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Given nonempty closed convex subsetsCi ⊆ Rm, i = 1, 2, . . . , t and nonempty closed convex subsets
Qj ⊆ Rn, j = 1, 2, . . . , r, in the n- and m-dimensional Euclidean spaces, respectively. The multiple-
set split feasibility problem (MSSFP) proposed by Censor is to find a vector x ∈ ⋂t

i=1 Ci such
that Ax ∈ ⋂r

j=1 Qj , where A is a given M × N real matrix. It serves as a model for many inverse
problems where constraints are imposed on the solutions in the domain of a linear operator as
well as in the operator’s range. MSSFP has a variety of specific applications in real world, such
as medical care, image reconstruction, and signal processing. In this paper, for the MSSFP, we
first propose a new self-adaptive projection method by adopting Armijo-like searches, which dose
not require estimating the Lipschitz constant and calculating the largest eigenvalue of the matrix
ATA; besides, it makes a sufficient decrease of the objective function at each iteration. Then we
introduce a relaxed self-adaptive projection method by using projections onto half-spaces instead
of those onto convex sets. Obviously, the latter are easy to implement. Global convergence for both
methods is proved under a suitable condition.

1. Introduction

The multiple-sets split feasibility problem (MSSFP) requires to find a point closest to a family
of closed convex sets in one space such that its image under a linear transformation will be
closest to another family of closed convex sets in the image space. It is formulated as follows:

Find a x ∈ C :=
t⋂

i=1

Ci such that Ax ∈ Q :=
r⋂

j=1

Qj, (1.1)
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where nonempty closed convex sets Ci ⊆ Rn, i = 1, 2, . . . , t, in the n-dimensional Euclidean
space Rn, and nonempty closed convex sets Qj ⊆ Rm, j = 1, 2, . . . , r, in the m-dimensional
Euclidean space Rm. A is anm × n real matrix. Specially, the problem with only a single set C
in Rn and a single set Q in Rm was introduced by Censor and Elfving [1] and was called the
split feasibility problem (SFP).

Such MSSFPs (1.1), proposed in [2], arise in signal processing, image reconstruction
and so on. Various algorithms have been invented to solve MSSFP (1.1). See [2–5] and
references therein.

In [2], Censor and Elfving were handling the MSSFP (1.1), for both the consistent and
the inconsistent cases, where they aim at minimizing the proximity function

P(x) =
(
1
2

) t∑

i=1

αi‖PCi(x) − x‖2 +
(
1
2

) r∑

j=1

βj
∥
∥
∥PQj (Ax) −Ax

∥
∥
∥
2
. (1.2)

For convenience reasons, they consider an additional closed convex set Ω ⊆ Rn. Their
algorithm for the MSSFP (1.1) involves orthogonal projection onto Ω ⊆ Rn, Ci ⊆ Rn, i =
1, 2, . . . , t, andQj ⊆ Rm, j = 1, 2, . . . , r, which were assumed to be easily calculated and has the
following iterative step:

xk+1 = PΩ

⎛

⎝xk + γ

⎛

⎝
t∑

i=1

αi

(
PCi

(
xk

)
− xk

)
+

r∑

j=1

βiA
T
(
PQj

(
Axk

)
−Axk

)
⎞

⎠

⎞

⎠, (1.3)

where αi > 0, i = 1, 2, . . . , t. βj > 0, j = 1, 2, . . . , r. γ ∈ (0, 2/L), L1 =
∑t

i=1 αi + λ
∑r

j=1 βj is
the Lipschitz constant of∇P(x), which is the gradient of the proximity function P(x) defined
by (1.2), and λ is the spectral radius of the matrix ATA. For any starting vector x0 ∈ Rn, the
algorithm converges to a solution of the MSSFP (1.1), whenever MSSFP (1.1) has a solution.
In the inconsistent case, it find a point “closest” to all sets.

This algorithm uses a fixed stepsize related to the Lipschitz constant L, which
sometimes computing it may be hard. On the other hand, even if we know the Lipschitz
constant L, the method with fixed stepsize may lead to slow speed of convergence.

In 2005, Qu and Xiu [6] modified the CQ algorithm [7] and relaxed CQ algorithm
[8] by adopting Armijo-like searches to solve the SFP, where the second algorithm used
orthogonal projections onto half-spaces instead of projections onto the original convex sets,
just as Yang’s relaxed CQ algorithm [8]. This may reduce a lot of work for computing
projections, since projections onto half-spaces can be directly calculated.

Motivated by Qu and Xiu’s idea, Zhao and Yang in [4] introduce a self-adaptive
projection method by adopting Armijo-like searches to solve the MSSFP (1.1) and propose
a relaxed self-adaptive projection method by using orthogonal projections onto half-spaces
instead of these projections onto the original convex sets, which is more practical. But the
same as Algorithm 1.3, Zhao and Yang’s algorithm involves an addition projection PΩ.
Though the MSSFP (1.1) includes the SFP as a special case, the Zhao and Yang’s algorithm
does not reduce to Qu and Xiu’s modifications of the CQ algorithm [6].

In this paper, We first proposed a self-adaptive method by adopting Armijo-like
searches to solve the MSSFP (1.1) without an addition projection PΩ, then a relaxed self-
adaptive projection method was introduced which only involves orthogonal projections onto
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half-spaces, so that the algorithm is implementable. We need not estimate the Lipschitz
constant and make a sufficient decrease of the objection function at each iteration; besides,
these projection algorithms can reduce to the modifications of the CQ algorithm [6] when
the MSSFP (1.1) is reduced to the SFP. We also show convergence the algorithms under mild
conditions.

2. Preliminaries

In this section, we give some definitions and basic results that will be used in this paper.

Definition 2.1. An operator F from a set X ⊂ Rn into Rn is called

(a) monotone on X, if

〈
F(x) − F

(
y
)
, x − y

〉 ≥ 0, ∀x, y ∈ X; (2.1)

(b) cocoercive on X with constant α > 0, if

〈
F(x) − F

(
y
)
, x − y

〉 ≥ α
∥
∥F(x) − F

(
y
)∥
∥2

, ∀x, y ∈ X; (2.2)

(c) Lipschitz continuous on X with constant λ > 0, if

∥
∥F(x) − F

(
y
)∥
∥ ≤ λ

∥
∥x − y

∥
∥, ∀x, y ∈ X. (2.3)

In particular, if λ = 1, F is said to be nonexpansive. It is easily seen from the definitions
that cocoercive mappings are monotone.

Definition 2.2. Functions f(x), differentiable on a nonempty convex set S, is pseudoconvex if
for every x1, x2 ∈ S, the condition f(x1) < f(x2) implies that

∇f(x2)T (x1 − x2) ≤ 0. (2.4)

It is known that differentiable convex functions are pseudoconvex (see [9]).
For a given nonempty closed convex set Ω in Rn, the orthogonal projection from Rn

onto Ω is defined by

PΩ(x) = argmin
{∥
∥x − y

∥
∥ | y ∈ Ω

}
, x ∈ Rn. (2.5)

Lemma 2.3 (see [10]). LetΩ be a nonempty closed convex subset in Rn, then, for any x, y ∈ Rn and
z ∈ Ω.

(1) 〈PΩ(x) − x, z − PΩ(x)〉 ≥ 0;

(2) ‖PΩ(x) − PΩ(y)‖2 ≤ 〈PΩ(x) − PΩ(y), x − y〉;
(3) ‖PΩ(x) − z‖2 ≤ ‖x − z‖2 − ‖PΩ(x) − x‖2.
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From Lemma 2.3 (2), one sees that the orthogonal projection mapping PΩ(x) is cocoercive with
modulus 1, monotone, and nonexpansive.

Let F be a mapping from Rn into Rn. For any x ∈ Rn and α > 0, define x(α) = PΩ(x−αF(x)),
e(x, α) = x − x(α).

Lemma 2.4 (see [6]). Let F be a mapping from Rn into Rn. For any x ∈ Rn and α > 0, one has
min{1, α}‖e(x, 1)‖ ≤ ‖e(x, α)‖ ≤ max{1, α}‖e(x, 1).

Lemma 2.5 (see [5, 9]). Suppose h : Rn − R is a convex function, then it is subdifferentiable
everywhere and its subdifferentials are uniformly bounded on any bounded subset of Rn.

3. Self-Adaptive Projection Iterative Scheme and Convergence Results

It is easily seen that if the solution set of MSSFP (1.1) is nonempty, then the MSSFP (1.1) is
equivalent to the minimization problem of q over all x ∈ C :=

⋂t
i=1 Ci. q(x) is defined by

q(x) =
(
1
2

) r∑

j=1

βj
∥
∥
∥PQj (Ax) −Ax

∥
∥
∥
2
, (3.1)

where βj > 0. Note that the gradient of q(x) is

∇q(x) =
r∑

j=1

βjA
T
(
I − PQj

)
Ax. (3.2)

Consider the following constrained minimization problem:

min
{
q(x), x ∈ C

}
. (3.3)

We say that a point x∗ ∈ C is a stationary point of the problem (3.3) if it satisfies the
condition

〈∇q(x∗), x − x∗〉 ≥ 0, ∀x ∈ C. (3.4)

This optimization problem is proposed by Xu [3] for solving the MSSFP (1.1); the ∇q
defined by (3.2) is L-Lipschitzian with L = ‖A‖2 ∑r

j=1 βj and ∇q is (1/L)-ism.

Algorithm 3.1. Given constant β > 0, σ ∈ (0, 1). Let x0 be arbitrary. For k = 0, 1, . . ., calculate

xk+1 = PC[k+1]

(
xk − τk∇q(x)xk

)
, (3.5)

where C[n] = Cn mod N and mod function takes values in 1, 2, . . . ,N, τk = βγlk and lk is the
smallest nonnegative integer l such that

q
(
PC[k+1]

(
xk − βγl∇q(x)xk

))
≤ q

(
xk

)
− σ

〈
∇q

(
xk

)
, xk − PC[k+1]

(
xk − βγl∇q(x)xk

)〉
. (3.6)
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Algorithm 3.1 need not estimate the largest eigenvalue of the matrix ATA, and the
stepsize τk is chosen so that the objective function q(x) has a sufficient decrease. It is in fact a
special case of the standard gradient projection method with the Armijo-like search rule for
solving the constrained optimization problem:

min
{
g(x); x ∈ Ω

}
, (3.7)

where Ω ⊆ Rn is a nonempty closed convex set, and the function g(x) is continuously
differentiable on Ω, then the following convergence result ensures the convergence of
Algorithm 3.1.

Lemma 3.2 (see [6]). Let g ∈ C1
Ω be pseudoconvex and xk be an infinite sequence generated by the

gradient projection method with the Armijo-like searches. Then, the following conclusions hold:

(1) limk→∞g(xk) = inf{g(x) : x ∈ Ω};
(2) ∅/=Ω∗, which denotes the set of the optimal solutions to (3.7), if and only if there exists at

least one limit point of {xk}. In this case, {xk} converges to a solution of (3.7).

Since the function q(x) is convex and continuously differentiable on C, therefore it
is pseudoconvex. Then, by Lemma 3.2, one immediately obtains the following convergence
result.

Theorem 3.3. Let {xk} be a sequence generated by Algorithm 3.1, then the following conclusions
hold:

(1) {xk} is bounded if and only if the solution set of (3.3) is nonempty. In such a case, {xk}
must converge to a solution of (3.3).

(2) {xk} is bounded and limk→∞q(xk) = 0 if and only if the MSSFP (1.1) is solvable. In such
a case, {xk} must converge to a solution of MSSFP (1.1).

However, in Algorithm 3.1, it costs a large amount of work to compute the orthogonal
projections PCi and PQj ; therefore, the same as Censor’s method, these projections are
assumed to be easily calculated. But, in some cases it is difficult or costs too much work
to exactly compute the orthogonal projection, then the efficiency of these methods will be
deeply affected. In what follows, one assume that the projections are not easily calculated.
One present a relaxed self-adaptive projection method. Carefully speaking, the convex sets
Ci and Qj satisfy the following assumptions.

(1) The sets Ci, i = 1, 2, . . . , t. are given by

Ci = {x ∈ Rn | ci(x) ≤ 0}, (3.8)

where ci : Rn → R, i = 1, 2, . . . , t, are convex functions.
The sets Qj , j = 1, 2, . . . , r. are given by

Qj =
{
y ∈ Rm | qj

(
y
) ≤ 0

}
, (3.9)

where qj : Rm → R, j = 1, 2, . . . , r, are convex functions.
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(2) For any x ∈ Rn, at least one subgradient ξi ∈ ∂ci(x) can be calculated, where ∂ci(x)
is a generalized gradient (subdifferential) of ci(x) at x and it is defined as follows:

∂ci(x) = {ξi ∈ Rn | ci(z) ≥ ci(x) + 〈ξi, z − x〉 ∀z ∈ Rn}. (3.10)

For any y ∈ Rm, at least one subgradient ηi ∈ ∂qj(y) can be calculated, where ∂qj(y) is
a generalized gradient (subdifferential) of qj(y) at y and it is defined as the following:

∂qj
(
y
)
=
{
ηj ∈ Rm | qj(u) ≥ qj

(
y
)
+
〈
ηj , u − y

〉 ∀u ∈ Rm}. (3.11)

In the kth iteration, let

Ck
i =

{
x ∈ Rn | ci

(
xk

)
+
〈
ξki , x − xk

〉
≤ 0

}
, (3.12)

where ξki is an element in ∂ci(xk), i = 1, 2, . . . , t.
Consider

Qk
j =

{
y ∈ Rm | qj

(
Axk

)
+
〈
ηk
j , y −Axk

〉
≤ 0

}
, (3.13)

where ηk
j is an element in ∂qj(Axk), j = 1, 2, . . . , r.

By the definition of the subgradient, it is clear that Ci ⊆ Ck
i , Qj ⊆ Qk

j and the

orthogonal projections onto Ck
i and Qk

j can be calculated [4, 6, 8]. Define

qk(x) =
(
1
2

) r∑

j=1

βj
∥
∥
∥PQk

j
(Ax) −Ax

∥
∥
∥
2
, (3.14)

where βj > 0. Then

∇qk(x) =
r∑

j=1

βjA
T
(
I − PQk

j

)
Ax. (3.15)

For the Lipschiitz constant and the cocoercive modulus of ∇q defined by (3.2) are not
related to the nonempty closed convex sets Ci and Qj [3], one can obtain that the ∇qk(x) is
L-Lipschitzian with L = ‖A‖2 ∑r

j=1 βj and (1/L)-ism. So, ∇qk(x) is monotone.

Algorithm 3.4. Given constant γ > 0, α ∈ (0, 1) μ ∈ (0, 1). Let x0 be arbitrary. For k = 0, 1, 2, . . .,
compute

xk = PCk
[k+1]

(
xk − ρk∇qk

(
xk

))
, (3.16)
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where ρk = γαlk and lk is the smallest non-negative interger l such that

∥
∥
∥∇qk

(
xk

)
− ∇qk

(
xk

)∥
∥
∥ ≤ μ

∥
∥
∥xk − xk

∥
∥
∥

ρk
. (3.17)

Set

xk+1 = PCk
[k+1]

(
xk − ρk∇qk

(
xk

))
. (3.18)

Lemma 3.5. The Armijo-like search rule (3.17) is well defined, and μα/L ≤ ρk ≤ γ .

Proof. Obviously, from (3.17), ρk ≤ γ for k = 0, 1, . . . . We know that ρk/α must violate ine-
quality (3.17). That is,

∥
∥
∥∇qk

(
xk

)
− ∇qk

(
PCk

[k+1]

(
xk − ρk

α
∇qk

(
xk

)))∥
∥
∥ ≥ μ

∥
∥
∥xk − PCk

[k+1]

(
xk − (

ρk/α
)∇qk

(
xk

))∥∥
∥

ρk/α
.

(3.19)

Since ∇qk is Lipschitz continuous with constant L, which together with (3.19), we have

ρk >
μα

L
, (3.20)

which completes the proof.

Theorem 3.6. Let {xk} be a sequence generated by Algorithm 3.4. If the solution set of the MSSFP
(1.1) is nonempty, the {xk} converges to a solution of the MSSFP (1.1).

Proof. Let x∗ be a solution of the MSSFP (1.1), then x∗ = PC(x∗) = PCi(x
∗), i = 1, 2, . . . , t. and

Ax∗ = PQ(Ax∗) = PQj (x
∗), j = 1, 2, . . . , r.

Since Ci ⊆ Ck
i , Qj ⊆ Qk

j for all i and j, we have x∗ ∈ Ck
i , Ax∗ ∈ Qk

j , and, qk(x
∗) = 0;

thus, we have ∇qk(x∗) = 0 for all k = 0, 1, . . ..
Using the monotonicity of ∇qk, we have for all k = 0, 1, . . .

〈
∇qk

(
xk

)
− ∇qk(x∗), xk − x∗

〉
≥ 0. (3.21)

This implies

〈
∇qk

(
xk

)
, xk − x∗

〉
≥
〈
∇qk(x∗), xk − x∗

〉
= 0. (3.22)

Therefore, we have

〈
∇qk

(
xk

)
, xk+1 − x∗

〉
≥
〈
∇qk

(
xk

)
, xk+1 − xk

〉
. (3.23)
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Thus, using part (3) of Lemma 2.3 and (3.23), we obtain

∥
∥
∥xk+1 − x∗

∥
∥
∥
2
=
∥
∥
∥PCk

[k+1]

(
xk − ρk∇qk

(
xk

))
− x∗

∥
∥
∥
2

≤
∥
∥
∥xk − ρk∇qk

(
xk

)
− x∗

∥
∥
∥
2 −

∥
∥
∥xk+1 − xk + ρk∇qk

(
xk

)∥
∥
∥
2

=
∥
∥
∥xk − x∗

∥
∥
∥
2 − 2ρk

〈
∇qk

(
xk

)
, xk − x∗

〉
−
∥
∥
∥xk+1 − xk

∥
∥
∥
2

− 2ρk
〈
∇qk

(
xk

)
, xk+1 − xk

〉

≤
∥
∥
∥xk − x∗

∥
∥
∥
2 − 2ρk

〈
∇qk

(
xk

)
, xk+1 − xk

〉
−
∥
∥
∥xk+1 − xk + xk − xk

∥
∥
∥
2

=
∥
∥
∥xk − x∗

∥
∥
∥
2 − 2ρk

〈
∇qk

(
xk

)
, xk+1 − xk

〉
−
∥
∥
∥xk+1 − xk

∥
∥
∥
2

−
∥
∥
∥x

k − xk
∥
∥
∥
2 − 2

〈
xk − xk, xk+1 − xk

〉

=
∥
∥
∥xk − x∗

∥
∥
∥
2 −

∥
∥
∥x

k − xk
∥
∥
∥
2 −

∥
∥
∥xk+1 − xk

∥
∥
∥
2
+ 2

〈
xk − xk − ρk∇qk

(
xk

)
, xk+1 − xk

〉
.

(3.24)

Since xk = PCk
[k+1]

(xk − ρk∇qk(xk)), xk+1 ∈ Ck
[k+1]. By Lemma 2.3(1), we have 〈xk − xk +

ρk∇qk(xk), xk+1 − xk〉 ≥ 0; also, by search rule (3.17), it follows that

∥
∥
∥xk+1 − x∗

∥
∥
∥
2 ≤

∥
∥
∥xk − x∗

∥
∥
∥
2 −

∥
∥
∥x

k − xk
∥
∥
∥
2 −

∥
∥
∥xk+1 − xk

∥
∥
∥
2

+ 2
〈
xk − xk − ρk∇qk

(
xk

)
, xk+1 − xk

〉

+ 2
〈
xk − xk + ρk∇qk

(
xk

)
, xk+1 − xk

〉

=
∥
∥
∥xk − x∗

∥
∥
∥
2 −

∥
∥
∥x

k − xk
∥
∥
∥
2 −

∥
∥
∥xk+1 − xk

∥
∥
∥
2

+ 2ρk
〈
∇qk

(
xk

)
− ∇qk

(
xk

)
, xk+1 − xk

〉

≤
∥
∥
∥xk − x∗

∥
∥
∥
2 −

∥
∥
∥x

k − xk
∥
∥
∥
2 −

∥
∥
∥xk+1 − xk

∥
∥
∥
2

+ ρ2k

∥
∥
∥∇qk

(
xk

)
− ∇qk

(
xk

)∥
∥
∥
2
+
∥
∥
∥xk+1 − xk

∥
∥
∥
2

≤
∥
∥
∥xk − x∗

∥
∥
∥
2 −

∥
∥
∥x

k − xk
∥
∥
∥
2
+ μ2

∥
∥
∥xk − xk

∥
∥
∥
2

=
∥
∥
∥xk − x∗

∥
∥
∥
2 −

(
1 − μ2

)∥
∥
∥x

k − xk
∥
∥
∥
2
,

(3.25)
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which implies that the sequence {‖xk − x∗‖} is monotonically decreasing and hence {xk} is
bounded. Consequently, we get from (3.25)

lim
k→∞

∥
∥
∥xk − xk

∥
∥
∥ = 0. (3.26)

On the other hand

∥
∥
∥xk+1 − xk

∥
∥
∥ ≤

∥
∥
∥xk+1 − xk

∥
∥
∥ +

∥
∥
∥x

k − xk
∥
∥
∥

≤
∥
∥
∥xk − ρk∇qk

(
xk

)
− xk + ρk∇qk

(
xk

)∥
∥
∥ +

∥
∥
∥x

k − xk
∥
∥
∥

= ρk
∥
∥
∥∇qk

(
xk

)
− ∇qk

(
xk

)∥
∥
∥ +

∥
∥
∥x

k − xk
∥
∥
∥

≤ (
μ + 1

)∥∥
∥x

k − xk
∥
∥
∥,

(3.27)

which results in

lim
k→∞

∥
∥
∥xk+1 − xk

∥
∥
∥ = 0. (3.28)

Let x̃ be an accumulation point of {xk} and xkn → x̃, where {xkn}∞n=1 is a subsequence of
{xk}. We will show that x̃ is a solution of the MSSFP (1.1). Thus, we need to show that x̃ ∈
C =

⋂t
i=1 Ci and Ax̃ ∈ Q =

⋂r
j=1 Qj .

Since xkn+1 ∈ Ckn
[kn+1]

, for all n = 1, 2, . . ., then by the definition of Ckn
[kn+1]

, we have

c[ki+1]
(
xkn

)
+
〈
ξkn+1[kn+1]

, xkn+1 − xkn
〉
≤ 0. (3.29)

Passing onto the limit in this inequality and taking into account (3.29) and Lemma 3.2,
we obtain that c[kn+1](x̃) ≤ 0 with kn → ∞.

Because C[kn+1] is repeated regularly of C1, C2, . . . , Ct, so x̃ ∈ Ci for every 1 ≤ i ≤ t; thus,
x̃ ∈ C =

⋂t
i=1 Ci. Next, we need to show Ax̃ ∈ Q =

⋂r
j=1 Qj .

Let ek(x, ρ) = x − PCk
[k+1]

(x − ρ∇qk(x)), k = 0, 1, 2, . . ., then ekn(x
kn , ρkn) = xkn − xkn and

we get from Lemmas 2.4 and 3.2, and (3.26) that

lim
kn →∞

∥
∥
∥ekn

(
xkn , 1

)∥
∥
∥ ≤ lim

kn →∞

∥
∥
∥xkn − xkn

∥
∥
∥

min
{
1, ρkn

} ≤ lim
kn →∞

∥
∥
∥xkn − xkn

∥
∥
∥

min
{
1, ρ̂

} = 0, (3.30)

where ρ̂ = μα/L. Since x∗ is a solution point of MSSFP (1.1), so x∗ ∈ Ci, i = 1, 2, . . . , t. By
using Lemma 2.3, we have

0 ≤
〈
xkn − ∇qkn

(
xkn

)
− PCkn

[kn+1]

(
xkn − ∇qkn

(
xkn

))
, PCkn

[kn+1]

(
xkn − ∇qkn

(
xkn

))
− x∗

〉

=
〈
ekn

(
xkn , 1

)
− ∇qkn

(
xkn

)
, xkn − x∗ − ekn

(
xkn , 1

)〉
.

(3.31)
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From Lemma 2.3, we see that orthogonal projection mappings are cocoercive with
modulus 1, taking into account the fact that the mapping F is cocoercive with modulus 1
if and only if I − F is cocoercive with modulus 1 [6], we obtain from (3.31) and ∇qkn(x

∗) = 0
that

〈
xkn − x∗, ekn

(
xkn , 1

)〉
≥
∥
∥
∥ekn

(
xkn , 1

)∥
∥
∥
2 −

〈
∇qkn

(
xkn

)
, ekn

(
xkn , 1

)〉

+
〈
∇qkn

(
xkn

)
− ∇qkn(x

∗), xkn − x∗
〉

=
∥
∥
∥ekn

(
xkn , 1

)∥
∥
∥
2 −

〈
∇qkn

(
xkn

)
, ekn

(
xkn , 1

)〉

+
r∑

j=1

βj

〈

AT

(

I − PQkn
j

)(
Axkn

)
−AT

(

I − PQkn
j

)

(Ax∗), xkn − x∗
〉

=
∥
∥
∥ekn

(
xkn , 1

)∥
∥
∥
2 −

〈
∇qkn

(
xkn

)
, ekn

(
xkn , 1

)〉

+
r∑

j=1

βj

〈(

I − PQkn
j

)(
Axkn

)
−
(

I − PQkn
j

)

(Ax∗), Axkn −Ax∗
〉

≥
∥
∥
∥ekn

(
xkn , 1

)∥
∥
∥
2 −

〈
∇qkn

(
xkn

)
, ekn

(
xkn , 1

)〉

+
r∑

j=1

βj

∥
∥
∥
∥Axkn − PQkn

j

(
Axkn

)∥∥
∥
∥

2

.

(3.32)

Since ‖∇qkn(x
kn)‖ = ‖∇qkn(x

kn) − ∇qkn(x
∗)‖ ≤ L‖xkn − x∗‖ and {xkn} is abounded,

the sequence ∇qkn(x
kn) is also bounded. Therefore, from (3.30) and (3.32), we get for all j =

1, 2, . . ., that

lim
kn →∞

∥
∥
∥
∥Axkn − PQkn

j

(
Axkn

)∥∥
∥
∥ = 0. (3.33)

Moreover, since PQkn
j
(Axkn) ∈ Qkn

j , we have

qj
(
Axkn

)
+
〈

ηkn
j , PQkn

j

(
Axkn

)
−Axkn

〉

≤ 0, j = 1, 2 . . . , r. (3.34)

Again passing onto the limits and combining those inequalities with Lemma 2.5, we conclude
by (3.33) that

qj(Ax̃) ≤ 0, j = 1, 2 . . . , r. (3.35)

Thus, x̃ ∈ C =
⋂t

i=1 Ci and Ax̃ ∈ Q =
⋂r

j=1 Qj .
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Therefore, x̃ is a solution of the MSSFP (1.1). So we may use x̃ in place of x∗ in (3.23)
and get that the sequence {‖xk − x̃‖} is convergent. Furthermore, noting that a subsequence
of {xk}, that is, {xkn}, converges to x̃, we obtain that xk → x̃, as k → ∞.

This completes the proof.

4. Concluding Remarks

This paper introduced two self-adaptive projection methods with the Armijo-like searches
for solving the multiple-set split feasibility problem MSSFP (1.1). They need not compute
the additional projection PΩ and avoid the difficult task of estimating the Lipschitz constant.
It makes a sufficient decrease of the objective function at each iteration; thus the efficiency
is enhanced greatly. Moreover in the second algorithm, we use the relaxed projection
technology to calculate orthogonal projections onto convex sets, which may reduce a large
amount of computing work and make the method more practical. The corresponding
convergence theories have been established.
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