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The purpose of this paper is to give some properties of the modified q-Bernoulli numbers and
polynomials of higher order with weight. In particular, by using the bosonic p-adic q-integral on
Zp, we derive new identities of q-Bernoulli numbers and polynomials with weight.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp,Qp, and Cp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the
completion of the algebraic closure of Qp. Let N be the set of natural numbers and Z+ =
N ∪ {0}. The p-adic norm of Cp is defined by |p|p = 1/p. When one talks of a q-extension, q
can be considered as an indeterminate, a complex number q ∈ C, or a p-adic number q ∈ Cp.
Throughout this paper we assume that α ∈ Q and q ∈ Cp with |1 − q|p < p−1/(p−1) so that
qx = exp(x log q).

LetUD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈ UD(Zp),
the p-adic q-integral on Zp is defined by Kim (see [1–3]) as follows:

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx, (1.1)

where [x]q is the q-number of x which is defined by [x]q = (1 − qx)/(1 − q).



2 Abstract and Applied Analysis

From (1.1), we have

qnIq
(
fn
) − Iq

(
f
)
=
(
q − 1

)n−1∑

l=0

qlf(l) +
q − 1
log q

n−1∑

l=0

qlf ′(l), (1.2)

where fn(x) = f(x + n) (see [2–4]).
As is well known, Bernoulli numbers are inductively defined by

B0 = 1, (B + 1)n − Bn =

{
1 if n = 1,
0 if n > 1,

(1.3)

with the usual convention about replacing Bn by Bn (see [3, 5]).
In [2, 5, 6], the q-Bernoulli numbers are defined by

B0,q =
q − 1
log q

,
(
qBq + 1

)n − Bn,q =

{
1 if n = 1,
0 if n > 1,

(1.4)

with the usual convention about replacing Bn
q by Bn,q. Note that limq→ 1Bn,q = Bn. In the

viewpoint of (1.4), we consider the modified q-Bernoulli numbers with weight.
In this paper we study families of the modified q-Bernoulli numbers and polynomials

of higher order with weight. In particular, by using the multivariate p-adic q-integral on Zp,
we give new identities of the higher-order q-Bernoulli numbers and polynomials withweight.

2. Modified q-Bernoulli Numbers with Weight of Higher Order

For n ∈ Z+, let us consider the following modified q-Bernoulli numbers with weight α (see
[1, 3]):

B̃
(α)
n,q =

∫

Zp

[x]nqαq
−xdμq(x) =

1
(
1 − q

)n[α]nq

n∑

l=0

(
n
l

)
(−1)l αl

[αl]q
,

B̃
(α)
n,q(x) =

∫

Zp

[
x + y

]n
qαq

−ydμq

(
y
)
=

1
(
1 − q

)n[α]nq

n∑

l=0

(
n
l

)
(−1)lqαlx αl

[αl]q
.

(2.1)

From (2.1), we note that

B̃
(α)
n,q(x) =

n∑

l=0

(
n
l

)
[x]n−lqα qαlxB̃

(α)
l,q

(2.2)

(see [1, 3]).
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For k ∈ N and n ∈ Z+, by making use of the multivariate p-adic q-integral on Zp, we
consider the following modified q-Bernoulli numbers with weight α of order k, B̃(k,α)

n,q :

B̃
(k,α)
n,q =

∫

Zp

· · ·
∫

Zp

[x1 + · · · + xk]nqαq
−x1−···−xkdμq(x1) · · ·dμq(xk). (2.3)

Note that B̃(1,α)
n,q = B̃

(α)
n,q and limq→ 1B̃

(k,α)
n,q = B

(k)
n , where B(k)

n are the nth ordinary Bernoulli num-
bers of order k.

For k,N ∈ N, we have

(
1 − q

1 − qp
N

)k pN−1∑

i1=0

· · ·
pN−1∑

ik=0
[i1 + · · · + ik]nqα

=

(
1 − q

1 − qp
N

)k(
1

1 − qα

)n pN−1∑

i1,...,ik=0

n∑

j=0

(
n
j

)
(−1)jqα(i1+···+ik)j

=
1

(
1 − q

)n[α]nq

n∑

j=0

(
n
j

)
(−1)j

(
1 − q

)k

(
1 − qp

N)k

(
1 − qαp

Nj

1 − qαj
· · · 1 − qαp

Nj

1 − qαj

)

︸ ︷︷ ︸
k−times

.

(2.4)

By (1.1), (2.3), and (2.4), we get

B̃
(k,α)
n,q =

1
(
1 − q

)n[α]nq

n∑

j=0

(
n
j

)
(−1)j

(
αj
)k

[
αj
]k
q

. (2.5)

Therefore, by (2.5), we obtain the following theorem.

Theorem 2.1. For n ≥ 0, one has

B̃
(k,α)
n,q =

1
(
1 − q

)n[α]nq

n∑

j=0

(
n
j

)
(−1)j

(
αj
)k

[
αj
]k
q

. (2.6)

Let us consider the modified q-Bernoulli and polynomials with weight α of order k as
follows:

B̃
(k,α)
n,q (x) =

∫

Zp

· · ·
∫

Zp

[x + x1 + · · · + xk]nqαq
−x1−···−xkdμq(x1) · · ·dμq(xk). (2.7)

By the same method of (2.5), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has

B̃
(k,α)
n,q (x) =

1
(
1 − q

)n[α]nq

n∑

j=0

(
n
j

)
(−1)jqαxj

(
αj
)k

[
αj
]k
q

. (2.8)
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By Theorem 2.2, we get

B̃
(k,α)
n,q−1 (k − x) =

1
(
1 − q−α

)n
n∑

j=0

(
n
j

)
(−1)j

(
αj
)k

[
αj
]k
q−1

q−αj(k−x)

=
(−1)nqαn
(
1 − qα

)n
n∑

j=0

(
n
j

)
(−1)j

(
q−1

(
q − 1

)
αj

(
qαj − 1

)
q−αj

)k

q−αj(k−x)

=
(−1)nqαn
(
1 − qα

)n
n∑

j=0

(
n
j

)
(−1)jqαjxq−k

(
αj
)k

[
αj
]k
q

= (−1)nqαn−kB̃(k,α)
n,q (x).

(2.9)

Therefore, by (2.9), we obtain the following theorem.

Theorem 2.3. For n ∈ Z+, one has

B̃
(k,α)
n,q−1 (k − x) = (−1)nqαn−kB̃(k,α)

n,q (x), B̃
(k,α)
n,q−1 (k) = (−1)nqαn−kB̃(k,α)

n,q . (2.10)

From Theorem 2.3, we note that

lim
q→ 1

B̃
(k,α)
n,q−1 (k − x) = B

(k)
n (k − x), lim

q→ 1
B̃
(k,α)
n,q−1 (k) = (−1)nB(k)

n . (2.11)

Thus, we have B(k)
n (k) = (−1)nB(k)

n , where B(k)
n are the nth Bernoulli numbers of order k.

From (2.3) and (2.7), we can derive the following equations:

B̃
(l,α)
k,q (x) = lim

N→∞
1

[m]lq
[
pN

]l
qm

m−1∑

i1,...,il=0

pN−1∑

n1,...,nl=0
[x + i1 + · · · + il +m(n1 + · · · + nl)]kqα

=
[m]kqα

[m]lq

m−1∑

i1,...,il=0

∫

Zp

· · ·
∫

Zp

[
x + i1 + · · · + il

m
+ x1 + · · · + xl

]k

qαm

× q−mx1−···−mxldμqm(x1) · · ·dμqm(xk)

=
[m]kqα

[m]lq

m−1∑

i1,...,il=0

B̃
(l,α)
k,qm

(
x + i1 + · · · + il

m

)
.

(2.12)

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.4. For k ∈ Z+ and l,m ∈ N, one has

B̃
(l,α)
k,q (x) =

[m]kqα

[m]lq

m−1∑

i1,...,il=0

B̃
(l,α)
k,qm

(
x + i1 + · · · + il

m

)
. (2.13)
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In particular,

B̃
(l,α)
k,q (mx) =

[m]kqα

[m]lq

m−1∑

i1,...,il=0

B̃
(l,α)
k,qm

(
x +

i1 + · · · + il
m

)
. (2.14)

From (1.2), we can derive the following integral:

∫

Zp

f(x + 1)q−xdμq(x) =
∫

Zp

f(x)q−xdμq(x) +
q − 1
log q

f ′(0),

∫

Zp

f(x + 2)q−xdμq(x) =
∫

Zp

f1(x)q−xdμq(x) +
q − 1
log q

f ′(1)

=
∫

Zp

f(x)q−xdμq(x) +
q − 1
log q

(
f ′(0) + f ′(1)

)
.

(2.15)

Continuing this process, we obtain

∫

Zp

f(x + n)q−xdμq(x) =
∫

Zp

f(x)q−xdμq(x) +
q − 1
log q

n−1∑

l=0

f ′(l). (2.16)

By (2.16), we get

∫

Zp

[x + n]mqαq
−xdμq(x) =

∫

Zp

[x]mqαq
−xdμq(x) +

mα

[α]q

n−1∑

l=0

[l]m−1
qα qαl. (2.17)

Therefore, by (2.1) and (2.17), we obtain the following theorem.

Theorem 2.5. For n ∈ N and m ∈ Z+, one has

B̃
(α)
m,q(n) − B̃

(α)
m,q = m

α

[α]q

n−1∑

l=0

[l]mqαq
αl. (2.18)

In an analogues manner as the previous investigation [7–10], we can define a further
generalization of modified q-Bernoulli numbers with weight. Let χ be the Dirichlet character
with conductor d ∈ N. Then the generalized q-Bernoulli numbers with weight attached to χ
can be defined as follows:

B̃
(α)
n,χ,q =

∫

X

χ(x)[x]nqαq
−xdμq(x)

=
[d]nqα

[d]q

d−1∑

a=0

χ(a)B̃(α)
n,qd

(a
d

)
.

(2.19)

We expect to investigate these objects in future papers. This definition B̃
(α)
n,q was also given in

a previous paper (see [9]).
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