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We establish some algebraic results on the zeros of some exponential polynomials and a real
coefficient polynomial. Based on the basic theorem, we develop a decomposition technique to
investigate the stability of two coupled systems and their discrete versions, that is, to find
conditions under which all zeros of the exponential polynomials have negative real parts and the
moduli of all roots of a real coefficient polynomial are less than 1.

1. Introduction

For an ordinary (delay) differential equation, the trivial solution is asymptotically stable if
and only if all roots of the corresponding characteristic equation of the linearized system
have negative real parts while the moduli of all roots of a real coefficient polynomial less
than 1 mean the trivial solution is asymptotically stable for the difference equation. However,
it is difficult to obtain the expression of the characteristic equation corresponding to the
linearized systems. Special cases of the characteristic equation have been discussed by many
authors. For example, Bellman and Cooke [1], Boese [2], Kuang [3], and Ruan and Wei [4–8]
studied some exponential polynomials and used the results to investigate the stability and
bifurcations for some systems. The well-known Jury criterion can be used to determine the
moduli of the roots of a real coefficient polynomial less than one [9, 10], but the calculation is
prolixly.

The purpose of this paper is to provide a new algebraic criterion of zero for some
exponential polynomials and a real coefficient polynomial.
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2. Some Algebraic Results

Let V be a linear space over a number field F and W a subspace of V . A complement space
ofW in V is a linear spaceU of V such that V = W ⊕U. A vector γ is said to be the projection
of a vector α along W at U if α = β + γ , where β ∈ W and γ ∈ U.

Let A be a linear transformation on V and W a subspace of V . A subspace W is said
to be a A invariant subspace if Aα ∈ W for any α ∈ W . Let U be a k-complement space of A
for W , if

(1) W is aA invariant subspace;

(2) U is a complement space of W in V , that is, V = W ⊕U;

(3) for any α ∈ U, the projection of (A − kIV )α along W at U is always 0.

Let A, B be two linear transformations on V . We consider that A and B are (k, l)
concordant if there exist a nontrivial invariant subspaces W of A and B, and a complement
space U of W in V , such that

(1) at least one of constraints ofA,B on W is a scalar transformation lIW ;

(2) U is a k-complement space of A or B forW .

Let A,B ∈ Rn×n. We say that A and B are (k, l) concordant if linear transformations A
and B of Rn

A:Rn → Rn, X �→ AX, for all X ∈ Rn,

B:Rn → Rn, X �→ BX, for all X ∈ Rn

are concordant.
For example, In and a reducible matrix An×n are always in concordance.

Theorem 2.1. Let A,B ∈ Rn×n be (k, l) concordant. Then there exist an invertible matrix P , such
that

PAP−1 =
(
A11 A12

O kIn2

)
, PBP−1 =

(
lIn1 B12

O B22

)
, (2.1)

or

PAP−1 =
(
lIn1 A12

O kIn2

)
, PBP−1 =

(
B11 B12

O B22

)
, (2.2)

or

PAP−1 =
(
A11 A12

O A22

)
, PBP−1 =

(
lIn1 B12

O kIn2

)
, (2.3)

or

PAP−1 =
(
lIn1 A12

O A22

)
, PBP−1 =

(
B11 B12

O kIn2

)
, (2.4)

where n1 > 0, n2 > 0, n1 + n2 = n.
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Proof. Let α1, α2, . . . , αr be the base ofW and αr+1, . . . , αn ofU. If the constraints ofA onW are
lIW and U is a k-complement space of A for W , then Aαi = lαi, i = 1, . . . , r and there exists
a1j , . . . , arj making Aαj − kαj = a1jα1 + · · · + arjαr , that is, Aαj = a1jα1 + · · · + arjαr + kαj , j =
r + 1, . . . , n. So

A(α1, . . . , αr , αr+1, . . . , αn) = (α1, . . . , αr , αr+1, . . . , αn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l · · · 0 a1,r+1 · · · a1n
...

. . .
...

...
...

0 · · · l ar,r+1 · · · arn

0 k · · · 0
. . .

...
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.5)

Because a subspace W is a B invariant subspace, we can write Bαi = b1iα1 + · · · + briαr , i =
1, . . . , r, Bαi = b1jα1 + · · · + brjαr + · · · + bnjαn, j = r + 1, . . . , n. So

B
(
α1, . . . , αr , αr+1, . . . , αn

)
=
(
α1, . . . , αr , αr+1, . . . , αn

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 · · · b1r b1,r+1 · · · b1n
...

. . .
...

...
...

br1 · · · brr br,r+1 · · · brn
0 br+1,r+1 · · · br+1,n

...
. . .

...
bn,r+1 · · · bnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.6)

If the constraint of A on W is lIW and U is a k-complement space of B for W , then Bαi =
lαi, i = 1, . . . , r. Aαj = a1jα1 + · · · + arjαr + ar+1,jαr+1 + · · · + anjαn, j = r + 1, . . . , n. So

A
(
α1, . . . , αr , αr+1, . . . , αn

)
=
(
α1, . . . , αr , αr+1, . . . , αn

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l · · · 0 a1,r+1 · · · a1n
...

. . .
...

...
...

0 · · · l ar,r+1 · · · arn

0 ar+1,r+1 · · · ar+1,n
...

. . .
...

an,r+1 · · · ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)
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Because a subspace W is a B invariant subspace, we can write Bαi = b1iα1 + · · · + briαr , i =
1, . . . , r. Because αj ∈ U (j = r + 1, . . . , n), Bαj − kαj ∈ W , then there exists b1j , . . . , brj making
Bαj = b1jα1 + · · · + brjαr + kαj , j = r + 1, . . . , n. So

B
(
α1, . . . , αr , αr+1, . . . , αn

)
=
(
α1, . . . , αrαr+1, . . . , αn

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 · · · b1r b1,r+1 · · · b1,n
...

. . .
...

...
...

br1 · · · brr br,r+1 · · · br,n
0 k · · · 0

. . .
...
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.8)

Other situations are similar.

3. Algebraic Criterion of Zero for Some Exponential Polynomials

From Section 2, we have the following theorem on the roots of exponential polynomial.

Theorem 3.1. Let A,B ∈ Rn be (k, l) concordant, τ a constant, τ > 0, f(λ) a polynomial about λ. If
λ0 is a root of

∣∣∣f(λ)In −A − Be−λτ
∣∣∣ = 0, (3.1)

then

u = f(λ0) − ae−λ0τ (3.2)

is an eigenvalue of A, or

v =
(
f(λ0) − a

)
eλ0τ (3.3)

is an eigenvalue of B, where a = k or l.

Proof. Without loss of generality, assume that

PAP−1 =
(
A11 A12

O kIn2

)
, PBP−1 =

(
lIn1 B12

O B22

)
. (3.4)

Because λ0 is a root of

∣∣∣f(λ)In −A − Be−λτ
∣∣∣ = 0,

∣∣∣∣f(λ0)In1 −A11 − lIn1e
−λ0τ ∗

O f(λ0)In2 − kIn2 − B22e
−λ0τ

∣∣∣∣ = 0,
(3.5)
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then

∣∣∣f(λ0)In1 −A11 − lIn1e
−λ0τ

∣∣∣ = 0 or
∣∣∣f(λ0)In2 − kIn2 − B22e

−λ0τ
∣∣∣ = 0. (3.6)

If |f(λ0)In1 −A11 − lIn1e
−λ0τ | = 0, then u = f(λ0) − le−λ0τ is an eigenvalue of A.

If |f(λ0)In2 − kIn2 − B22e
−λ0τ | = 0, then v = (f(λ0) − k)eλ0τ is an eigenvalue of B.

As a application of Theorem 3.1, consider a BAM neural network model with delays:

Ẋ = −aX + f(Y (t − τ1)),

Ẏ = −bY + g(X(t − τ2)),
(3.7)

where X ∈ Rn, Y ∈ Rn, a > 0, b > 0. Assume that f, g ∈ C1, and f(0) = 0, g(0) = 0.
Under the hypothesis, the origin O is an equilibrium of (3.7), and the linearization of

system (3.7) at the origin O is

Ẋ = −aX + B1Y (t − τ1),

Ẏ = −bY + B2X(t − τ2),
(3.8)

where B1, B2 are Jacobi matrices.
The associated characteristic equation of (3.8) is

∣∣∣∣λIn + aIn −B1e
−λτ1

−B2e
−λτ2 λIn + aIn

∣∣∣∣ = 0. (3.9)

Since λ = −a, λ = −b have no influence on the stability of system (3.7), then let λ/= −a, λ /= − b.
We have

∣∣∣(λ + a)(λ + b)In − e−λ(τ1+τ2)B1B2

∣∣∣ = 0. (3.10)

Let u1, u2, . . . , ur be eigenvalues of B1B2. From Theorem 3.1, we have

(λ + a)(λ + b) − uke
−λτ = 0, (k = 1, 2, . . . , n), (3.11)

where τ = τ1 + τ2, that is,

λ2 + (a + b)λ + ab − uke
−λτ = 0. (3.12)

Consider

λ2 + (a + b)λ + ab − uke
−λτ = 0, uk = ck + dki. (3.13)
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Lemma 3.2. Ifmax1≤k≤n|uk| > ab, then (3.12) has a root iw(k)
0 (w0 > 0), and

w
(k)
0 =

1√
2

[
−
(
a2 + b2

)
+
√(

(a2 − b2)2 + 4|uk|
)]1/2

, (3.14)

τ
(k)
0 are determined by

[
wk

0

]2
= ck cosw

(k)
0 τ − dk sinw

(k)
0 τ,

a + b = ck sinw
(k)
0 τ − dk cosw

(k)
0 τ.

(3.15)

Proof. Let iw (w > 0) be a root of (3.13), then

−w2 + i(a + b)w + ab − (ck + dki)(coswτ + i sinwτ) = 0. (3.16)

Separating the real and imaging parts, the roots can be obtained.

Lemma 3.3. Re(dλ/dτ)|
τ=τ (k)j ,w=w(k)

0
> 0.

Proof. Differentiating both sides of (3.13)with respect to τ gives

(
dλ

dτ

)−1
=

2λ + a + b − uke
−λτ

ukλe−λτ
, (3.17)

that is,

Re
(
dλ

dτ

)−1 ∣∣∣∣∣
τ=τ (k)j ,w=w(k)

0

=

[
w

(k)
0

]2
Δ

[
a2 + b2 + 2

[
w

(k)
0

]2]
> 0, (3.18)

where Δ = (a + b)2[w(k)
0 ]

2
+ [w(k)

0 ]
2
[[w(k)

0 ]
2 − ab]

2
.

Theorem 3.4. Let τ0 = min{τ (1)0 , τ
(2)
0 , . . . , τ

(n)
0 }.

(1) Ifmax1≤k≤n|uk| < ab, then the zero solution of (3.7) is absolutely stable.

(2) If min1≤k≤n|uk| ≥ ab,max1≤k≤n Reuk < ab, then the zero solution of (3.7) is
asymptotically stable when τ ∈ [0, τ0) and unstable when τ > τ0, and (3.7) undergoes
a Hopf bifurcation at the origin 0 when τ = τ

(k)
j , j = 0, 1, . . . , k = 1, 2, . . . , n, where

τ = τ
(k)
j is defined in Lemma 3.2.

(3) Ifmin1≤k≤n Reuk ≥ ab, then the zero solution of (3.7) is unstable for all τ ≥ 0.
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Proof. For τ = 0, (3.13) becomes

λ2 + (a + b)λ + ab − (ck + dki) = 0. (3.19)

Let λ = α+ iβ be a root of (3.19). Separating the real and imaginary parts, we can obtain

α2 − β2 + (a + b)α + ab − ck = 0,

2αβ + (a + b)β − dk = 0.
(3.20)

Hence, α = (−(a + b) ±
√
(a + b)2 − 4(ab − ck))/2. If ck < 0, then α < 0. Using Lemmas 3.2 and

3.3 the conclusions follow.

4. Algebraic Criterion of Zero for Some Real Polynomial

Theorem 4.1. Let A,B be (k, l) concordant. If f(z) be a polynomial about z, z0 is a root of

∣∣zm[f(z)I −A
] − B

∣∣ = 0, (4.1)

then

u = f(z0) − az−m0 (4.2)

is an eigenvalue of A, or

v = zm0
[
f(z0) − a

]
(4.3)

is an eigenvalue of B, where a = k or l.

Proof. Let us assume that

PAP−1 =
(
A11 A12

O kIn2

)
, PBP−1 =

(
lIn1 B12

O B22

)
. (4.4)

Because z0 is a root of

∣∣zm[f(z)I −A
] − B

∣∣ = 0,
∣∣∣∣z

m
0

[
f(z0)In1 −A11

] − lIn1 ∗
O zm0

[
f(z0)In2 − kIn2

] − B22

∣∣∣∣ = 0,
(4.5)

then

∣∣zm0 [f(z0)In1 −A11
] − lIn1

∣∣ = 0 or
∣∣zm0 [f(z0)In2 − kIn2

] − B22
∣∣ = 0. (4.6)
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If |zm0 [f(z0)In1 −A11] − lIn1 | = 0, then u = f(z0) − az−m0 is an eigenvalue of A.

If |zm0 [f(z0)In2 − kIn2] − B22| = 0, then v = zm0 [f(z0) − a] is an eigenvalue of B.

For the application of Theorem 4.1, consider the discretization of BAM neural network
(3.7). Let U(t) = X(t − τ2), V (t) = Y (t), τ = (τ1 + τ2), then (3.7) can be rewritten as

U̇(t) = −aU(t) + f(V (t − τ)),

V̇ (t) = −bV (t) + g(U(t)).
(4.7)

Let M(t) = U(tτ),N(t) = V (tτ), then (4.7) can be rewritten as

Ṁ(t) = −aτM(t) + τf(N(t − 1)),

Ṅ(t) = −bτN(t) + τg(M(t)).
(4.8)

Let h = 1/m,m ∈ N+, using an Euler method to (4.8), we obtain

Mn+1 = Mn − haτMn + hτf(Nn−m),

Nn+1 = Nn − hbτNn + hτg(Mn).
(4.9)

Let Zn = (MT
n,N

T
n ,N

T
n−1, . . . ,N

T
n−m). Using the notation, (4.9) can be expressed as

Zn+1 = F(Zn, τ), (4.10)

where F = (FT
−1, F

T
0 , F

T
1 , . . . , F

T
m) and

Fk =

⎧⎪⎪⎨
⎪⎪⎩
(1 − haτ)Mn + hτf(Nn−m), k = −1,
(1 − hbτ)Nn + hτg(Mn), k = 0,
Nn−k, 1 ≤ k ≤ m.

(4.11)

It is clear that 0 is also an equilibrium of (4.10). The linearization of (4.10) at the origin 0 is

Zn+1 = Ã(τ)zn, (4.12)

Ã(τ) =

⎛
⎜⎜⎜⎜⎜⎝

(1 − haτ)In 0 0 · · · 0 hτB1

hτB2 (1 − hbτ)In 0 · · · 0 0
0 In 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · In 0

⎞
⎟⎟⎟⎟⎟⎠

. (4.13)

The characteristic equation of (4.12) is

∣∣∣zI − Ã(τ)
∣∣∣ = 0. (4.14)
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Since |1 − haτ | < 1, |1 − hbτ | < 1, hence there is no influence on the stability of (4.10). Let
z/= 1 − haτ, z /= 1 − hbτ , then (4.14) can be rewritten as

∣∣∣zm(z − 1 + haτ)zm(z − 1 + hbτ)In − (hτ)2B1B2

∣∣∣ = 0. (4.15)

Let uk (1 ≤ k ≤ n) be an eigenvalue of B1B2. Using Theorem 4.1, we have

[zm(z − 1 + haτ)][zm(z − 1 + hbτ)]Ir − (hτ)2uk = 0. (4.16)

It is clear that the stability of system (4.10) is determined by the distribution of the roots of
(4.16). Next, we consider a special case of system (3.7)

Ẋ = −aX + f(X(t − τ)), (4.17)

where X ∈ Rn, which is a Hopfiled neural network with delay. Its discrete system is

Mn+1 = (1 − haτ)Mn + hτf(Mn−m). (4.18)

The linear part is

Mn+1 = (1 − haτ)Mn + hτBMn−m. (4.19)

It is clear that we only need to discuss the distribution of the roots

zm(z − 1 + haτ) = hτuk, (4.20)

where uk (1 ≤ k ≤ n) is an eigenvalue of B.

Lemma 4.2. Letmax1≤k≤n Reuk < a. There exists a τ̃ > 0 such that for 0 < τ < τ̃ , all roots of (4.20)
have moduli less than one.

Proof. When τ = 0, (4.20) has an m-fold root z = 0 and a simple root z = 1 at τ = 0. Consider
the root z(t) such that z(0) = 1. This root depends continuously on τ and is a differential
function of τ :

d|z|2
dτ

∣∣∣∣∣
z=1,τ=0

=
(
z
dz̃

dτ
+ z̃

dz

dτ

)∣∣∣∣
z=1,τ=0

= 2(−a + Reuk)h < 0. (4.21)

Hence, |z(t)| < 1 for all sufficiently small τ > 0. Thus, all roots of (4.20) lie in |z(t)| < 1 for
sufficiently small positive τ and existence of the maximal τ̃ follows.

Lemma 4.3. Assume that the seep size h is sufficiently small. Letmax1≤k≤n|uk| < 1, then there are no
roots of (4.20) with moduli one for all τ > 0.
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Proof. Let z = eiw
∗/m be a root of (4.20)when τ = τ∗, then

cos
m + 1
m

w∗ − (
1 − haτ∗k

)
cosw∗ = hτ∗kck,

sin
m + 1
m

w∗ − (
1 − hbτ∗k

)
sinw∗ = hτ∗kdk,

(4.22)

where uk = ck + idk, hence

cos
w∗

m
= 1 +

(
a2 − |uk|2

)
h2(τ∗)2

2(1 − haτ∗)
. (4.23)

Let |uk| < a, for sufficiently small h > 0, | cos (w∗/m)| > 1, which yields a contradiction. The
proof is complete.

Lemma 4.4. If the seep size h is sufficiently small, then

d|z|2
dτ

∣∣∣∣∣
τ=τ∗

k
,w=w∗

> 0, (4.24)

where τ∗, w∗satisfy (4.22).

Proof. Consider the following equation:

d|z|2
dτ

∣∣∣∣∣
τ=τ∗

k
,w=w∗

=
(
z
dz̃

dτ
+ z̃

dz

dτ

)∣∣∣∣
τ=τ∗

k
,w=w∗

=
2
τ
× (m + 1)(1 − cos(w∗/m)) +m

(
1 − τ∗kha

)
(1 − cos(w∗/m))

(m + 1)2 +
(
1 − haτ∗k

)2 + 2m(m + 1)
(
1 − haτ∗k

)
cos(w∗/m)

> 0.

(4.25)

Using Lemmas 4.1–4.4 and Theorem 1 of [11], we have the following results.

Theorem 4.5. (1) Ifmax1≤k≤n|uk| < a, then the zero solution of (4.10) is unstable for τ ≥ 0.
(2) If min1≤k≤n|uk| ≥ a, max1≤k≤nuk < a, then the zero solution of (4.18) is asymptotically

stable when τ ∈ (0, τ∗), where τ∗ = min{τ∗1 , τ∗2 , . . . , τ∗n}, and (4.10) undergoes a Naimark-Sacker
bifurcation.

(3) Ifmin1≤k≤n Reuk ≥ a, then the zero solution of (4.10) is unstable for all τ ≥ 0.
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Figure 1: Two phase-locked oscillations: x1(t) = x2(t + PT/3) = x3(t + 2PT/3), y1(t) = y2(t + PT/3) =
y3(t + 2PT/3).

5. Computer Simulation

To illustrate the analytical results found, let us consider the following particular case of (3.7):

ẋ1 = −x1 + 2 tanh
(
y2(t − τ1)

)
,

ẋ2 = −x2 + 2 tanh
(
y3(t − τ1)

)
,

ẋ3 = −x3 + 2 tanh
(
y1(t − τ1)

)
,

ẏ1 = −2y1 − 1.5 tanh(x2(t − τ2)),

ẏ2 = −2y2 − 1.5 tanh(x3(t − τ2)),

ẏ3 = −2y3 − 1.5 tanh(x1(t − τ2)),

(5.1)

where τ1, τ2 are parameters.
Using the conclusions of Theorem 3.4, the phase-locked periodic solutions appear with

τ1 + τ2 = 1.731. See Figure 1.
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Figure 2: Two phase-locked oscillations: x1(n) = x2(n + PT/3) = x3(n + 2PT/3), y1(n) = y2(n + PT/3) =
y3(n + PT/3).

For the special case of (4.8), we have the following equations:

x1,n+1 = (1 − τh)x1,n + 2τh tanh
(
y2,n−m

)
,

x2,n+1 = (1 − τh)x2,n + 2τh tanh
(
y3,n−m

)
,

x3,n+1 = (1 − τh)x3,n + 2τh tanh
(
y1,n−m

)
,

y1,n+1 = (1 − 2τh)y1,n − 1.5τh tanh(x2,n−m),

y2,n+1 = (1 − 2τh)y2,n − 1.5τh tanh(x3,n−m),

y3,n+1 = (1 − 2τh)y3,n − 1.5τh tanh(x1,n−m),

(5.2)

where τ = 1.731, m = 3, h = 1/m. The phase-locked periodic solutions appear. See Figure 2.
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