) dm — I Z gawa . Z (|ﬂ| n- ) ﬁlwﬁ—eizﬁdm
B, awi By aczm axe; |ﬁ|n':6'
_ —(|a+ei|+n_1)! . —ate; I a2
) a;mga o + ej|n!(a + e;)! @+ 1)z B, ot (2:22)

—a+e,

Zg“’|a|+1

aEZn
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Hence,

(T;.501) (2) = (T} 501, K= (w) ) = (wy, ( + 3) K= (w))

_ f o((f+K:)) .

awi

(2.33)

_ f [a<f1<z<w>> iz aKZ<w)] I
B,

aw,- awi

Za+ei

|| +1°

= fo + f(0) - 2% + > 8

aEZrn
Comparing the expressions of (Tf,zw;)(z) and (T7 +§wi) (z), we obtain

8 _
Al +1

fo, V|B|>0. (2.34)

It follows from (2.26) and (2.34) that

fp=g=0, for|p|>0, n>1, (2.35)

which, according to (2.27), implies that u = f(0) + g(0) is a real constant function. This
complete the proof of the theorem. O

Note that for Theorem 2.5 the assumption “u = f+g € Q, where f, g are holomorphic”
can not be removed. For example, let u = 1—|z[?, thatis u = 1 - (2 + z5 + - - - + z2), then by the
below Theorem 4.5 T, = T}, = 0. However, u is not a constant function.

Corollary 2.6. Let u = f + g € Q, where f and g are holomorphic. Then T, is a projection operator
ifand only ifu=1oru =0.

Proof. The “if” part is clear. If T,, is a projection, then T,, = T;;. Theorem 2.5 implies that u = ¢
where c is a real. Since T, = T2, we see that ¢*> = c. This provesu =1oru=0. ]

Next, we will characterize pluriharmonic symbols for which the corresponding Toepli-
tz operator is an isometry.

Theorem 2.7. Let u = f +g € Q, where f and g are holomorphic. Then the following statements are
equivalent:

(1) Ty, is unitary;
(2) T, is isometric;

(3) u is a constant function of modulus 1.
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Proof. That (1) implies (2) follows from the fact that unitary operator is isometric.

To prove that (2) implies (3), we denote f = 3 5.7 fpzfand g = 2 pern gpzP. Recalling
the proof of Theorem 2.5, we have that

Trgl = f(0) +g(0) + > fs2F,
[B1>0

Trgwiz) = D, fp**+ 2% g - +8(0)- 2%,

ﬂ€Z+n
o % (2.36)
T 1=f0)+¢g(0)+ > —22 2P
it 2SO 8O e T
ZP+ei
; e+ f(0) -2 +
< f+gw>(z) f f( )z ﬂezzmgﬂlﬂl_i_l
Calculating the norms of the above items, it follows that
2 2
”Tf+§1”2 = |f(0) +g(0)) + ‘; |fp|2||zﬁ|| , (2.37)
p|>0
ITrgwo@|1* = X 15l ||z”*‘31 + ge‘ | f (2.38)
|1>0
& e
1 (0) + g(0) p (2.39)
| “ |f g | \p|>o |ﬁ|("+ 18]) ”
(T}, zwi) (2) e (0) +g(0) pre (2.40)
[T ” fe |f & | |ﬂ|o|ﬁ|+1 ”

By the assumption, (2.37), (2.38), (2.39), and (2.40) are all equal to 1 since T,, as well as T}, is
an isometry.
Note that ||z°|?/[|B|(n + |,(5|)]2 < ||IZP* 2/ (1 + |[5|)2, for |f| > 0 and n > 1. Comparing

(2.39) and (2.40), we obtain that | f(0) + g(0)| = 1 and g = 0, for || > 0 and n > 1. Then (2.37)
implies that

fp=0, for|B|>0, n>1. (241)

Therefore, u = f(0) + g(0) and |u| = |f(0) + g(0)| = 1.

Finally, if u = ¢ is a constant function, by Theorem 2.4, we have T;; = Ty. The desired
implication (3) = (1) follows from the fact that T;T,, = T5T, = M},p = 1 and T,,T;; = T, T;; =
M, = 1. O
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3. Commuting Toeplitz Operators with
Conjugate Holomorphic Symbols

In this section, we will study the commuting problems of Toeplitz operators with conjugate
holomorphic symbols. By the definition of Ty, if ¢ € Q is holomorphic, then Ty = M.
Therefore, for two holomorphic symbols f, ¢ € Q, Ty, and T, commute. It is natural to ask
when T and Tz commute, The following theorem shows that T7 commutes with Tg only in

the trival case. In this section, we may always assume f = >, pez fﬂzﬂ and g = >, pezm gﬁzﬂ.

Theorem 3.1. Let f € Qand g € Q be holomorphic. Then TgTy = T¢Tg ifand only if for a, p, y >0,

S &5 (Il = 18D

- 0.
(a2 () (n+ y]) (3.1)

Proof. Suppose reproducing kernel K;(w) = 1+ 3 ,50(((|a| + 1 — D!/ |alnla)w*z") = 1 +
2lal>0 caw”z". Without loss of generality, we may assume f(0) = g(0) = 0.
Note that for a > >0,

P(Eﬂz"‘> =d(a,a-p)z"?, (3.2)
where d(a,a — ) = (a!/(n+|a| - 1))/ ((« = B)!/ (n + |a - p| = 1)!). It follows that

Tgz" = P(3w") = gallz"ll3 + D grd(a, a— )z (33)

y<a
Therefore, we have

T?[nga] = 8_’0{”211“%’1—'?(1) + Zg_),d(a, a— Y) <T?Zu*7>

y<a
= Zf O)1z"13 + X3 faryd(a,a—7) |23
Y<ll
L (3.4)
2 > gfpd(aa-y)d(a-ya-y-p)z"7F
y<uﬂ<u—y
_— nla! _—
= > %f + > G fpd(a,a—y - Pz
Yzﬁ: P+ [B]) (n + |a] - 1)! MZQ rp
Similarly, we have that
— nla! —
Tz|T=z*| = 5 + d(a,a—y — Bz P
g[ f ] Yéafygﬂ(n+|ﬂ|)(n+|d|—1)! Yéaf)’gﬂ ( Y ﬂ)
(3.5)

nla!

= S f, _— o oy
réagrfﬂ(mlvl)(mw—l)!+Y+§ﬂ:<agrfﬂd(“r“ y-p)z=1".
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Observe that (3.4) and (3.5) have the same coefficients of z*~1?, it follows that

Tf [ngu] = Tg[TfZa] (36)
if and only if
——=_ (=D nla!
: =0. 3.7
2SI B ) el 1) ©7)
Since nla!/(n + || — 1)! > 0, the desired result is obtained. O

Corollary 3.2. If fs = gp = 0 for |B| # ko, where ko is a positive integer, then T;Tg = TgTs.

Proof. Since each item g_Yij(M — |Bl) equals to 0, (3.1) is satisfied. Thus the desired result
follows by Theorem 3.1. O

For example, Tzan Tzeo = TzeoTson since [(1,1)] = [(2,0)| = 2. On the Dirichlet space
of the unit disc or polydisc, Dusitermaat, Lee, Geng, and Zhou prove that for holomorphic
functions f and g, Tng = T?Tg if and only if f, g, and 1 are dependent, see [12, 13]. However,
this is not true on the unit ball Dirichlet space by Corollary 3.2. Indeed, the condition that f,
g, and 1 are linearly dependent is sufficient but not necessary for the commuting of T and
T

) Next, we will discuss when Toeplitz operator with holomorphic symbol and Toeplitz
operator with conjugate holomorphic symbol will commute.

Theorem 3.3. Let f € Qand g € Q be holomorphic. Then TgTy = TfTg if and only if f or g is a
constant function.

Proof. The “if” part implication is obvious. Now suppose T3y = T¢Tz. For each multi-index
a, we have

Ty[T2"] = f - Tgz*

= S [gnz“nz L Sgd(aa- Y)Za-y] N

px0 y<a )
= Gll=7 - FO) + TIPS fs2 + 3 g fod(a,a—y) 20,

p>0 y<ap>0
Tg[Tyz"] = Tg(f=")
g ’ 2 pap (3.9)

- Z ggfﬂ”uﬁ” + Z Zggfﬂd(“Jrﬂ/“Jfﬂ—é)Z -t

§=pra E<a+pp0

Assume that f is not a constant function. Hence there exists ffo > 0 such that fg, #0.
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For (3.8), let f = fp and y = a > 0, the coefficient of z% is

S.fp0 (n;:_!—[;i')!. (3.10)
On the other hand, if we let f = fy and ¢ = a > 0 in (3.9), then the coefficient of z% is
Safnd(a+ Po, fo)- (3.11)
Since
%#d(“+ﬁofﬁ0) (312)
and fp, #0, we deduce that
g,=0, for|a|>0, (3.13)
which implies that g is a constant function. The proof is complete. O

4. Commuting Toeplitz Operators with Symbols z'z7¢(|z|?)

Zhou and Dong [14] discussed the commuting and zero product problems of Toeplitz
operators on the Bergman space of the unit ball in C" whose symbols are of the form ¢k¢
where ¢ is a radial function. In [15], they generalized the case of the radial symbols to that
of the separately quasi-homogeneous symbols. In [16], Grudsky et al. considered weighted
Bergman spaces on the unit ball in C". In terms of the Wick symbol of a Toeplitz operator,
the complete information about the operator with radial symbols was given. Vasilevski [17]
studied the Toeplitz operators with the quasi-radial quasi-homogeneous symbol. For the case
of Dirichlet spaces, Chen et al. [18, 19] studied the quasi-radial Toeplitz operaors on the
disk. However, little work has been done in the unit ball case. The commuting problem
on it is subtle and no general answer is known. Dong and Zhou [15] have shown that
any function f in L?(B,, dm) has the decomposition f(z) = Xc; " fk(r), where fi(r) is
separately radial. In this section, the commuting and zero product problems of Toeplitz
operators T pzig(.p), p, q > 0 will be concerned, which may be helpful to the further study of
the commuting Toeplitz operators with general symbols. We denote = = {¢: ¢, ¢’ € L([0,1])}
and X' = {¢ is absolutely continuous on [0,1): ¢, ¢’ € L([0,1))}. In the remaining part of this
paper, we will always assume ¢ € 3. A direct calculation gives the following lemma.

Lemma 4.1. Let p > 0 and ¢(|z|*) € = be radial functions. Then
(n+|p+a|-D)p(n+|p+al-1)2"%, p+a>0,

T

0 z% = 1 4.1
9D n f $(r)r"dr, p=a=0, .
0

where $(z) = [y ="V + [} ¢/ (t)dt]dr.
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Proof. To simiplify the statement, we denote reproducing kernel K.(w) by 30 cyw'Z".
Notice that (3/0w;) (wP**¢(|w|?)) = (pi+a;)dwP ¢ +wP**§'w;. For p+a > 0, with integration
in polar coordinates we have
Tpg(zp) 2 = (W', K (w))

a(K (w))
— wPte

Z B, aw, D dw

- 2 —ei |2

= i+ &) CpraP P " dm

£, e aeaplur= "

+ I (pi + ai)cp+a¢’|w”+"‘|2dm] P+
B,

1 1
= [(n +|p+al-1) f P2ty dt + f t"+|P+“|-1¢'dt] zPe,
0 0

Since f; trelpral-lgidt = (n+ |p + a| - 1) f; t"+\P+'X\—2Ut1 ¢'dr]dt with integration by part, the
desired result is obvious.
For p = a =0, it is easy to see that

1
a2 = (P, K = dm = "Ldr. 43
Top=p) 2" = ($ Kz (w)) ’[Bn $pdm ”L ¢(r)r*dr (4.3)

The proof is complete. O

We now characterize the commuting Toeplitz operators whose symbols are of the form
zP$(|z|?), where p > 0.

Theorem 4.2. Let p.q> 0,9, ¢ € Z. Torg(zp) Taag(1zp) = Tzqu(‘z‘Z)szq}qZp ifand only if (n+|q+a| -

Dgn+lg+al- 1)¢(n+|p+q+a| D=n+lp+al- )¢(n+|p+(x| Dgn+lp+q+al-1)
holds for any multi-index a > 0.

Proof. For any multi-index & > 0, by Lemma 4.1, it follows that

Torgqa Targ(z %"
=(n+|q+a|-D)g(n+|qg+a|-1)(n+|p+q+a|-1)d(n+|p+q+al-1)z,
TPy Tzrgar) 2°
=(n+|p+al-D)¢(n+|p+al-1)(n+|p+q+a| -D)g(n+|p+q+a| -1)z7
(4.4)

Since (n +|p + g+ a| — 1) > 0, the result is followed. O
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A particular case of the above theorem is ¢ = (. In this case
Torg(izp) Taagpizp) = Targiizp) Torgizp) (4.5)

if and only if

[(n+1g+al =1)d(n+qg+a| =1) = (n+|p+a| -1)d(n+|p+a| -1)]
(4.6)

-$(n+|p+q+a|—1):0.

Thus we immediately have the following result.
Corollary 4.3. Let p, q9> 0, (i) €. If|p| = |q|, then szd’(\z\z)Tzqu’(\ZF) = Tzq¢(|z|2)TzP¢(|z|2)'

If ¢ is absolutely continuous on [0,1), integrating by parts, one has m$(m) =
lim, 1-¢(r) = $(17), for any positive integer m. Thus, using Lemma 4.1 one can get the
following lemma which will be often used in the sequel.

Lemma 4.4. Letp >0, ¢ € X', one has

¢(17)zP*e, p+a>0;

1
nj ¢(r)yr"dr, p=a=0. 47)
0

Tog(zp) 2" =

z
By Lemma 4.4, a regular argument shows the results below.
Theorem 4.5. Let p; > 0 and ¢; € X'. Then the followings hold.
(1) sz 4)1 TZP2¢Z = TZP2¢2TZP1 ¢1 = TZP1+P2¢1¢2.

(2) Tom g, x -+ x Ty, = 0 if and only if g1(17) x - x g(17) = 0.
(3) Let pi#pj fori#j, Ty, + -+ + Tarcg, = 0 if and only if each ¢;(17) = 0,1 <i < k.

Before discussing the commutivity of Toeplitz operator with symbols z7¢(|z|*), one
needs the following lemma which can be obtained by direct computation.

Lemma 4.6. Let multi-index q > 0 and ¢ € X. Then

d(a,a-q)(n+|al - 1)$(n +lal-1)z%9, a>g;
nlq! Il gl
S L— (r)dr, a=gq; (4.8)
CEATEE 7
0, afq,

Totgqep) 2 =

where d(a,a—q) = (a!/(n+|a|-1))/((a—q)!/ (n+|a—q| - 1)!) and a ¥ q means that there exists
i such that a;, < gi,.
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Proof. For a > q, We get that

Tarp(epy 2" = (w @, Kz (w))

f s (@)

n e —
Z J (tiw™ ¢ + w'w;P )w’ - Zc,riwrfff?dm
Bn r

a(K (w))

(4.9)
= [Z f |0 *eumg (i = i) + 00 P cumg (ati - q,-)dm] z*
i=1 By
- |d—6]|1’l!0€! ! -2 ! 14/
=Cp gzt l—o—— | (n+]a| - 1)j fr+laal dt+J‘ prHlaral-1 g7 g4
1 (n+]al-1)! 0 ¢ 0 ?
=d(a,a—q)(n+|a] - 1) (n + |a| - 1)z
For a = g, we have
Torpapy2® = (W W, Kz (w)) = JB |quz¢<|wlz>dm
. (4.10)
nq: j ntlgl-1
— | "1 (t)dt.
" (et Jql - )
If there exists 1 < i < n such that a; < g;, then
Tzq(ﬁ(‘ZlZ)Z‘x = <wawq¢, KZ(W)> = 0 (411)
Thus the proof is complete. O
Note that if ¢ € X', then (n + |a| — 1)$(n + |a| = 1) = ¢(17). It follows that
Taigepy 2" = d(a,a—q)p(17)z"9, for a>gq. (4.12)

The following theorem gives some properties of the Toeplitz operator with symbols

2(|=P).
Theorem 4.7. Let p, q, p; > 0, pi # pj for i #j and ¢, ¢, ¢; € X'. Then the following assertions hold.

() Torgep Toigazpy = TogepTogqar i and only if ¢(1°) [y rPlg(rydr =
$(17) fy ity (rydr.
(2) Tzn g, x -+ x Tzreg, = 0 if and only if one of the following holds:
(i) ¢1(17) = 0 and [} ™11y (r)dr = 0;
(ii) There exists ip where 2 < iy < k such that ¢;,(17) = 0.
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(3) Terg, + -+ + Torg, = 0 if and only if ¢;(17) = 0 and f& r P g (r)dr = 0 for each i,

1<i<k

Proof. Assertions (2) and (3) are the direct consequence of Lemma 4.6. We only need to prove

assertion (1). By Lemma 4.6, for h > p + g, since ¢, ¢ € X' we have

Tz 422y Tz 2 ( > =d(h,h-q)d(h-q,h-q-p)p(1 )p(17)z"7
=d(hh-q-p)p(1)p(17)z"7,
Tqux(|z|2)TE”¢(\z\2) (Zh> =d(hh-p)d(h-ph-q- P)‘i’(r)‘i‘(r)zh%p

=d(h,h-q-p)p(1")gp(17)z"7.

It is obvious that

Tz”qsuz\)Tzwzl)( h) = sznT"qmz\)( )

holds for h > p + 4.
For h = p + g, we obtain

- np: -
Lorgey Torgepy (2) = d(p + a,p) (1 )mf P (r)dr

_ nl(p+q)!
(e Tp - ql 1!

qr(l‘)f PP () dr,
0
nlg! g
Tagtery Tzt () = A+ 4980 oo 1)1f Ty

__ nl(p+9)!
(n+|p+q|-1)!

(1) f ity (r)dr.
0

Since n!(p + q)!/(n+ |p + g| — 1)! > 0, then the desired result is obvious.

In the assertion (1) of Theorem 4.7, if ¢ = ¢ = 1, then we get

1

3 [ ey - — L (7 ity )y =
o) [ P gnar= o g(0) [ Pty =

Therefore, it is easy to get the following corollary.

Corollary 4.8. Let p, g > 0. Then TzvTze = Tz Tz if and only if |p| = |q|.

+q]

(4.13)

(4.14)

(4.15)

(4.16)

It is well known that TgT, = T}, on the Hardy space if and only if either ¢ or ¢ is
holomorphic. However, Lemma 4.6 and Theorem 4.7 implies that a similar result does not
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hold on the Dirichlet space of the unit ball. Indeed, by the computation in Lemma 4.6 and
Theorem 4.7, it is easy to verify that for any p, q > 0, TzrTze 2P # Top+a 2P *9.

Theorem 4.9. Let p, g > 0 and ¢, ¢ € . Then Topp(z) Tzig(zp) = Tztg(zp) Terg(p) if and only if
$(17) = 00r ¢(17) = 0 and [, r**i-1gs(r)dr = 0.

Proof. For each multi-index h > 0, by Lemmas 4.4 and 4.6, we have that

(d(h,h - q)p(17)p(17) P, h>q
h _ n'q‘ ! n — — _
Torgzp Togzm% = 9 e lal =D fo r i (rdrg(17) 2, h=gq
\O, others,
) (4.17)
d(h+p,h+p-q)p(17)p(17)2""4, p+h>gq
n!q! 1 _ _
Torg iz Torpafy 2 = 3 a1 L g (rdrg(17), p+h=q
0, others.
Consequently, for h > g, we conclude
d(hh=q)g(17)p(17)2"P 0 =d(h+p,h+p-q)p(17)$(17)2"+. (4.18)

Since p, g > 0, it is clear that d(h, h — q) can not always equal to d(h+p,h+p—q) forall h > g.
Thus, we get

p(1)p(17) =0 (.19)

On the other hand, for h = g, we have

% Io iy (rdrg(17) =d(h+p,h+p-q)g(17)p(17). (4.20)

Combining (4.19) and (4.20), we obtain the desired result. O

Notice the assertion (3) of Theorem 4.5 and the assertion (3) of Theorem 4.7,
Theorem 4.9 above shows that sz¢(|z|2)T§qq,(‘z‘2) = T§q¢(‘z|2)T2p¢(|z‘2) if and only if Tzﬂ¢(|z|2) =0
or Tziy(z12) = 0 holds. That is, T.rg(z12) commutes with Tz .12y only in the trival case.

Finally, we will discuss when Toepitze operaor T .2y commute with Tpzizp).-

Theorem 4.10. Let p, g > 0 and ¢, ¢ € X'. Then the following assertions hold.
(1) pr > q, T¢(|Z|Z)sz§q¢(‘z|2) = szgqq,(|z‘2)T¢(|z|2) lf{l]’ld OTll_l/ lf(,lf(l_) = 0or 4)(1_) =
n f& " Lp(r)dr.
@ I q > P, Tpep Torztgqepy = TorzgqepyTpqep if and only if o r4-gs(r)dr = 0 or
n [y lg(r)dr = g(1).
®) IfpXqand qXp orp =g, Tozp) Torzigzp) = Torzigqzp) Tpozp)-
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Proof. For each multi-index h > 0, by Lemmas 4.4 and 4.6 we have

dip+hp+h-q)p1)p1)z"r, h+p>q
To(ety Torztg(zt) 2" = nlg! ' '
(1=~ 22y (|2) f r"”ql*lqr(r)dr . nJ‘ r"*1¢(r)dr, h+p=gq,
(n+|q|-1)t)o 0
(d(p+h,p+h-q)p(17)P(17)z"P, h>0, h+p>q
nlg! 1
nq- n+lgl-1 _
p)— f iy (r)dr, >0, hp=q
(n+|q] -1)!
0, h>0, h+p¥q
T, T,.z" =43 1
Z=(=) " $(1=) " J‘ 7 (r)drd(p,p - q)g (17) 277, h=0,p>q
J’q "_147( Vd n!q! J‘l n+|gl-1 (r)d h=0
n|r rdr———— | r r)dr, =0, p=
0 (efgl-Dt)e” ¥ P
L0, h=0, p#q.

(4.21)

Case 1. Suppose p > g. We have

Ty Torzig ey’ = d(p +hop + h=q)g(17)$(17) "7,
d(p+hp+h-q)p(l)p(1)z"P, h>0 (4.22)
Tozigepy T "= !
220" 90H)F T J P g(r)drd(p,p - ) (1) 274, h=0.
0

T.rz14(zp) commutes with T .p) if and only if
o
dip,p-9)¢(17)¢(1") =d(p,p-q)p(1)n fo " g(r)dr, (4.23)
which is equivalent to ¢:(17) = 0 or $(17) = n [, 7"~ p(r)dr.

Case 2. Suppose q > p. Note that h + p > g if and only if h > g — p. We have

d(p+h,p+h-q)p(17)p(17)z"7, h>q-p
_ nlqt 1 1
T 2 T = 2 Zh = f "+|‘7|_1 r dr . nJ‘ Tn_l r dr, h — —
(=) L 22 (2P) [CEArEnY @(r) . P(r) q-p
0, h¥q-p,

(4.24)
dp+hp+h-q)g(1)p(17)z""4, h>q-p
h_ nlq! g _
Loz Toon)2" = 1 90 o =y 1),f W (r)dr, h=gq-p
0, h¥q-p.
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It follows that T_pzi(zp) commutes with Ty, if and only if

1

1 1
[ it n [ g = [ o), (425)
0 0 0
which is equivalent to f& r"a-ly(r)dr =0 or n fol " Lp(r)dr = ¢(17)

Case 3. Suppose p ¥ q and q ¥ p. Let b’ = {h;}, where h; = max{qg; — p;,0} for 1 <i < n. Then for
h>0,h+p>qifand only if h > K. Thus,

d h/ h- 1~ 1~ h+p—ql h > h,
T¢(IZIZ)TZPE‘7¢(\Z|2)Z = { (p+hp+ 7)p(17)¢(17)z >

0, hXHn,
(4.26)
d(p+hp+h-q)g(1)$(1)z"P4, h>H
Tz o) Tpe) 2 = ,
0, h¥H.
It is obvious that Toyz1,(.p) commutes with Tp(.p).
Case 4. Suppose p = q. We have
d(p+hp+h-q)p(l)p(1)z"P, h>0
ho_ 1 1
Totepy Tormtqapy = = 19" I g (r)dr - nf r"e(r)dr, h=0,
(n+]ql-1)! Jo 0
(4.27)
d(p+hp+h-q)p(l7)p(17)z"P, h>0
h_ 1 1
Tozg:m)Tp0:07" =\ f () e n'q! J’ wla-ly (r)dr, b= 0.
0 + gl -1)!
It is easy to see that T_yziy .12y commutes with Ty (.p). This completes the proof. O

Corollary 4.11. Let 14 1 q and (i), (7S 3. Then T¢(|Z|2)szgﬂq,(|z|2) = szzﬂq,quZ)T(ﬁqz‘Z).

Proof. Note that p L g implies p g and q’p. The desired result is immediately followed by
Theorem 4.10. O
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