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We consider a class of cellular neural networks with time-varying delays in the leakage terms. By
applying Lyapunov functional method and differential inequality techniques, we establish new
results to ensure that all solutions of the networks converge exponentially to zero point.

1. Introduction

It is well known that the delayed cellular neural networks (CNNs) have been successfully
applied to signal and image processing, pattern recognition, and optimization (see [1]).
Hence, they have been the object of intensive analysis by numerous authors in the past
decades. In particular, extensive results on the problem of the existence and stability of the
equilibrium point for CNNs are given out in many works in the literature. We refer the reader
to [2-6] and the references cited therein. Recently, to consider CNNs with the incorporation
of time delays in the leakage terms, Gopalsamy [7] and Wang et al. [8] investigated a class of
CNNS described by

xi(t) = —ci(t)x;(t—mi(t)) + Zaij(t)fi<xj (t-mij(t)))
i1

+ ib,](t) fw Kij(u)gj(x]-(t - u))du + L‘(t), i= 1, 2,. .., n,
=1 0

(1.1)
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in which n corresponds to the number of units in a neural network, x;(t) corresponds to the
state vector of the ith unit at the time t, and ¢;(t) represents the rate with which the ith unit
will reset its potential to the resting state in isolation when disconnected from the network
and external inputs at the time t. a;;(t) and b;;(t) are the connection weights at the time ¢,
ni(t) > 0 and 7;;(t) > 0 denote the leakage delay and transmission delay, respectively, I;(t)
denotes the external bias on the ith unit at the time ¢, f; and g; are activation functions of
signal transmission, and i,j =1, 2,...,n.
Suppose that the following conditions

(Hp) ci and 7; are constants, wherei=1,2,...,n,

(Hj) foreach j € {1, 2,...,n}, there exists a nonnegative constant ij such that

|fi(w) - fi(©)| <Lijlu-v|, Yu,veR, (1.2)

are satisfied. Avoiding the continuously distributed delay terms, the authors of [7, 8] obtained
that all solutions of system (1.1) converge to the equilibrium point or the periodic solution.
However, to the best of our knowledge, few authors have considered the convergence
behavior for all solutions of system (1.1) without the assumptions (Hp) and (Hj). Thus, it is
worthwhile to continue to investigate the convergence behavior of system (1.1) in this case.

The main purpose of this paper is to give the new criteria for the convergence behavior
for all solutions of system (1.1). By applying Lyapunov functional method and differential
inequality techniques, without assuming (Hp) and (H{), we derive some new sufficient
conditions ensuring that all solutions of system (1.1) converge exponentially to zero point.
Moreover, an example is also provided to illustrate the effectiveness of our results.

Throughout this paper, for i,j = 1,2,...,n, it will be assumed that
c¢i, Ii, mi, aij, bij, 7ij : R — R and Kj; : [0,+00) — R are continuous functions, and
there exist constants ¢}, 7, a;’]., b;']. and Ti’; such that

¢l =supci(t), ni =supni(t), a;']- = sup|a;;(t)],
teR teR terR
(1.3)

b;']. =sup|b;j ()|, T;]f = sup 7jj(£).
teR teR

We also assume that the following conditions (H1), (H»), and (H3) hold:

(H,) for each i,j € {1, 2,...,n}, there exist nonnegative constants ij and L; such
that

|fi@)| <Ljlul, |gw)|<Ljlul, VueR, (1.4)
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(Hp) forallt>0andi,j € {1, 2,...,n}, there exist constants 77 > 0, A >0 and ¢ > 0
such that

I |K,~j(u)|e)“‘du < +0o,
0

> = [eilh) = 110 — (et (A + e ) | 1O

no_ . 1.5
+ 2Li(lai (0] O + aymi(t)ci(t)e Ve ) g o)
j=1

+ DL J;) |Kij(u)|e*”du<|bij(t)| + b;'jﬂi(t)cl'(t)em"(t)>§j;
=

(Hz) Li(t) = O(e™) (t — +o0), i=1,2,...,n.

The initial conditions associated with system (1.1) are of the form

xi(s) = i(s), s€(-,0],i=1,2,...,n, (1.6)

where ¢;(-) denotes real-valued-bounded continuous function defined on (-0, 0].

2. Main Results

Theorem 2.1. Let (Hi), (Hz), and (Hs) hold. Then, for every solution Z(t) =
(1 (), x2(t), ..., xu ()" of system (1.1) with any initial value ¢ = (p1(t), Qa2(t), ..., Pu(t)7,
there exists a positive constant K such that

lxi(t)| < K&ge™ Vt>0,i=1,2,...,n. (2.1)

Proof. Let Z(t) = (x1(t), x2(t), ... ,x, (1)) be a solution of system (1.1) with any initial value
@ = (p1(t), @a(t), ..., pu(t))", and let

Xi(t) = eMx;(t), i=1,2,...,n (2.2)
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In view of (1.1), we have

Xi(t) = AX;(t) + e [—ci(t)xi(t = i) + D ai(8) £ (x (t - 7i;(1)))
j=1

+> bij () J' Kij(u)g; (xj(t —u))du + L-(t)]
j=1 0
= AX;(t) — ci(t) e DX, (t - n:(t))

+ et [i ai (1) f; (X (- 1(1))
j=1

+> bij () J'O Kij(u)gj (e*(f*wxj(t - u)>du + L-(t)] , i=12,...,n
j=1

(2.3)
Let
M = max sup{e*|pi(s)] | (2.4)
From (1.3), (H>), and (H3), we can choose a positive constant K such that
K&>M, 7> e +Kl] supf&RlIi(t)eu', Vt>0,i=1,2,...,n (2.5)
Then, it is easy to see that
IX;(H|<M<Kg& V<0, i=1,2,...,n. (2.6)
We now claim that
|IX;(H)| < K¢ Vt>0,i=1,2,...,n. (2.7)
If this is not valid, then, one of the following two cases must occur:
(1) there existi € {1,2,...,n} and t* > 0 such that
Xi(tY =K¢&, |Xj(t)| <K¢& Vi<t j=1,2,...,n, (2.8)
(2) there existi € {1, 2,...,n} and £* > 0 such that
Xi(t") =-K¢&, |Xj(H)| <K¢ Vi<t™, j=1,2,...,n (2.9)

Now, we consider two cases.
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Case i. If (2.8) holds. Then, from (2.3), (2.5), and (H;)—-(H3), we have

0< X;(t)
= AX;(t) = ci(t)eM O X, (8 - (1))

n
e [Zaij(t*)ff (e EmENX; (1~ 75(t)))
j=1

+ib,-,-(t*) f B Kij(u)g; (e™X; (¢ ~ ) ) du + Ii(t*):|
=1 0

AX () = (£ OIX () + ci(#)e O [Xi (1) = Xi (¢ = mi(t))]

e [Zaii(t*)fi (e EmNX; (1~ 75(t))

=1

+§n;bi,-(t*) I - Kij(u)g; <e")‘(t*‘”)Xj(t* - u))du + Ii(t*)]
=1 0

.
e A%y e [ Xisds
tr—m; ()

=1

n
e [Z”ij(t*)ff (e E=mENX; (1~ 75(1))

3y (8) fw Kij(u)gj (™ X; (¢ — ) ) due + L-(t*)]
=1 0

- et —a]xi)

-
+ci(t)etnt) J

AX;(s) - c,-(s)e)‘”"(s)X,-(s -1i(s))
tr—m; (£*)

+e' <iaij (s)f; <€_MS_T”(S))X7 (s - Tif(s»)
j=1
+zn:bij(5)fwKij(u)gf <3_A(S_M)Xi(s - ”)>du " Ii(s))] ds
j=1 0
+e' [z”: aij (") fj (e_i(t*_Tij(t*))Xf (-7 (t*))>
j=1

+ib,-,-(t*) f " Kiwyg; (e X (t" ~ ) ) due + Ii(t*):|
=1 0
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< = et - d—m(t)ei(t)e O (1 et )| 6K

n
T * L (t * * () AT
+ Z;Lj<|aij(t ) 1+ alni(t)ci(t)e e T”)éjK
iz

« XL [ 1K letau(|by ()] + b)) )k
j=1

+ [ ()i ) + 1] sup g

I,-(t)e)“|
= { = [ester) = Ae O — ) cu(y (A + e ) [ g
n
+ ZLJ'<|aij(f*)|e“"f(‘*) + a?j’li(t*)cz'(t*)e)‘”“(t*)6“”)@'
j=1

+ 2L fo | K3y () [ty ()| + bma(#)cal)e ) )
j=1

X

mWMWﬁWW+me@Mm&”}
T K

it* it* Ani (£) 1 Ilt At
<{_n+ ()1 ¢ supiegl e |}K

< 0.
(2.10)

This contradiction implies that (2.8) does not hold.
Case ii. If (2.9) holds. Then, from (2.3), (2.5), and (H;)—(H3), we get

0> X)(t*)

= = ety -] Xt

for
+ci() et f

AXi(s) = ci(s)eM X, (s — mi(s))
t**_rli(t**)

+ets (Zn:*ﬂi,«s)fj (X (s - m5(5)) )
=

+ibi,-(s) J‘OOKi]-(u) g(e™ X (s — w) ) du+ 1,-(5)) ]ds
j=1 0



Abstract and Applied Analysis 7

n
+e't” [Z aij () f <€_Mt**_T""(t**))X1 (t" - Tii(t**))>
o1

+3 (1) fo Kij(u)gj (79X (1 — ) ) du + L(£7)
j=1

> = [e(t)e ) - d - ()it ) (L ket )] (-6iK)

n

i (Jaye

j=1

&) & by (t)ci(8)e e ) (K

+ZL f | K)oy (£ | + B (#)ei (7)) (-4K)

- [t i)t 4 e | e

= = [a) = 2e ) <) (A et ) [ e,

n
+ 2L <|aij(t**) [ermi ) + a;}ﬂi(t**)Ci(t**)emi(t**)eﬂﬁ>§f
i1

2l .[ |K”(u)|exud”<|bli(t**)| + bzﬂll(t**)cl-(t**)e*m(t**)>§i
=1

it** it** Angi (£%) 1 I,t At
D))  fsup e '}<_1<>

> {_71 , [mE)eE)et™ ™) + 1sup;cp|Lihe| }(—K)

K
>0,
(2.11)
which is a contradiction and yields that (2.9) does not hold.
Consequently, we can obtain that (2.7) is true. Thus,
lxi(t)| < K&e™ Vt>0,i=1,2,...,n. (2.12)

This implies that the proof of Theorem 2.1 is now completed. O
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3. An Example

Example 3.1. Consider the following CNNs with time-varying delays in the leakage terms:

(1 + |t|)sin’t ( 1+|sint|> |t sint .2
)= - (20- —H2— t— t —2sin’t
% (#) < SR T A 2000 1+ 4l |3f1< ( sin ))

t] sint t” sint (*
l | sin f2< <t—3sin2t>> + [f”sin egi(x1(t —u))du
0

"1 + 36|t 1+4t7
+ tsit J‘OO e g (x2(t — u))du + e sint
1+362 J, & 872 g
<1 + |¢] )cos 3.1)
, 1+ |cos | t> cost
tH)y=-|40- —"—— t— t —2sin’t
xz( ) 1 +2|t| x2< 2000 > + 1 +2|t|5f1 <X1< sin >>
tcost . |t cost (* _,
1+5|t|f2< (t—5S11’1 t)) + L6l Jo e gi(x1(t —u))du
(1+|t])cost (= _, o
+ 7471 D(x2(t —u))du + e sint,
where f1(x) = fo(x) = xcos(x?), g1(x) = g2(x) = xsin(x?).
Noting that
. 1+ |t )cos’t
(1 + |t|)sin’t < >
18 <1 (t) =20 - ————— <20, 38 < co(t) =40 - ———— <40,
10 1+2[t] 20 1+201]
1+ |sint| 1+ |cos | 1
t) = , t) = < ,
=300 <1000 Y= "Z000 <1000
|t| sint |t|” sint |t sint
= , by (t) = ——, ap(t) = ——,
an(t) =17 1+ 4t nlf) =1 LAl ) =7 + 36/t (3.2)
t?sint P cost |t cos t
bp(t) = ——, by (t) = ———,
(f) = = an (t) = T2 26F 21(t) 11 6/i]
tcost (1 +]t]) cost
= — - - 2
axn(t) T+ 50t b (t) 7T 711 (t) = 721 (t) = 2sin’t

Tio(t) =3sin’t,  To(t)=5sin®t, Li=L=1  Kjw=e" i j=12
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Define a continuous function I';(w) by setting

) = = [ 0 -yt e nt

N

. ZE} <|ai]~ (t) |€wTij(t) + a?jni(t)ci(t)ewﬂi(t)ew‘l’i}) (3 3)

j=1

2
+ZL f |Kl](u)|e“’“du<|b,](t)|+ bl]ql(t)ci(t)e“’”"(t)>, where t>0,i=1,2.

Then, we obtain

2
[i0) = = [ai®) - m®ee] + S1Li(|ai (1)) + amiHe®)
j=1
(3.4)

+ZLI | Kij a0)|du(|bi ()] + Bmatyei(n)), i=1,2.

Therefore,
1 1 1 1 1 1
< - — oy - b —
I1(0) < (18 1000 x 20 x 20) (4 + 1 X 1000 X 20) + <36 + % X 1000 ><20>],
< —10,

1 1 1 1 1 1 1
< - — 4= i
I(0) < <38 1000 x40 x 40) + [(2 + 5 % 1000 x 40) + (5 + 5 x 1000 x 40)]

1 1 1 1 1 1
<6+8xmx40)+<7+§xmx40)]

< =20,

+

(3.5)

which, together with the continuity of I';(w), implies that we can choose positive constants
A > 0and 7 > 0 such that for all t > 0, there holds

-n>Ti(L)

—[Ci(t) - A—ni(t)ci(t) ()L + c;ehrz,-*)] Mg,
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2
=4 - ; AT
+ L (lasi (0] + afm (e Ve )
j=1

2 o
+ 2L fo |Kij () e du([bij (1)| + bimi(Dei (e ™) g, where & =1, i=1,2.
j=1

(3.6)

This yields that system (3.1) satisfied (H;), (Hz), and (H3). Hence, from Theorem 2.1, all
solutions of system (3.1) converge exponentially to the zero point (0,0, ...,0).

Remark 3.2. Since f1(x) = fa(x) = xcos(x®), gi1(x) = g(x) = xsin(x?), and CNNs (3.1) are
a very simple form of CNNs with time-varying delays in the leakage terms, it is clear that
the conditions (Hp) and (H{) are not satisfied. Therefore, all the results in [7-9] and the
references therein cannot be applicable to prove that all solutions of system (3.1) converge
exponentially to the zero point.

Acknowledgments

The authors would like to express their sincere appreciation to the reviewers for their helpful
comments in improving the presentation and quality of the paper; this work was supported
by the National Natural Science Foundation of China (Grant no. 11201184), the Hunan
Provincial National Natural Science Foundation of China (12J]J3007), the Natural Scientific
Research Fund of Zhejiang Provincial of China (Grants nos. Y6110436, LY2A01018), and
the Natural Scientific Research Fund of Zhejiang Provincial Education Department of China
(Grant no. 2201122436).

References

[1] L.O.Chuaand T. Roska, “Cellular neural networks with nonlinear and delay-type template elements,”
in Proceedings of IEEE International Workshop on Cellular Neural Networks and Their Applications, pp. 12—
25, 1990.

[2] H.]. Cho and ]J. H. Park, “Novel delay-dependent robust stability criterion of delayed cellular neural
networks,” Chaos, Solitons and Fractals, vol. 32, no. 3, pp. 1194-1200, 2007.

[3] C. Ou, “Almost periodic solutions for shunting inhibitory cellular neural networks,” Nonlinear
Analysis. Real World Applications, vol. 10, no. 5, pp. 2652-2658, 2009.

[4] B. Liu and L. Huang, “Global exponential stability of BAM neural networks with recent-history
distributed delays and impulses,” Neurocomputing, vol. 69, no. 16-18, pp. 2090-2096, 2006.

[5] B. Liu, “Exponential convergence for a class of delayed cellular neural networks with time-varying
coefficients,” Physics Letters A, vol. 372, no. 4, pp. 424-428, 2008.

[6] H. Zhang, W. Wang, and B. Xiao, “Exponential convergence for high-order recurrent neural networks
with a class of general activation functions,” Applied Mathematical Modelling, vol. 35, no. 1, pp. 123-129,
2011.

[7] K. Gopalsamy, “Leakage delays in BAM,” Journal of Mathematical Analysis and Applications, vol. 325, no.
2, pp- 1117-1132, 2007.

[8] H. Wang, C. Li, and H. Xu, “Existence and global exponential stability of periodic solution of cellular
neural networks with impulses and leakage delay,” International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering, vol. 19, no. 3, pp. 831-842, 2009.

[9] B.Liu, “Global exponential stability for BAM neural networks with time-varying delays in the leakage
terms,” Nonlinear Analysis. Real World Applications, vol. 14, no. 1, pp. 559-566, 2013.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



