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The purpose of this paper is to prove strong convergence theorems for common fixed points of
two countable families of relatively quasi nonexpansive mappings in a uniformly convex and
uniformly smooth real Banach space using the properties of generalized f -projection operator. In
order to get the strong convergence theorems, a new iterative scheme by monotone hybrid method
is presented and is used to approximate the common fixed points. Then, two examples of countable
families of uniformly closed nonlinear mappings are given. The results of this paper modify and
improve the results of Li et al. (2010), the results of Takahashi and Zembayashi (2008), and many
others.

1. Introduction

Let E be a real Banach space with the dual E∗. We denote by J the normalized duality
mapping from E to 2E

∗
defined by

Jx =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f∥∥2

}
, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing. The duality mapping J has the following
properties:

(i) if E is smooth, then J is single-valued;

(ii) if E is strictly convex, then J is one-to-one;

(iii) if E is reflexive, then J is surjective;



2 Abstract and Applied Analysis

(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E;

(v) if E∗ is uniformly convex, then J is uniformly continuous on bounded subsets of E
and J is single valued and also one-to-one (see [1–4]).

Let E be a smooth Banach space with the dual E∗. The functional φ : E × E → R is
defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y∥∥2, (1.2)

for all x, y ∈ E.
Let C be a closed convex subset of E, and let T be a mapping from C into itself. We

denote by F(T) the set of fixed points of T . A point p in C is said to be an asymptotic fixed
point of T [5] if C contains a sequence {xn}which converges weakly to p such that the strong
limn→∞(xn − Txn) = 0. The set of asymptotic fixed points of T will be denoted by F̂(T). A
mapping T from C into itself is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C

and relatively nonexpansive [1, 6–8] if F(T) = F̂(T) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C
and p ∈ F(T). The asymptotic behavior of relatively nonexpansive mapping was studied in
[1, 6–8].

Three classical iteration processes are often used to approximate a fixed point of a
nonexpansive mapping. The first one is introduced in 1953 by Mann [9]which is well known
as Mann’s iteration process and is defined as follows:

x0 chosen arbitrarily,

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0,
(1.3)

where the sequence {αn} is chosen in [0, 1]. Fourteen years later, Halpern [10] proposed the
new innovation iteration process which resembles Manns iteration (1.3), it is defined by

x0 chosen arbitrarily,

xn+1 = αnu + (1 − αn)Txn, n ≥ 0,
(1.4)

where the element u ∈ C is fixed. Seven years later, Ishikawa [2] enlarged and improved
Mann’s iteration (1.3) to the new iteration method, it is often cited as Ishikawa’s iteration
process which is defined recursively by

x0 chosen arbitrarily,

yn = βnxn +
(
1 − βn

)
Txn,

xn+1 = αnxn + (1 − αn)Tyn, n ≥ 0,

(1.5)

where {αn} and {βn} are sequences in the interval [0, 1].
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In bothHilbert space [10–12] and uniformly smooth Banach space [13–15] the iteration
process (1.4) has been proved to be strongly convergent if the sequence {αn} satisfies the
following conditions:

(i) αn → 0;

(ii)
∑∞

n=0 αn = ∞;

(iii)
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞(αn/αn+1) = 1.

By the restriction of condition (ii), it is widely believed that Halpern’s iteration process (1.4)
has slow convergence though the rate of convergence has not been determined. Halpern
[10] proved that conditions (i) and (ii) are necessary in the strong convergence of (1.4) for
a nonexpansive mapping T on a closed convex subset C of a Hilbert space H. Moreover,
Wittmann [12] showed that (1.4) converges strongly to PF(T)u when {αn} satisfies (i), (ii),
and (iii), where PF(T)(·) is the metric projection onto F(T).

Both iterations processes (1.3) and (1.5) have only weak convergence, in general
Banach space (see [16] for more details). As amatter of fact, process (1.3)may fail to converge
while process (1.5) can still converge for a Lipschitz pseudo contractive mapping in a Hilbert
space [17]. For example, Reich [18] proved that if E is a uniformly convex Banach space with
Frechet differentiable norm and if {αn} is chosen such that

∑∞
n=0 αn(1 − αn) = ∞, then the

sequence {xn} defined by (1.3) converges weakly to a fixed point of T . However, we note that
Manns iteration process (1.3) has only weak convergence even in a Hilbert space [16].

Some attempts to modify the Mann’s iteration method so that strong convergence
guaranteed has recently been made. Nakajo and Takahashi [19] proposed the following
modification of the Mann iteration method for a single nonexpansive mapping T in a Hilbert
space H:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.6)

where C is a closed convex subset of H, PK denotes the metric projection from H onto a
closed convex subset K of H. They proved that if the sequence {αn} is bounded above from
one then the sequence {xn} generated by (1.6) converges strongly to PF(T)(x0), where F(T)
denotes the fixed points set of T .

The ideas to generalize the process (1.6) from Hilbert space to Banach space have
recently been made. By using available properties on uniformly convex and uniformly
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smooth Banach space, Matsushita and Takahashi [8] presented their ideas as the following
method for a single relatively nonexpansive mapping T in a Banach space E:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qn(x0).

(1.7)

They proved the following convergence theorem.

TheoremMT. Let E be a uniformly convex and uniformly smooth Banach space, letC be a nonempty
closed convex subset of E, and let T be a relatively nonexpansive mapping from C into itself, and let
{αn} be a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞αn < 1. Suppose that {xn}
is given by (1.7), where J is the duality mapping on E. If F(T) is nonempty, then {xn} converges
strongly to ΠF(T)x0, whereΠF(T)(·) is the generalized projection from C onto F(T).

In 2007, Plubtieng and Ungchittrakool [20] proposed the following hybrid algorithms
for two relatively nonexpansive mappings in a Banach space and proved the following
convergence theorems.

Theorem SK 1. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty closed convex subset of E, and let T, S be two relatively nonexpansive mappings from C
into itself with F := F(T) ∩ F(S) is nonempty. Let a sequence {xn} be defined by

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)
,

Hn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn(x0),

(1.8)

with the following restrictions:

(i) 0 ≤ αn < 1, lim supn→∞αn < 1;

(ii) 0 ≤ β
(1)
n , β

(1)
n , β

(3)
n ≤ 1, limn→∞β

(1)
n = 0, lim infn→∞β

(2)
n β

(3)
n > 0.

Then the {xn} converges strongly toΠFx0, whereΠF is the generalized projection from C onto
F.
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Theorem SK 2. Let E be a uniformly convex and uniformly smooth Banach space, let C be a
nonempty closed convex subset of E, and let T, S be two relatively nonexpansive mappings from C
into itself with F := F(T) ∩ F(S) is nonempty. Let a sequence {xn} be defined by

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1 − αn)Jzn),

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)
,

Hn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn) + αn

(
‖x0‖2 + 2〈z, Jxn − Jx0〉

)}
,

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wn(x0),

(1.9)

with the following restrictions:

(i) 0 < αn < 1, lim supn→∞αn < 1;

(ii) 0 ≤ β
(1)
n , β

(1)
n , β

(3)
n ≤ 1, limn→∞β

(1)
n = 0, lim infn→∞ β

(2)
n β

(3)
n > 0.

Then the {xn} converges strongly toΠFx0, whereΠF is the generalized projection from C onto
F.

In 2010, Su et al. [21] proposed the following hybrid algorithms for two countable
families of weak relatively nonexpansive mappings in a Banach space and proved the
following convergence theorems.

Theorem SXZ 1. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty closed convex subset of E, and let {Tn}, {Sn} be two countable families of weak relatively
nonexpansive mappings from C into itself such that F := (∩∞

n=0F(Tn))
⋂
(∩∞

n=0F(Sn))/= ∅. Define a
sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

)
,

yn = J−1(αnJxn + (1 − αn)Jzn),

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
,

C0 =
{
z ∈ C : φ

(
z, y0

) ≤ φ(z, x0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = C,

xn+1 = ΠCn∩Qn(x0)

(1.10)
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with the conditions:

(i) β(1)n + β
(2)
n + β

(3)
n = 1;

(ii) lim infn→∞β
(1)
n β

(2)
n > 0;

(iii) lim infn→∞β
(1)
n β

(3)
n > 0;

(iv) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

Then {xn} converges strongly toΠFx0, where ΠF is the generalized projection from C onto F.

Theorem SXZ 2. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty closed convex subset of E, and let {Tn}, {Sn} be two countable families of weak relatively
nonexpansive mappings from C into itself such that F := (∩∞

n=0F(Tn))
⋂
(∩∞

n=0F(Sn))/= ∅. Define a
sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = J−1
(
β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)
,

yn = J−1(αnJxn + (1 − αn)Jzn),

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : φ

(
z, yn

) ≤
(
1 − αnβ

(1)
n

)
φ(z, xn) + αnβ

(1)
n φ(z, x0)

}
,

C0 =
{
z ∈ C : φ

(
z, y0

) ≤ φ(z, x0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = C,

xn+1 = ΠCn∩Qn(x0),

(1.11)

with the conditions:

(i) β(1)n + β
(2)
n + β

(3)
n = 1;

(ii) limn→∞β
(1)
n = 0;

(iii) lim supn→∞β
(2)
n β

(3)
n > 0;

(iv) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

Then {xn} converges strongly toΠFx0.

Recently, Li et al. [22] introduced the following hybrid iterative scheme for
approximation of fixed points of a relatively nonexpansive mapping using the properties
of generalized f-projection operator in a uniformly smooth real Banach space which is also
uniformly convex: x0 ∈ C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
w ∈ Cn : G

(
w, Jyn

) ≤ G(w, Jxn)
}
,

xn+1 = Πf

Cn+1
(x0), n ≥ 1.

(1.12)
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They proved a strong convergence theorem for finding an element in the fixed points set of
T . We remark here that the results of Li et al. [22] extended and improved on the results of
Matsushita and Takahashi [8].

Motivated by the above-mentioned results and the ongoing research, it is our purpose
in this paper to prove a strong convergence theorem for two countable families of relatively
quasi nonexpansive mappings in a uniformly convex and uniformly smooth real Banach
space using the properties of generalized f-projection operator. Our results extend the results
of Li et al. [22], Takahashi and Zembayashi [23], and many other recent known results in the
literature.

2. Preliminaries

Let E be a smooth Banach space with the dual E∗. The functional φ : E ×E → R is defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y∥∥2, (2.1)

for all x, y ∈ E. Observe that, in a Hilbert space H, (2.1) reduces to φ(x, y) = ‖x − y‖2, x, y ∈
H.

Recall that if C is a nonempty, closed, and convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This is true
only when H is a real Hilbert space. In this connection, Alber [24] has recently introduced a
generalized projection operator ΠC in a Banach space E which is an analogue of the metric
projection in Hilbert spaces. The generalized projection ΠC : E → C is a map that assigns to
an arbitrary point x ∈ E, the minimum point of the functional φ(y, x), that is,ΠCx = x, where
x is the solution to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x

)
, (2.2)

existence and uniqueness of the operator ΠC follow from the properties of the functional
φ(y, x) and strict monotonicity of the mapping J . In Hilbert space, ΠC = PC. It is obvious
from the definition of the functional φ that

(‖x‖ − ∥∥y∥∥)2 ≤ φ
(
y, x

) ≤
(∥∥y∥∥2 + ‖x‖2

)
, (2.3)

φ
(
x, y

)
= φ(x, z) + φ

(
z, y

) − 2
〈
x − z, Jz − Jy

〉
(2.4)

for all x, y ∈ E. See [25] for more details.
This section collects some definitions and lemmas which will be used in the proofs for

the main results in the next section. Some of them are known; others are not hard to derive.

Remark 2.1. If E is a reflexive strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From
(2.3), we have ‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , we
have Jx = Jy. Since J is one-to-one, then we have x = y; see [12, 15, 26] for more details.

LetC be a closed convex subset of E, and let {Tn}∞n=0 be a countable family of mappings
from C into itself. We denote by F the set of common fixed points of {Tn}∞n=0, that is,
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F =
⋂∞

n=0 F(Tn), where F(Tn) denote the set of fixed points of Tn, for all n ≥ 0. A point p
in C is said to be an asymptotic fixed point of {Tn}∞n=0 if C contains a sequence {xn} which
converges weakly to p such that limn→∞‖Tnxn − xn‖ = 0. The set of asymptotic fixed point
of {Tn}∞n=0 will be denoted by F̂({Tn}∞n=0). A point p in C is said to be a strong asymptotic
fixed point of {Tn}∞n=0 if C contains a sequence {xn} which converges strongly to p such that
limn→∞‖Tnxn − xn‖ = 0. The set of strong asymptotic fixed point of {Tn}∞n=0 will be denoted
by F̃({Tn}∞n=0) [21].

Definition 2.2. Countable family of mappings {Tn}∞n=0 is said to be countable family of
relatively nonexpansive mappings if the following conditions are satisfied:

(i) F({Tn}∞n=0) is nonempty;

(ii) φ(u, Tnx) ≤ φ(u, x), for allu ∈ F(Tn), x ∈ C, n ≥ 0;

(iii) F̂({Tn}∞n=0) =
⋂∞

n=0 F(Tn).

Definition 2.3. Countable family of mappings {Tn}∞n=0 is said to be countable family of weak
relatively nonexpansive mappings if the following conditions are satisfied:

(i) F({Tn}∞n=0) is nonempty;

(ii) φ(u, Tnx) ≤ φ(u, x), for allu ∈ F(Tn), x ∈ C, n ≥ 0;

(iii) F̃({Tn}∞n=0) =
⋂∞

n=0 F(Tn).

Definition 2.4. Countable family of mappings {Tn}∞n=0 is said to be countable family of
relatively quasi nonexpansive mappings if the following conditions are satisfied:

(i) F({Tn}∞n=0) is nonempty;

(ii) φ(u, Tnx) ≤ φ(u, x), for allu ∈ F(Tn), x ∈ C, n ≥ 0.

Definition 2.5. A mapping T is said to be relatively nonexpansive mappings if the following
conditions are satisfied:

(i) F(T) is nonempty;

(ii) φ(u, Tx) ≤ φ(u, x), for all u ∈ F(T), x ∈ C;

(iii) F̂(T) = F(T).

Definition 2.6. A mapping T is said to be weak relatively nonexpansive mappings if the
following conditions are satisfied:

(i) F(T) is nonempty;

(ii) φ(u, Tx) ≤ φ(u, x), for allu ∈ F(T), x ∈ C;

(iii) F̃(T) = F(T).

Definition 2.7. A mapping T is said to be relatively quasi nonexpansive mappings if the
following conditions are satisfied:

(i) F(T) is nonempty;

(ii) φ(u, Tx) ≤ φ(u, x), for allu ∈ F(T), x ∈ C.



Abstract and Applied Analysis 9

The Definition 2.5 (Definitions 2.6 and 2.7) is a special form of the Definition 2.2
(Definitions 2.3 and 2.4) as Tn ≡ T for all n ≥ 0. The following conclusions are obvious: (1)
relatively nonexpansive mapping must be weak relatively nonexpansive mapping; (2) weak
relatively nonexpansive mapping must be relatively quasi nonexpansive mapping.

The hybrid algorithms for fixed point of relatively nonexpansive mappings and
applications have been studied by many authors, for example, [1, 6, 7, 17, 27, 28]. In recent
years, the definition of relatively quasi nonexpansive mapping has been presented and
studied by many authors [7, 17, 26, 28]. Now we give an example which is a countable
family of relatively quasi nonexpansive mappings but not a countable family of relatively
nonexpansive mappings.

Example 2.8. Let E = l2, where

l2 =

{
ξ = (ξ1, ξ2, ξ3, ..., ξn, ...) :

∞∑
n=1

|xn|2 < ∞
}
,

‖ξ‖ =

( ∞∑
n=1

|ξn|2
)1/2

, ∀ξ ∈ l2,

〈
ξ, η
〉
=

∞∑
n=1

ξnηn, ∀ξ = (ξ1, ξ2, ξ3, ..., ξn, ...), η =
(
η1, η2, η3, ..., ηn....

) ∈ l2.

(2.5)

It is well known that l2 is a Hilbert space, so that (l2)∗ = l2. Let {xn} ⊂ E be a sequence defined
by

x0 = (1, 0, 0, 0, . . .),

x1 = (1, 1, 0, 0, . . .),

x2 = (1, 0, 1, 0, 0, . . .),

x3 = (1, 0, 0, 1, 0, 0, . . .),
...

xn = (ξn,1, ξn,2, ξn,3, . . . , ξn,k, . . .),

...

(2.6)

where

ξn,k =

⎧
⎨
⎩

1 if k = 1, n + 1,

0 if k /= 1, k /=n + 1,
(2.7)

for all n ≥ 1.
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Define a countable family of mappings Tn : E → E as follows:

Tn(x) =

⎧
⎨
⎩

n

n + 1
xn if x = xn,

−x if x /=xn,
(2.8)

for all n ≥ 0.

Conclusion 2.9. {xn} converges weakly to x0.

Proof. For any f = (ζ1, ζ2, ζ3, ..., ζk, ...) ∈ l2 = (l2)∗, we have

f(xn − x0) =
〈
f, xn − x0

〉
=

∞∑
k=2

ζkξn,k = ζn+1 → 0, (2.9)

as n → ∞. That is, {xn} converges weakly to x0

Conclusion 2.10. {xn} is not a Cauchy sequence, so that, it does not converge strongly to any
element of l2.

Proof. In fact, we have ‖xn−xm‖ =
√
2 for any n/=m. Then {xn} is not a Cauchy sequence.

Conclusion 2.11. Tn has a unique fixed point 0, that is, F(Tn) = {0}, for all n ≥ 0.

Proof. The conclusion is obvious.

Conclusion 2.12. x0 is an asymptotic fixed point of {Tn}∞n=0.

Proof. Since {xn} converges weakly to x0 and

‖Tnxn − xn‖ =
∥∥∥∥

n

n + 1
xn − xn

∥∥∥∥ =
1

n + 1
‖xn‖ → 0 (2.10)

as n → ∞, so that, x0 is an asymptotic fixed point of {Tn}∞n=0.

Conclusion 2.13. {Tn}∞n=0 is a countable family of relatively quasi nonexpansive mappings.

Proof. Since E = L2 is a Hilbert space, for any n ≥ 0 we have

φ(0, Tnx) = ‖0 − Tnx‖2 = ‖Tnx‖2 ≤ ‖x‖2 = ‖x − 0‖2 = φ(0, x), ∀x ∈ E. (2.11)

then {Tn}∞n=0 is a countable family of relatively quasi nonexpansive mappings

Conclusion 2.14. {Tn}∞n=0 is not a countable family of relatively nonexpansive mappings.

Proof. From Conclusions 2.11 and 2.12, we have
⋂∞

n=0 F(Tn)/= F̂({Tn}∞n=0), so that, {Tn}∞n=0 is
not a countable family of relatively nonexpansive mapping.
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Next, we recall the concept of generalized f-projector operator, together with its
properties. Let G : C × E∗ → R ∪ {+∞} be a functional defined as follows:

G
(
ξ, ϕ
)
= ‖ξ‖2 − 2

〈
ξ, ϕ
〉
+
∥∥ϕ∥∥2 + 2ρf(ξ), (2.12)

where ξ ∈ C, ϕ ∈ E, ρ is a positive number, and f : C → R ∪ {+∞} is proper, convex,
and lower semicontinuous. From the definitions of G and f , it is easy to see the following
properties:

(i) G(ξ, ϕ) is convex and continuous with respect to ϕwhen ξ is fixed;

(ii) G(ξ, ϕ) is convex and lower semi-continuous with respect to ξ when ϕ is fixed.

Definition 2.15 (see [29]). Let E be a real Banach space with its dual E∗. Let C be a nonempty,
closed and convex subset of E. We say that Πf

C : E∗ → 2C is a generalized f-projection
operator if

Πf

Cϕ =
{
u ∈ C : G

(
u, ϕ

)
= inf

ξ∈C
G
(
ξ, ϕ
)}

, ∀ϕ ∈ E∗. (2.13)

For the generalized f-projection operator, Wu and Huang [42] proved the following
theorem basic properties

Lemma 2.16 (see [29]). Let E be a real reflexive Banach space with its dual E∗. Let C be a nonempty,
closed, and convex subset of E. Then the following statements hold:

(i) Πf

C is a nonempty closed convex subset of C for all ϕ ∈ E∗;

(ii) if E is smooth, then for all ϕ ∈ E∗, x ∈ Πf

C if and only if

〈
x − y, ϕ − Jx

〉
+ ρf

(
y
) − ρf(x) ≥ 0, ∀y ∈ C; (2.14)

(iii) if E is strictly convex and f : C → R ∪ {+∞} is positive homogeneous (i.e., f(tx) =
tf(x) for all t > 0 such that tx ∈ C, where x ∈ C), then Πf

C is a single valued
mapping.

Fan et al. [30] showed that the condition f is a positive homogeneous which appeared
in Lemma 2.13 can be removed.

Lemma 2.17 (see [30]). Let E be a real reflexive Banach space with its dual E∗ and C a nonempty,
closed, and convex subset of E. Then if E is strictly convex, then Πf

C is a single-valued mapping.

Recall that J is a single-valuedmappingwhen E is a smooth Banach space. There exists
a unique element ϕ ∈ E. such that ϕ = Jx for each x ∈ E. This substitution in (2.15) gives

G(ξ, Jx) = ‖ξ‖2 − 2〈ξ, Jx〉 + ‖x‖2 + 2ρf(ξ). (2.15)

Now, we consider the second generalized f-projection operator in a Banach space.
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Definition 2.18. Let E be a real Banach space and C a nonempty, closed, and convex subset of
E. We say that Πf

C : E → 2C is a generalized f-projection operator if

Πf

C(x) =
{
u ∈ C : G(u, Jx) = inf

ξ∈C
G(ξ, Jx)

}
, ∀ ∈ E. (2.16)

Obviously, the definition of relatively quasi nonexpansive mapping T is equivalent to

(R1) F(T)/= ∅;
(R2) G(p, JTx) ≤ G(p, Jx), for allx ∈ C, p ∈ F(T).

Lemma 2.19 (see [31]). Let E be a Banach space and let f : E → R ∪ {+∞} be a lower semi-
continuous convex functional. Then there exists x∗ ∈ E and α ∈ R such that

f(x) ≥ (x, x∗) + α, ∀x ∈ E. (2.17)

We know that the following lemmas hold for operator Πf

C.

Lemma 2.20 (see [22]). Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. Then the following statements hold:

(i) Πf

Cx is a nonempty closed and convex subset of C for all x ∈ E;

(ii) for all x ∈ E, x̂ ∈ Πf

Cx if and only if

〈
x̂ − y, Jx − Jx̂

〉
+ ρf

(
y
) − ρf(x) ≥ 0, ∀y ∈ C; (2.18)

(iii) if E is strictly convex, then Πf

Cx is a single valued mapping.

Lemma 2.21 (see [22]). Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. let x ∈ E and x̂ ∈ Πf

C, then

φ
(
y, x̂

)
+G(x̂, Jx) ≤ G

(
y, Jx

)
, ∀y ∈ C. (2.19)

The fixed points set F(T) of a relatively quasi nonexpansive mapping is closed convex
as given in the following lemma.

Lemma 2.22 (see [32, 33]). Let C be a nonempty, closed, and convex subset of a smooth and reflexive
Banach space E. let T be a closed relatively quasi nonexpansive mapping of C into itself. Then F(T) is
closed and convex.

Also, this following lemma will be used in the sequel.

Lemma 2.23 (see [25]). LetE be a uniformly convex and smooth real Banach space and let {xn},{yn}
be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then ‖xn − yn‖ → 0.
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Lemma 2.24 (see [24, 25, 27]). Let C be a nonempty closed convex subset of a smooth real Banach
space E and x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0, ∀y ∈ C. (2.20)

Lemma 2.25 (see [28]). Let E be a uniformly convex Banach space and let Br(0) = {x ∈ E :
‖x‖ ≤ r} be a closed ball of E. Then there exists a continuous strictly increasing convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

∥∥λx + μy + γz
∥∥2 ≤ λ‖x‖2 + μ

∥∥y∥∥2 + γ‖z‖2 − λμg
(∥∥x − y

∥∥) (2.21)

for all x, y, and z ∈ Br(0) and λ, μ, and γ ∈ [0, 1] with λ + μ + γ = 1.

It is easy to prove the following result.

Lemma 2.26. Let E be a strictly convex and smooth real Banach space, let C be a closed convex subset
of E, and let T be a relatively quasi nonexpansive mapping from C into itself. Then F(T) is closed and
convex.

Lemma 2.27. Let E be a p-uniformly convex Banach space with p ≥ 2. Then, for all x, y ∈ E,
j(x) ∈ Jp(x) and j(y) ∈ Jp(y),

〈
x − y, j(x) − j

(
y
)〉 ≥ cp

cp−2p

∥∥x − y
∥∥p, (2.22)

where Jp is the generalized duality mapping from E into E∗ and 1/c is the p-uniformly convexity
constant of E.

Observe that an infinite family of operators {Tn}∞n=1 in a Banach space is said to be
uniformly closed, if xn → x, xn − Tnxn → 0 then Tnx = x (i.e., x ∈ ∩∞

n=1F(Tn)). Obviously,
a countable family of uniformly closed of relatively quasi nonexpansive mappings is a
countable family of weak relatively nonexpansive mappings.

3. Main Results

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, and let {Tn}∞n=1, {Sn}∞n=1 be two countable families of uniformly closed of
relatively quasi nonexpansive mappings ofC into itself such that F := (∩∞

n=1F(Tn))∩(∩∞
n=1F(Sn))/= ∅.
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Let f : E → R be a convex and lower semicontinuous mapping with C ⊂ int (D(f)). For any given
gauss x0 ∈ C, define a sequence {xn} in C by the following algorithm:

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

)
,

yn = J−1(αnJxn + (1 − αn)Jzn),

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : G

(
z, Jyn

) ≤ G(z, Jxn)
}
,

C0 =
{
z ∈ C : G

(
z, Jy0

) ≤ G(z, Jx0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = C,

xn+1 = Πf

Cn
⋂
Qn
(x0),

(3.1)

with the conditions

(i) β(1)n + β
(2)
n + β

(3)
n = 1;

(ii) lim infn→∞β
(1)
n β

(2)
n > 0;

(iii) lim infn→∞β
(1)
n β

(3)
n > 0;

(iv) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

Then {xn} converges strongly to x∗, where x∗ = Πf

Fx0.

Proof. Step 1. We show that Cn and Qn are closed and convex for each n ≥ 0.
From the definitions of Cn andQn, it is obvious thatQn is closed and convex and Cn is

closed for each n ≥ 0. Moreover, since G(z, Jyn) ≤ G(z, Jxn) is equivalent to

φ
(
z, yn

) ≤ φ(z, xn), (3.2)

and is equivalent to

2
〈
z, Jxn − Jyn

〉 ≤ ‖xn‖2 +
∥∥yn

∥∥2, (3.3)

it follows that Cn is convex for each n ≥ 0. So, Cn
⋂
Qn is a closed convex subset of E for all

n ∈ N ∪ {0}.
Step 2. We show that F ⊂ Cn

⋂
Qn for all n ≥ 0. Observe that

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

)
. (3.4)
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Hence from the definition of G(x, Jy) and the convexity of ‖ · ‖2we have, for all p ∈ F, that

G
(
p, Jzn

)
= G

(
p, β

(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

)

=
∥∥p∥∥2 − 2

〈
p, β

(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

〉

+
∥∥∥β(1)n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

∥∥∥
2
+ 2ρf

(
p
)

≤ ∥∥p∥∥2 − 2
〈
p, β

(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

〉

+ β
(1)
n ‖Jxn‖2 + β

(2)
n ‖JTnxn‖2 + β

(3)
n ‖JSnxn‖2 + 2ρf

(
p
)

= β
(1)
n G

(
p, Jxn

)
+ β

(2)
n G

(
p, JTnxn

)
+ β

(3)
n G

(
p, JSnxn

)

≤ β
(1)
n G

(
p, Jxn

)
+ β

(2)
n G

(
p, Jxn

)
+ β

(3)
n G

(
p, Jxn

)

= G
(
p, Jxn

)
.

(3.5)

By the similar reason we have, for all p ∈ F, that

yn = J−1(αnJxn + (1 − αn)Jzn), (3.6)

G
(
p, Jyn

)
= G

(
p, αnJxn + (1 − αn)Jzn

)

=
∥∥p∥∥2 − 2

〈
p, αnJxn + (1 − αn)Jzn

〉

+ ‖αnJxn + (1 − αn)Jzn‖2 + 2ρf
(
p
)

≤ ∥∥p∥∥2 − 2
〈
p, αnJxn + (1 − αn)Jzn

〉

+ αn‖Jxn‖2 + (1 − αn)‖Jzn‖2 + 2ρf
(
p
)

= αnG
(
p, Jxn

)
+ (1 − αn)G

(
p, Jzn

)

≤ αnG
(
p, Jxn

)
+ (1 − αn)G

(
p, Jxn

)

= G
(
p, Jxn

)
.

(3.7)

That is, p ∈ Cn for all n ≥ 0.
Next, we show that F ⊂ Qn for all n ≥ 0, we prove this by induction. For n = 0, we

have F ⊂ C = Q0. Assume that F ⊂ Qn. Since xn+1 = Πf

Cn
⋂
Qn
(x0), by Definition 2.15 we have

G(xn+1, Jx0) ≤ G(z, Jx0), ∀z ∈ Cn

⋂
Qn. (3.8)

It is equivalent to

φ(xn+1, Jx0) ≤ φ(z, Jx0), (3.9)
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and is equivalent to

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0, ∀z ∈ Cn

⋂
Qn. (3.10)

As F ⊂ Cn
⋂
Qn, by the induction assumptions, the last inequality holds, in particular, for all

z ∈ F. This together with the definition of Qn+1 implies that F ⊂ Qn+1.
Step 3. We show that xn → x∗ as n → ∞, and x∗ ∈ F.
We now show that limn→∞G(xn, Jx0) exists. Since f : E → R is a convex and lower

semi-continuous, applying Lemma 2.19, we see that there exists u∗ ∈ E∗ and α ∈ R such that

f
(
y
) ≥ 〈y, u∗〉 + α, ∀y ∈ E. (3.11)

It follows that

G(xn+1, Jx0) = ‖xn+1‖2 − 2〈xn+1, Jx0〉 + ‖x0‖2 + 2ρf(xn+1)

≥ ‖xn+1‖2 − 2〈xn+1, Jx0〉 + ‖x0‖2 + 2ρ〈xn+1, u
∗〉 + 2ρα

= ‖xn+1‖2 − 2
〈
xn+1, Jx0 − ρu∗〉 + ‖x0‖2 + 2ρα

≥ ‖xn+1‖2 − 2‖xn+1‖
∥∥Jx0 − ρu∗∥∥ + ‖x0‖2 + 2ρα

=
(‖xn+1‖ −

∥∥Jx0 − ρu∗∥∥)2 − ∥∥Jx0 − ρu∗∥∥2 + ‖x0‖2 + 2ρα.

(3.12)

Since xn+1 = Πf

Cn
⋂
Qn
(x0), for each p ∈ F, it follows from (3.12) that

G
(
p, Jx0

) ≥ G(xn+1, Jx0)

≥ (‖xn+1‖ −
∥∥Jx0 − ρu∗∥∥)2 − ∥∥Jx0 − ρu∗∥∥2 + ‖x0‖2 + 2ρα.

(3.13)

This implies that {xn}∞n=1 is bounded and so is {G(xn, Jx0)}∞n=0.
Since xn+1 = Πf

Cn
⋂
Qn
(x0) ∈ Cn

⋂
Qn ⊂ Cn−1

⋂
Qn−1, by Lemma 2.21 we have

φ(xn+1, xn) +G(xn, Jx0) ≤ G(xn+1, Jx0). (3.14)

It is obvious that

G(xn, Jx0) ≤ G(xn+1, Jx0), (3.15)

and so {G(xn, Jx0)}∞n=0 is nondecreasing. It follows that the limit of {G(xn, Jx0)}∞n=0 exists.
By the fact that Cn+m

⋂
Qn+m ⊂ Cn−1

⋂
Qn−1 and xn+1 = Πf

Cn
⋂
Qn
(x0) ∈ Cn−1

⋂
Qn−1, by

Lemma 2.21 we obtain

φ(xn+m, xn) +G(xn, Jx0) ≤ G(xn+m, Jx0). (3.16)
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Taking the limit asm,n → ∞ in (3.16), we obtain

lim
n→∞

φ(xn+m, xn) = 0, (3.17)

which holds uniformly for all m. By using Lemma 2.21, we get that

lim
n→∞

‖xn+m − xn‖ = 0, (3.18)

which holds uniformly for all m. Then {xn} is a Cauchy sequence, therefore there exists a
point x∗ ∈ C such that xn → x∗. In particular, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.19)

Since xn+1 = Πf

Cn
⋂
Qn
(x0) ∈ Cn, from the definition of Cn, we know that

G
(
xn+1, Jyn

) ≤ G(xn+1, Jxn) (3.20)

is equivalent to

φ
(
xn+1, yn

) ≤ φ(xn+1, xn). (3.21)

So, φ(xn+1, yn) → 0.
By using Lemma 2.23, we get that

∥∥xn+1 − yn

∥∥ −→ 0, (3.22)

as n → ∞.
Hence yn → x∗ as n → ∞. Since J is uniformly norm-to-norm continuous on bounded

sets, we have

lim
n→∞

(1 − αn)‖Jzn − Jxn‖ =
∥∥Jyn − Jxn

∥∥ = 0. (3.23)

Since 0 ≤ αn ≤ α < 1, then

lim
n→∞

‖Jzn − Jxn‖ = 0. (3.24)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖zn − xn‖ = 0 (3.25)

so that zn → x∗ as n → ∞.
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Since {xn} is convergent, then {xn} is bounded, so are {zn}, {JTnxn}, and {JSnxn}.
From the definition of φ(x, y) and

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

)
, (3.26)

we have, for all p ∈ F that

φ
(
p, zn

)
= φ

(
p, J−1

(
β
(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

))

=
∥∥p∥∥2 − 2

〈
p, β

(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

〉

+
∥∥∥β(1)n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

∥∥∥
2
.

(3.27)

Therefore by using Lemma 2.25 (inequality (2.21)), for all p ∈ F, we have

φ
(
p, zn

) ≤ ∥∥p∥∥2 − 2
〈
p, β

(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

〉

+ β
(1)
n ‖Jxn‖2 + β

(2)
n ‖JTnxn‖2 + β

(3)
n ‖JSnxn‖2

− β
(1)
n β

(2)
n g(‖Jxn − JTnxn‖)

= β
(1)
n φ

(
p, xn

)
+ β

(2)
n φ

(
p, Tnxn

)
+ β

(3)
n φ

(
p, Snxn

)

− β
(1)
n β

(2)
n g(‖Jxn − JTnxn‖)

≤ β
(1)
n φ

(
p, xn

)
+ β

(2)
n φ

(
p, xn

)
+ β

(3)
n φ

(
p, xn

)

− β
(1)
n β

(2)
n g(‖Jxn − JTnxn‖)

= φ
(
p, xn

) − β
(1)
n β

(2)
n g(‖Jxn − JTnxn‖),

(3.28)

and hence

β
(1)
n β

(2)
n g(‖Jxn − JTnxn‖) ≤ φ

(
p, xn

) − φ
(
p, zn

) −→ 0, (3.29)

as n → ∞. By using the same way, we can prove that

β
(1)
n β

(3)
n g(‖Jxn − JSnxn‖) ≤ φ

(
p, xn

) − φ
(
p, zn

) −→ 0, (3.30)

as n → ∞. From the properties of the mapping g, we have

‖Jxn − JTnxn‖ −→ 0, (3.31)

as n → ∞, and

‖Jxn − JSnxn‖ −→ 0, (3.32)
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as n → ∞. Since J−1 is also uniformly norm-to-norm continuous on any bounded sets, we
have

‖xn − Tnxn‖ −→ 0, (3.33)

as n → ∞, and

‖Jxn − JSnxn‖ −→ 0, (3.34)

as n → ∞. Since xn → x∗ and Tn, Sn are uniformly closed, x∗ = Tnx
∗, and x∗ = Snx

∗.
Step 4. we show that x∗ = Πf

Fx0.
Since F := (∩∞

n=1F(Tn)) ∩ (∩∞
n=1F(Sn)) is a closed and convex set, from Lemma 2.19,

we know that Πf

Fx0 is single valued and denote w = Πf

Fx0. Since xn = Πf

Cn−1
⋂
Qn−1

(x0) and
w ∈ F ⊂ Cn−1

⋂
Qn−1, we have

G(xn, Jx0) ≤ G(w, Jx0), ∀n ≥ 0. (3.35)

We know that G(ξ, Jϕ) is convex and lower semicontinuous with respect to ξ when ϕ is fixed.
This implies that

G(x∗, Jx0) ≤ lim inf
n→∞

G(xn, Jx0) ≤ lim sup
n→∞

G(xn, Jx0) ≤ G(w, Jx0). (3.36)

From the definition of Πf

Fx0 and x∗ ∈ F, we see that x∗ = w. This completes the proof.

Based on Theorem 3.1, we have the following.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, and let {Tn}∞n=1, {Sn}∞n=1 be two countable families of weak relatively
nonexpansive mappings of C into itself such that F := (∩∞

n=1F(Tn)) ∩ (∩∞
n=1F(Sn))/= ∅. For any given

gauss x0 ∈ C, define a sequence {xn} in C by the following algorithm:

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

)
,

yn = J−1(αnJxn + (1 − αn)Jzn),

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
,

C0 =
{
z ∈ C : φ

(
z, y0

) ≤ φ(z, x0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = C,

xn+1 = ΠCn
⋂
Qn(x0),

(3.37)

with the conditions:

(i) β(1)n + β
(2)
n + β

(3)
n = 1;

(ii) lim infn→∞β
(1)
n β

(2)
n > 0;
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(iii) lim infn→∞β
(1)
n β

(3)
n > 0;

(iv) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

Then {xn} converges strongly to x∗, where x∗ = ΠFx0.

Proof. Putting f(x) ≡ 0, we can conclude from Theorem 3.1 the desired conclusion
immediately.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let {Tn}∞n=1, {Sn}∞n=1 be two countable families of uniformly closed of
relatively quasi nonexpansive mappings ofC into itself such that F := (∩∞

n=1F(Tn))∩(∩∞
n=1F(Sn))/= ∅.

Let f : E → R be a convex and lower semicontinuous mapping with C ⊂ int(D(f)). For any given
gauss x0 ∈ C, define a sequence {xn} in C by the following algorithm:

zn = J−1
(
β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)
,

yn = J−1(αnJxn + (1 − αn)Jzn),

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : G

(
z, Jyn

) ≤
(
β
(1)
n − αnβ

(1)
n

)
G(z, Jx0)

+
(
1 − β

(1)
n + αnβ

(1)
n

)
G(z, Jxn)

}
,

C0 =
{
z ∈ C : G

(
z, Jy0

) ≤ G(z, Jx0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = C,

xn+1 = Πf

Cn
⋂
Qn
(x0),

(3.38)

with the conditions:

(i) β(1)n + β
(2)
n + β

(3)
n = 1;

(ii) limn→∞β
(1)
n = 0;

(iii) lim supn→∞β
(2)
n β

(3)
n > 0;

(iv) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

Then {xn} converges strongly to x∗, where x∗ = Πf

Fx0.

Proof. Step 1. We show that Cn and Qn are closed and convex for each n ≥ 0.
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From the definitions of Cn and Qn, it is obvious that Qn is closed and convex and Cn

is closed for each n ≥ 0. Moreover, since G(z, Jyn) ≤ (β(1)n − αnβ
(1)
n )G(z, Jx0) + (1 − β

(1)
n +

αnβ
(1)
n )G(z, Jxn) is equivalent to

2
〈
z,
(
β
(1)
n − αnβ

(1)
n

)
Jx0 +

(
1 − β

(1)
n + αnβ

(1)
n

)
Jxn − Jyn

〉

≤
(
β
(1)
n − αnβ

(1)
n

)
‖x0‖2 +

(
1 − β

(1)
n + αnβ

(1)
n

)
‖xn‖2 −

∥∥yn

∥∥2.
(3.39)

it follows that Cn is convex for each n ≥ 0. So, Cn
⋂
Qn is a closed convex subset of E for all

n ∈ N ∪ {0}.
Step 2. We show that F ⊂ Cn

⋂
Qn for all n ≥ 0. Observe that

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTnxn + β

(3)
n JSnxn

)
. (3.40)

Hence from the definition of G(x, Jy) and the convexity of ‖ · ‖2we have, for all p ∈ F, that

G
(
p, Jzn

)
= G

(
p, β

(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)

=
∥∥p∥∥2 − 2

〈
p, β

(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

〉

+
∥∥∥β(1)n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

∥∥∥
2
+ 2ρf

(
p
)

≤ ∥∥p∥∥2 − 2
〈
p, β

(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

〉

+ β
(1)
n ‖Jx0‖2 + β

(2)
n ‖JTnxn‖2 + β

(3)
n ‖JSnxn‖2 + 2ρf

(
p
)

= β
(1)
n G

(
p, Jx0

)
+ β

(2)
n G

(
p, JTnxn

)
+ β

(3)
n G

(
p, JSnxn

)

≤ β
(1)
n G

(
p, Jx0

)
+ β

(2)
n G

(
p, Jxn

)
+ β

(3)
n G

(
p, Jxn

)

= β
(1)
n G

(
p, Jx0

)
+
(
1 − β

(1)
n

)
G
(
p, Jxn

)
.

(3.41)
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By the similar reason we have, for all p ∈ F, that

yn = J−1(αnJxn + (1 − αn)Jzn),

G
(
p, Jyn

)
= G

(
p, αnJxn + (1 − αn)Jzn

)

=
∥∥p∥∥2 − 2

〈
p, αnJxn + (1 − αn)Jzn

〉

+ ‖αnJxn + (1 − αn)Jzn‖2 + 2ρf
(
p
)

≤ ∥∥p∥∥2 − 2
〈
p, αnJxn + (1 − αn)Jzn

〉

+ αn‖Jxn‖2 + (1 − αn)‖Jzn‖2 + 2ρf
(
p
)

= αnG
(
p, Jxn

)
+ (1 − αn)G

(
p, Jzn

)

≤ αnG
(
p, Jxn

)
+ (1 − αn)

(
β
(1)
n G

(
p, Jx0

)
+
(
1 − β

(1)
n

)
G
(
p, Jxn

))

= (1 − αn)β
(1)
n G

(
p, Jx0

)
+
(
1 − β

(1)
n + αnβ

(1)
n

)
G
(
p, Jxn

)
.

(3.42)

That is, p ∈ Cn for all n ≥ 0.
Next, we show that F ⊂ Qn for all n ≥ 0, we prove this by induction. For n = 0, we

have F ⊂ C = Q0. Assume that F ⊂ Qn. Since xn+1 = Πf

Cn
⋂
Qn
(x0), by Definition 2.15 we have

G(xn+1, Jx0) ≤ G(z, Jx0), ∀z ∈ Cn

⋂
Qn. (3.43)

It is equivalent to

φ(xn+1, Jx0) ≤ φ(z, Jx0), (3.44)

and is equivalent to

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0, ∀z ∈ Cn

⋂
Qn. (3.45)

As F ⊂ Cn
⋂
Qn, by the induction assumptions, the last inequality holds, in particular, for all

z ∈ F. This together with the definition of Qn+1 implies that F ⊂ Qn+1.
Step 3. We show that xn → x∗ as n → ∞, and x∗ ∈ F.
We now show that limn→∞G(xn, Jx0) exists. Since f : E → R is a convex and lower

semi-continuous, applying Lemma 2.19, we see that there exists u∗ ∈ E∗ and α ∈ R such that

f
(
y
) ≥ 〈y, u∗〉 + α, ∀y ∈ E. (3.46)
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It follows that

G(xn+1, Jx0) = ‖xn+1‖2 − 2〈xn+1, Jx0〉 + ‖x0‖2 + 2ρf(xn+1)

≥ ‖xn+1‖2 − 2〈xn+1, Jx0〉 + ‖x0‖2 + 2ρ〈xn+1, u
∗〉 + 2ρα

= ‖xn+1‖2 − 2
〈
xn+1, Jx0 − ρu∗〉 + ‖x0‖2 + 2ρα

≥ ‖xn+1‖2 − 2‖xn+1‖
∥∥Jx0 − ρu∗∥∥ + ‖x0‖2 + 2ρα

=
(‖xn+1‖ −

∥∥Jx0 − ρu∗∥∥)2 − ∥∥Jx0 − ρu∗∥∥2 + ‖x0‖2 + 2ρα

(3.47)

Since xn+1 = Πf

Cn
⋂
Qn
(x0), for each p ∈ F, it follows from (3.47) that

G
(
p, Jx0

) ≥ G(xn+1, Jx0)

≥ (‖xn+1‖ −
∥∥Jx0 − ρu∗∥∥)2 − ∥∥Jx0 − ρu∗∥∥2 + ‖x0‖2 + 2ρα.

(3.48)

This implies that {xn}∞n=1 is bounded and so is {G(xn, Jx0)}∞n=0.
Since xn+1 = Πf

Cn
⋂
Qn
(x0) ∈ Cn

⋂
Qn ⊂ Cn−1

⋂
Qn−1, by Lemma 2.21, we have

φ(xn+1, xn) +G(xn, Jx0) ≤ G(xn+1, Jx0). (3.49)

It is obvious that

G(xn, Jx0) ≤ G(xn+1, Jx0), (3.50)

and so {G(xn, Jx0)}∞n=0 is nondecreasing. It follows that the limit of {G(xn, Jx0)}∞n=0 exists.
By the fact that Cn+m

⋂
Qn+m ⊂ Cn−1

⋂
Qn−1 and xn+1 = Πf

Cn
⋂
Qn
(x0) ∈ Cn−1

⋂
Qn−1, by

Lemma 2.21 we obtain

φ(xn+m, xn) +G(xn, Jx0) ≤ G(xn+m, Jx0). (3.51)

Taking the limit as m,n → ∞ in (3.51), we obtain

lim
n→∞

φ(xn+m, xn) = 0, (3.52)

which holds uniformly for all m. By using Lemma 2.23, we get that

lim
n→∞

‖xn+m − xn‖ = 0, (3.53)

which holds uniformly for all m. Then {xn} is a Cauchy sequence, therefore there exists a
point x∗ ∈ C such that xn → x∗. In particular, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.54)
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Since xn+1 = Πf

Cn
⋂
Qn
(x0) ∈ Cn, from the definition of Cn, we know that

G
(
xn+1, Jyn

) ≤ G
(
z, Jyn

)

≤
(
β
(1)
n − αnβ

(1)
n

)
G(xn+1, Jx0) +

(
1 − β

(1)
n + αnβ

(1)
n

)
G(xn+1, Jxn),

(3.55)

and is equivalent to

φ
(
xn+1, yn

)
+ 2ρf(xn+1) ≤

(
β
(1)
n − αnβ

(1)
n

)(
φ(xn+1, x0) + 2ρf(xn+1)

)

+
(
1 − β

(1)
n + αnβ

(1)
n

)(
φ(xn+1, xn) + 2ρf(xn+1)

)
,

(3.56)

and is equivalent to

φ
(
xn+1, yn

) ≤
(
β
(1)
n − αnβ

(1)
n

)
φ(xn+1, x0) +

(
1 − β

(1)
n + αnβ

(1)
n

)
φ(xn+1, xn), (3.57)

So, φ(xn+1, yn) → 0.
By using Lemma 2.23, we get that

∥∥xn+1 − yn

∥∥ −→ 0, (3.58)

as n → ∞,
and hence yn → x∗ as n → ∞. Since J is uniformly norm-to-norm continuous on

bounded sets, we have

lim
n→∞

(1 − αn)‖Jzn − Jxn‖ =
∥∥Jyn − Jxn

∥∥ = 0. (3.59)

Since 0 ≤ αn ≤ α < 1, then

lim
n→∞

‖Jzn − Jxn‖ = 0. (3.60)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖zn − xn‖ = 0, (3.61)

so that zn → x∗ as n → ∞.
Since {xn} is convergent, then {xn} is bounded, so are {zn}, {JTnxn}, and {JSnxn}.

From the definition of φ(x, y) and

zn = J−1
(
β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)
, (3.62)
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we have, for all p ∈ F that

φ
(
p, zn

)
= φ

(
p, J−1

(
β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

))

=
∥∥p∥∥2 − 2

〈
p, β

(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

〉

+
∥∥∥β(1)n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

∥∥∥
2
.

(3.63)

Therefore by using Lemma 2.25 (inequality (2.21)), for all p ∈ F, we have

φ
(
p, zn

) ≤ ∥∥p∥∥2 − 2
〈
p, β

(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

〉

+ β
(1)
n ‖Jx0‖2 + β

(2)
n ‖JTnxn‖2 + β

(3)
n ‖JSnxn‖2

− β
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖)

= β
(1)
n φ

(
p, x0

)
+ β

(2)
n φ

(
p, Tnxn

)
+ β

(3)
n φ

(
p, Snxn

)

− β
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖)

≤ β
(1)
n φ

(
p, x0

)
+ β

(2)
n φ

(
p, xn

)
+ β

(3)
n φ

(
p, xn

)

− β
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖)

= β
(1)
n φ

(
p, x0

)
+
(
1 − β

(1)
n

)
φ
(
p, xn

) − β
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖),

(3.64)

and hence

β
(2)
n β

(3)
n g(‖Jxn − JTnxn‖) ≤ β

(1)
n φ

(
p, x0

)
+
(
1 − β

(1)
n

)
φ
(
p, xn

) − φ
(
p, zn

)
. (3.65)

From limn→∞β
(1)
n = 0 and xn → x∗, zn → x∗,we have

β
(2)
n β

(3)
n g(‖JTnxn − JSnxn‖) −→ 0, (3.66)

as n → ∞. From the properties of the mapping g, we have

‖JTnxn − JSnxn‖ −→ 0, (3.67)

as n → ∞.
Since

zn = J−1
(
β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)
, (3.68)
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then we have

Jzn = β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn. (3.69)

Therefore

‖Jxn − Jzn‖ =
∥∥∥Jxn −

(
β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)∥∥∥

=
∥∥∥β(1)n (Jxn − Jx0) + β

(2)
n (Jxn − JTnxn)

+β(3)n (Jxn − JSnxn)
∥∥∥

≥
∥∥∥β(2)n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

∥∥∥

−
∥∥∥β(1)n (Jxn − Jx0)

∥∥∥,

(3.70)

which leads to

∥∥∥β(2)n (Jxn − JTnxn) + β
(3)
n (Jxn − JSnxn)

∥∥∥ ≤ ‖Jxn − Jzn‖ +
∥∥∥β(1)n (Jxn − Jx0)

∥∥∥. (3.71)

Since xn → x∗, zn → x∗ and limn→∞β
(1)
n = 0. Then from above inequality we obtain

∥∥∥β(2)n (Jxn − JTnxn) + β
(3)
n (Jxn − JSnxn)

∥∥∥ −→ 0. (3.72)

On the other hand, by using the property of norm ‖.‖, we have

∥∥∥β(2)n (Jxn − JTnxn) + β
(3)
n (Jxn − JSnxn)

∥∥∥

=
∥∥∥β(2)n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn) + β

(3)
n (Jxn − JTnxn) − β

(3)
n (Jxn − JTnxn)

∥∥∥

=
∥∥∥
(
β
(2)
n + β

(3)
n

)
(Jxn − JTnxn) + β

(3)
n (JTxn − JSnxn)

∥∥∥

≥
∥∥∥
(
β
(2)
n + β

(3)
n

)
(Jxn − JTnxn)

∥∥∥ −
∥∥∥β(3)n (JTxn − JSnxn)

∥∥∥,
(3.73)

which leads to the following inequality

∥∥∥
(
β
(2)
n + β

(3)
n

)
(Jxn − JTnxn)

∥∥∥ ≤
∥∥∥β(2)n (Jxn − JTnxn) + β

(3)
n (Jxn − JSnxn)

∥∥∥

+
∥∥∥β(3)n (JTxn − JSnxn)

∥∥∥.
(3.74)
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Therefore, by using (3.67) and (3.72) we have

∥∥∥
(
β
(2)
n + β

(3)
n

)
(Jxn − JTnxn)

∥∥∥ −→ 0. (3.75)

This together with condition (ii) of Theorem 3.3 implies that

‖Jxn − JTnxn‖ −→ 0. (3.76)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, then we have

‖xn − Tnxn‖ −→ 0, (3.77)

as n → ∞. By using the same way, we can prove that

‖xn − Snxn‖ −→ 0 (3.78)

as n → ∞. Since xn → x∗ and Tn, Sn are uniformly closed, x∗ = Tnx
∗, and x∗ = Snx

∗, so that
x∗ ∈ F.

Step 4. we show that x∗ = Πf

Fx0.
Since F := (∩∞

n=1F(Tn)) ∩ (∩∞
n=1F(Sn)) is a closed and convex set, from Lemma 2.19,

we know that Πf

Fx0 is single valued and denote w = Πf

Fx0. Since xn = Πf

Cn−1
⋂
Qn−1

(x0) and
w ∈ F ⊂ Cn−1

⋂
Qn−1 we have

G(xn, Jx0) ≤ G(w, Jx0), ∀n ≥ 0. (3.79)

We know that G(ξ, Jϕ) is convex and lower semicontinuous with respect to ξ when ϕ is fixed.
This implies that

G(x∗, Jx0) ≤ lim inf
n→∞

G(xn, Jx0) ≤ lim sup
n→∞

G(xn, Jx0) ≤ G(w, Jx0). (3.80)

From the definition of Πf

Fx0 and x∗ ∈ F, we see that x∗ = w. This completes the proof.

Based on Theorem 3.3, we have the following.

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, and let {Tn}∞n=1, {Sn}∞n=1 be two countable families of weak relatively
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nonexpansive mappings of C into itself such that F := (∩∞
n=1F(Tn)) ∩ (∩∞

n=1F(Sn))/= ∅. For any given
gauss x0 ∈ C, define a sequence {xn} in C by the following algorithm:

zn = J−1
(
β
(1)
n Jx0 + β

(2)
n JTnxn + β

(3)
n JSnxn

)
,

yn = J−1(αnJxn + (1 − αn)Jzn),

Cn =
{
z ∈ Cn−1

⋂
Qn−1 : φ

(
z, yn

) ≤
(
β
(1)
n − αnβ

(1)
n

)
φ(z, x0)

+
(
1 − β

(1)
n + αnβ

(1)
n

)
φ(z, xn)

}
,

C0 =
{
z ∈ C : φ

(
z, y0

) ≤ φ(z, x0)
}
,

Qn =
{
z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

Q0 = C,

xn+1 = ΠCn
⋂
Qn(x0),

(3.81)

with the conditions:

(i) β(1)n + β
(2)
n + β

(3)
n = 1;

(ii) limn→∞β
(1)
n = 0;

(iii) lim supn→∞β
(2)
n β

(3)
n > 0;

(iv) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).

Then {xn} converges strongly to x∗, where x∗ = ΠFx0.

Proof. Putting f(x) ≡ 0, we can conclude from Theorem 3.3 the desired conclusion
immediately.

4. Applications

Let E be a real Banach space and let E∗ be the dual space of E. Let C be a closed convex subset
of E. Let f be a bifunction from C × C to R = (−∞,+∞). The equilibrium problem is to find
x ∈ C such that

f
(
x, y

) ≥ 0, ∀y ∈ C. (4.1)

The set of solutions of (4.1) is denoted by EP(f). Given a mapping T : C → E∗ let f(x, y) =
〈Tx, y − x〉 for all x, y ∈ C. Then, p ∈ EP(f) if and only if 〈Tp, y − p〉 ≥ 0 for all y ∈ C, that
is, p is a solution of the variational inequality. Numerous problems in physics, optimization,
and economics reduce to find a solution of (4.1). Some methods have been proposed to solve
the equilibrium problem in Hilbert spaces.
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For solving the equilibrium problem, let us assume that a bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0, for all x ∈ E;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, for all x, y ∈ E;

(A3) for all x, y, z ∈ E, lim supt↓0f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semi-continuous.

Lemma 4.1 (see [34]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let f be a bifunction from C × C to R = (−∞,+∞) satisfying (A1)–(A4), and let
r > 0 and x ∈ E. Then, there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (4.2)

Lemma 4.2 (see [34]). Let C be a closed convex subset of a uniformly smooth, strictly convex, and
reflexive Banach space E, and let f be a bifunction fromC×C toR = (−∞,+∞) satisfying (A1)–(A4).
For r > 0, define a mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, (4.3)

for all x ∈ E. Then, the following hold

(1) Tr is single valued;

(2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈Trx − Try, Jx − Jy
〉
; (4.4)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex;

(5) Tr is also a relatively nonexpansive mapping.

Lemma 4.3 (see [34]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let f be a bifunction from C × C to R = (−∞,+∞) satisfying (A1)–(A4), and let
r > 0 and x ∈ E, q ∈ F(Tr), then the following holds

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (4.5)

Lemma 4.4. Let E be a p-uniformly convex with p ≥ 2 and uniformly smooth Banach space, and
let C be a nonempty closed convex subset of E. Let f be a bifunction from C × C to R = (−∞,+∞)
satisfying (A1)–(A4). Let {rn} be a positive real sequence such that limn→∞rn = r > 0. Then the
sequence of mappings {Trn} is uniformly closed.
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Proof. (1) Let {xn} be a convergent sequence in C. Let zn = Trnxn for all n, then

f
(
zn, y

)
+

1
rn

〈
y − zn, Jzn − Jxn

〉 ≥ 0, ∀y ∈ C, (4.6)

f
(
zn+m, y

)
+

1
rn+m

〈
y − zn+m, Jzn+m − Jxn+m

〉 ≥ 0, ∀y ∈ C. (4.7)

Putting y = zn+m in (4.6) and y = zn in (4.7), we have

f(zn, zn+m) +
1
rn
〈zn+m − zn, Jzn − Jxn〉 ≥ 0, ∀y ∈ C,

f(zn+m, zn) +
1

rn+m
〈zn − zn+m, Jzn+m − Jxn+m〉 ≥ 0, ∀y ∈ C.

(4.8)

So, from (A2) we have

〈
zn+m − zn,

Jzn − Jxn

rn
− Jzn+m − Jxn+m

rn+m

〉
≥ 0, (4.9)

and hence

〈
zn+m − zn, Jzn − Jxn − rn

rn+m
(Jzn+m − Jxn+m)

〉
≥ 0. (4.10)

Thus, we have

〈
zn+m − zn, Jzn − Jzn+m + Jzn+m − Jxn − rn

rn+m
(Jzn+m − Jxn+m)

〉
≥ 0, (4.11)

which implies that

〈zn+m − zn, Jzn+m − Jzn〉 ≤
〈
zn+m − zn, Jzn+m − Jxn − rn

rn+m
(Jzn+m − Jxn+m)

〉
≥ 0. (4.12)

By using Lemma 2.25, we obtain

cp

cp−2p
‖zn+m − zn‖p ≤

〈
zn+m − zn, Jzn+m − Jxn − rn

rn+m
(Jzn+m − Jxn+m)

〉

=
〈
zn+m − zn,

(
1 − rn

rn+m

)
Jzn+m +

rn
rn+m

Jxn+m − Jxn

〉
.

(4.13)

Therefore, we get

cp

cp−2p
‖zn+m − zn‖p−1 ≤

∣∣∣∣1 −
rn

rn+m

∣∣∣∣‖Jzn+m‖ +
∥∥∥∥

rn
rn+m

Jxn+m − Jxn

∥∥∥∥. (4.14)
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On the other hand, for any p ∈ EP(f), from zn = Trnxn, we have

∥∥zn − p
∥∥ =

∥∥Trnxn − p
∥∥ ≤ ∥∥xn − p

∥∥, (4.15)

so that {zn} is bounded. Since limn→∞rn = r > 0, this together with (4.14) implies that {zn} is
a Cauchy sequence. Hence Trnxn = zn is convergent.

(2) By using the Lemma 4.2, we know that

∞⋂
n=1

F(Trn) = EP
(
f
)
/= ∅. (4.16)

(3) From (1) we know that, limn→∞Trnx exists for all x ∈ C. So, we can define a
mapping T from C into itself by

Tx = lim
n→∞

Trnx, ∀x ∈ C. (4.17)

It is obvious that, T is nonexpansive. It is easy to see that

EP
(
f
)
=

∞⋂
n=1

F(Trn) ⊂ F(T). (4.18)

On the other hand, let w ∈ F(T), wn = Trnw, we have

f
(
wn, y

)
+

1
rn

〈
y −wn, Jwn − Jw

〉 ≥ 0, ∀y ∈ C. (4.19)

By (A2) we know

1
rn

〈
y −wn, Jwn − Jw

〉 ≥ f
(
y,wn

)
, ∀y ∈ C. (4.20)

Since wn → Tw = w and from (A4), we have f(y,w) ≤ 0, for all y ∈ C. Then, for t ∈ (0, 1]
and y ∈ C,

0 = f
(
ty + (1 − t)w, ty + (1 − t)w

)

≤ tf
(
ty + (1 − t)w,y

)
+ (1 − t)f

(
ty + (1 − t)w,w

)

≤ tf
(
ty + (1 − t)w,y

)
.

(4.21)

Therefore, we have

f
(
ty + (1 − t)w,y

) ≥ 0. (4.22)
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Letting t ↓ 0 and using (A3), we get

f
(
w,y

) ≥ 0, ∀y ∈ C (4.23)

and hence w ∈ EP(f). From the above two respects, we know that F(T) =
⋂∞

n=0 F(Trn).
Next we show {Trn} is uniformly closed. Assume xn → x and ‖xn − Trnxn‖ → 0, from

the above results we know that Tx = limn→∞Trnx. On the other hand, from ‖xn −Trnxn‖ → 0,
we also get limn→∞Trnx = x, so that x ∈ F(T) =

⋂∞
n=1 F(Trn). That is, the sequence of mappings

{Trn} is uniformly closed. This completes the proof.

Let A be a multi-valued operator from E to E∗ with domain D(A) = {z ∈ E : Az/= ∅}
and range R(A) = {z ∈ E : z ∈ D(A)}. An operator A is said to be monotone if

〈
x1 − x2, y1 − y2

〉 ≥ 0, (4.24)

for each x1, x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2. A monotone operator A is said to be maximal
if it is graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the graph of any other
monotone operator. We know that if A is a maximal monotone operator, then A−10 is closed
and convex. The following result is also well known.

Theorem 4.5. Let E be a reflexive, strictly convex, and smooth Banach space and letA be a monotone
operator from E to E∗. Then A is maximal if and only if R(J + rA) = E∗, for all r > 0.

Let E be a reflexive, strictly convex, and smooth Banach space, and letA be a maximal
monotone operator from E to E∗. Using Theorem 4.5 and strict convexity of E, one obtains
that for every r > 0 and x ∈ E, there exists a unique xr such that

Jx ∈ Jxr + rAxr. (4.25)

Then one can defines a single-valued mapping Jr : E → D(A) by Jr = (J + rA)−1J and such
a Jr is called the resolvent of A, one knows that A−10 = F(Jr) for all r > 0.

Theorem 4.6. Let E be a uniformly convex and a uniformly smooth Banach space, and let A be
a maximal monotone operator from E to E∗, let Jr be a resolvent of A for r > 0. Then for any
sequence {rn}∞n=1 such that lim infn→∞rn > 0, {Jrn}∞n=1 is a uniformly closed sequence of relatively
quasi nonexpansive mappings.

Proof. Firstly, we show that {Jrn}∞n=1 is uniformly closed. Let {zn} ⊂ E be a sequence such
that zn → p and limn→∞‖zn − Jrnzn‖ = 0. Since J is uniformly norm-to-norm continuous on
bounded sets, we obtain

1
rn
(Jzn − JJrnzn) −→ 0. (4.26)

It follows from

1
rn
(Jzn − JJrnzn) ∈ AJrnzn (4.27)
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and the monotonicity of A that

〈
w − Jrnzn,w

∗ − 1
rn
(Jzn − JJrnzn)

〉
≥ 0 (4.28)

for all w ∈ D(A) and w∗ ∈ Aw. Letting n → ∞, we have 〈w − p,w∗〉 ≥ 0 for all w ∈ D(A)
and w∗ ∈ Aw. Therefore from the maximality of A, we obtain p ∈ A−10 = F(Jrn) for all n ≥ 1,
that is, p ∈ ⋂∞

n=1 F(Jrn).
Next we show Jrn is a relatively quasi nonexpansive mapping for all n ≥ 1. For any

w ∈ E and p ∈ F(Jrn) = A−10, from the monotonicity of A, we have

φ
(
p, Jrnw

)
=
∥∥p∥∥2 − 2

〈
p, JJrnw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 + 2

〈
p, Jw − JJrnw − Jw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 + 2

〈
p, Jw − JJrnw

〉 − 2
〈
p, Jw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 − 2

〈
Jrw − p − Jrnw, Jw − JJrnw

〉 − 2
〈
p, Jw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 − 2

〈
Jrnw − p, Jw − JJrnw

〉

+ 2〈Jrnw, Jw − JJrnw〉 − 2
〈
p, Jw

〉
+ ‖Jrnw‖2

≤ ∥∥p∥∥2 + 2〈Jrnw, Jw − JJrnw〉 − 2
〈
p, Jw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 − 2

〈
p, Jw

〉
+ ‖w‖2 − ‖Jrnw‖2 + 2〈Jrnw, Jw〉 − ‖w‖2

= φ
(
p,w

) − φ(Jrnw,w)

≤ φ
(
p,w

)
.

(4.29)

This implies that Jrn is a relatively quasi nonexpansive mapping for all n ≥ 1. This completes
the proof.
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