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This paper gives an application of Mawhin’s coincidence degree and matrix spectral theory to
a predator-prey model with M-predators and N-preys. The method is different from that used
in the previous work. Some new sufficient conditions are obtained for the existence and global
asymptotic stability of the periodic solution. The existence and stability conditions are given in
terms of spectral radius of explicit matrices which are much different from the conditions given by
the algebraic inequalities. Finally, an example is given to show the feasibility of our results.

1. Introduction and Motivation

1.1. History and Motivations

Mawhin’s coincidence degree theory has been applied extensively to study the existence of
periodic solutions for nonlinear differential systems (e.g. see [1–16] and references therein).
The most important step of applying Mawhin’s degree theory to nonlinear differential
equations is to obtain the priori bounds of unknown solutions to the operator equation
Lx = λNx. However, different estimation techniques for the priori bounds of unknown
solutions to the equation Lx = λNx may lead to different results. Most of papers obtained
the priori bounds by employing the inequalities:

x(t) ≤ x(ξ) +
∫ω
0
|ẋ(t)|dt, x(t) ≥ x(η) −

∫ω
0
|ẋ(t)|dt,

x(ξ) = min
t∈[0,ω]

x(t), x
(
η
)
= max

t∈[0,ω]
x(t).

(1.1)
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These inequalities lead to a relatively strong condition given in terms of algebraic inequality
or classic norms (see e.g., [3–16]). Different from standard consideration, in this paper, we
employ matrix spectral theory to obtain the priori bounds, not the above inequalities. So in
this paper, the existence and stability of periodic solution for a multispecies predator-prey
model is studied by jointly employing Mawhin’s coincidence degree and matrix spectral
theory.

1.2. Model Formulation

One of classical Lotka-Vlterra system is predator-prey models which have been investigated
extensively by mathematicians and ecologist. Many good results have been obtained
for stability, bifurcations, chaos, uniform persistence, periodic solution, almost periodic
solutions. It has been observed that most of works focus on either two or three species model.
There are few paper considering the multispecies model. To model the dynamic behavior of
multispecie predator-prey system, Yang and Rui [17] proposed a predator-prey model with
M-predators and N-preys of the form:

ẋi(t) = xi(t)

[
bi(t) −

N∑
k=1

aik(t)xk(t) −
M∑
l=1

cil(t)yl(t)

]
, i = 1, 2, . . . ,N,

ẏj(t) = yj(t)

[
−rj(t) +

N∑
k=1

djk(t)xk(t) −
M∑
l=1

ejl(t)yl(t)

]
, j = 1, 2, . . . ,M,

(1.2)

where xi(t) denotes the density of prey species Xi at time t, yj(t) denotes the density of
predator species Yj at time t. The coefficients bi(t), rj(t), aik(t), cil(t), djk(t), and ejl(t), (i, k =
1, . . . ,N; j, l = 1, . . . ,M) are nonnegative continuous periodic functions defined on t ∈
(−∞,+∞). The coefficient bi is the intrinsic growth rate of prey species Xi, rj is the death
rate of the predator species Yj , aik measures the amount of competition between the prey
species Xi and Xk (k /= i, i, k = 1, . . . ,N), ejl measures the amount of competition between

the predator species Yj and Yk (k /= j, j, k = 1, . . . ,M), and the constant k̃ij
Δ= dij/cij denotes

the coefficient in conversing prey species Xi into new individual of predator species Yj (i =
1, . . . ,N; j = 1, . . . ,M). By using the differential inequality, Zhao and Chen [18] improved the
results of Yang and Rui [17]. Recently, Xia et al. [19] obtained some sufficient conditions for
the existence and global attractivity of a unique almost periodic solution of the system (1.2).

It is more natural to consider the delay model because most of the species start
interacting after reaching a maturity period. Hence many scholars think that the delayed
models are more realistic and appropriate to be studied than ordinarymodel. Delayed system
is important also because sometimes time delays may lead to oscillation, bifurcation, chaos,
instability which may be harmful to a system. Inspired by the above argument, Wen [20]
considered a periodic delayed multispecies predator-prey system as follows:

ẋi(t) = xi(t)

⎡
⎣bi(t) − aii(t)xi(t) −

N∑
k=1,k /= i

aik(t)xk(t − τik) −
M∑
l=1

cil(t)yl
(
t − ηil

)
⎤
⎦,

ẏj(t) = yj(t)

⎡
⎣−rj(t) +

N∑
k=1

djk(t)xk
(
t − δjk

) − ejj(t)yj(t) −
M∑

l=1,l /= j

ejl(t)yl
(
t − ξjl

)
⎤
⎦,

(1.3)
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where bi(t), rj(t), aik(t), cil(t), djk(t), ejl(t), ejl(t) (i, k = 1, 2, . . . ,N; j, l = 1, 2, . . . ,M) are
assumed to be continuous ω-periodic functions and the delays τik, δjk, ηil, ξjl are assumed
to be positive constants. The system (1.3) is supplemented with the initial condition:

xi(θ) = φi(θ), yj(θ) = ψi(θ), θ ∈ [−τ, 0], φi(0) > 0, ψi(0) > 0, (1.4)

where

τ = max
{
max
1≤i,k≤n

τik, max
1≤i≤N,1≤l≤M

ηil, max
1≤j,l≤M

ξjl, max
1≤j≤M,1≤k≤N

δjk

}
> 0. (1.5)

It is easy to see that for such given initial conditions, the corresponding solution of the system
(1.3) remains positive for all t ≥ 0. The purpose of this paper is to obtain some new and
interesting criteria for the existence and global asymptotic stability of periodic solution of the
system (1.3).

1.3. Comparison with Previous Work

To obtain the periodic solutions of the system (1.3), the method used in [20] is based
on employing the differential inequality and Brower fixed point theorem. Different from
consideration taken by [20], our method is based on combining matrix spectral theory
with Mawhin’s degree theory. In our method, we study the global asymptotic stability by
combining matrix’s spectral theory with Lyapunov functional method. The existence and
stability conditions are given in terms of spectral radius of explicit matrices. These conditions
are much different from the sufficient conditions obtained in [20].

1.4. Outline of This Work

The structure of this paper is as follows. In Section 2, some new and interesting sufficient
conditions for the existence of periodic solution of system (1.3) are obtained. Section 3 is
devoted to examining the stability of the periodic solution obtained in the previous section.
In Section 4, some corollaries are presented to show the effectiveness of our results. Finally,
an example is given to show the feasibility of our results.

2. Existence of Periodic Solutions

In this section, we will obtain some sufficient conditions for the existence of periodic solution
of the system (1.3).

2.1. Preliminaries on the Matrix Theory and Degree Theory

For convenience, we introduce some notations, definitions, and lemmas. Throughout this
paper, we use the following notations.

(i) We always use i, k = 1, . . . ,N; j, l = 1, . . . ,M, unless otherwise stated.
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(ii) If f(t) is a continuous ω-periodic function defined on R, then we denote

f = min
t∈[0,ω]

∣∣f(t)∣∣, f = max
t∈[0,ω]

∣∣f(t)∣∣, m
(
f
)
=

1
ω

∫ω
0
f(t)dt. (2.1)

We use x = (x1, . . . , xn)
T ∈ R

n to denote a column vector, D = (dij)n×n is an n × n matrix, DT

denotes the transpose of D, and En is the identity matrix of size n. A matrix or vector D > 0
(resp., D ≥ 0) means that all entries of D are positive (resp., nonnegative). For matrices or
vectors D and E, D > E (resp., D ≥ E) means that D − E > 0 (resp., D − E ≥ 0). We denote the
spectral radius of the matrix D by ρ(D).

If v = (v1, v2, . . . , vn)
T ∈ R

n, then we have a choice of vector norms in R
n, for instance

‖v‖1, ‖v‖2, and ‖v‖∞ are the commonly used norms, where

‖v‖1 =
n∑
j=1

|vi|, ‖v‖2 =
⎧⎨
⎩

n∑
j=1

|vi|2
⎫⎬
⎭

1/2

, ‖v‖∞ = max
1≤i≤n

|vi|. (2.2)

We recall the following norms of matrices induced by respective vector norms. For instance
ifA = (aij)n×n, the norm of the matrix ‖A‖ induced by a vector norm ‖ · ‖ is defined by

‖A‖p = sup
v∈Rn,v /= 0

‖Av‖p
‖v‖p

= sup
‖v‖p=1

‖Av‖p = sup
‖v‖p≤1

‖Av‖p. (2.3)

In particular one can show that ‖A‖1 = max1≤j≤n
∑n

i=1 |aij | (column norm), ‖A‖2 =

[λmax(ATA)]1/2 = [max. eigenvalue of (ATA)]1/2 and ‖A‖∞ = max1≤i≤n
∑n

j=1 |aij | (row
norm).

Definition 2.1 (see [1, 21]). Let X,Z be normed real Banach spaces, let L : DomL ⊂ X → Z
be a linear mapping, and N : X → Z be a continuous mapping. The mapping L is called a
Fredholm mapping of index zero, if dimKerL = codim ImL < +∞ and ImL is closed in Z.
If L is a Fredholm mapping of index zero and there exist continuous projectors P : X → X
and Q : Z → Z such that ImP = KerL , KerQ = ImL = Im(I −Q), then L | domL ∩ KerP :
(I − P)X → ImL is invertible. We denote the inverse of that map by KP . If Ω is an open
bounded subset of X, the mapping N will be called L-compact on Ω if QN(Ω) is bounded
and KP (I − Q)N : Ω → X is compact. Since ImQ is isomorphic to KerL, there exists an
isomorphism J : ImQ → KerL.

Definition 2.2 (see [1, 22]). Let Ω ⊂ R
n be open and bounded, f ∈ C1(Ω,Rn) ∩ C(Ω,Rn) and

y ∈ R
n/f(∂Ω ∪Nf), that is, y is a regular value of f . Here, Nf = {x ∈ Ω : Jf(x) = 0}, the

critical set of f and Jf is the Jacobian of f at x. Then the degree deg{f,Ω, y} is defined by

deg
{
f,Ω, y

}
=

∑
x∈f−1(y)

sgn Jf(x), (2.4)
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with the agreement that
∑
φ = 0. For more details about Degree Theory, the reader may

consult Deimling [22].

Lemma 2.3 (Continuation Theorem [1]). Let Ω ⊂ X be an open and bounded set and L be a
Fredholmmapping of index zero andN be L-compact onΩ (i.e.,QN(Ω) is bounded andKP (I−Q)N :
Ω → X is compact). Assume

(i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx/=λNx;

(ii) for each x ∈ ∂Ω ∩ KerL, QNx/= 0 and deg{JQN,Ω ∩ KerL, 0}/= 0.

Then Lx =Nx has at least one solution in Ω ∩DomL.

Definition 2.4 (see [23, 24]). A real n × nmatrix A = (aij) is said to be anM-matrix if aij ≤ 0,
i, j = 1, 2, . . . , n, i /= j, and A−1 ≥ 0.

Lemma 2.5 (see [23, 24]). LetA ≥ 0 be an n×n matrix and ρ(A) < 1, then (En −A)−1 ≥ 0, where
En denotes the identity matrix of size n.

Now we introduce some function spaces and their norms, which will be valid
throughout this paper. Denote

X =
{
U(t) = (u(t), v(t))T ∈ C1

(
R,RN+M

)
| U(t +ω) = U(t) ∀t ∈ R

}
,

Z =
{
U(t) = (u(t), v(t))T ∈ C

(
R,RN+M

)
| U(t +ω) = U(t) ∀t ∈ R

}
.

(2.5)

The norms are given by

|Un(t)|0 = max
t∈[0,ω]

|Un(t)|, |Un(t)|1 = |Un(t)|0 +
∣∣U̇n(t)

∣∣
0, i = 1, 2, . . . ,N +M,

‖Un(t)‖0 = max
1≤n≤N+M

{|Un(t)|0}, ‖Un(t)‖1 = max
1≤n≤N+M

{|Un(t)|1}.
(2.6)

Obviously, X and Z, respectively, endowed with the norms ‖ · ‖1 and ‖ · ‖0 are Banach spaces.

2.2. Result on the Existence of Periodic Solutions

Theorem 2.6. Assume that the following conditions hold:

(H1): the system of algebraic equations:

m(bi) −m(aii)ui −
N∑

k=1,k /= i

m(aik)uk −
M∑
l=1

m(cil)wl = 0, i = 1, 2, . . . ,N,

m
(−rj) +

N∑
k=1

m
(
djk
)
uk −m

(
ejj
)
wj −

M∑
l=1,l /= j

m
(
ejl
)
wl = 0, j = 1, 2, . . . ,M,

(2.7)

has finite solution (u∗1, . . . , u
∗
N,w

∗
1, . . . , w

∗
M)T ∈ R

N+M
+ with u∗ > 0, w∗ > 0;
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(H2): ρ(K) < 1, where K =
(

PN×N QN×M
MM×N NM×M

)
(N+M)×(N+M)

,

PN×N =
(
pik
)
N×N, pik =

{
0, i = k,
aika

−1
kk
, i /= k.

QN×M =
(
qil
)
N×M, qil = cile−1ll ,

MM×N =
(
mjk

)
M×N, mjk = djka−1kk,

NM×M =
(
njl
)
M×M, njl =

{
0, j = l,
ejle

−1
ll
, j /= l.

(2.8)

Then system (1.3) has at least one positive ω-periodic solution.

Proof. Note that every solution

U(t) = (u(t), v(t))T = (u1(t), . . . , uN(t), v1(t), . . . , vM(t))T ∈ X (2.9)

of the system (1.3) with the initial condition is positive. By using the following changes of
variables:

ui(t) = lnxi(t), vj(t) = lnyj(t), i = 1, 2, . . . ,N, j = 1, 2, . . . ,M, (2.10)

the system (1.3) can be rewritten as

u̇i(t) = bi(t) − aii(t)eui(t) −
N∑

k=1,k /= i

aik(t)euk(t−τik) −
M∑
l=1

cil(t)evl(t−ηil), i = 1, 2, . . . ,N,

v̇j(t) = −rj(t) +
N∑
k=1

djk(t)euk(t−δjk) − ejj(t)evj (t) −
M∑

l=1,l /= j

ejl(t)evl(t−ξjl), j = 1, 2, . . . ,M.

(2.11)

Obviously, system (1.3) has at least oneω-periodic solution which is equivalent to the system
(2.11) having at least one ω-periodic solution. To prove Theorem 2.6, our main tasks are
to construct the operators (i.e., L, N, P , and Q) appearing in Lemma 2.3 and to find an
appropriate open set Ω satisfying conditions (i), (ii) in Lemma 2.3.

For anyU(t) ∈ X, in view of the periodicity, it is easy to check that

Δi(U, t) = bi(t) − aii(t)eui(t) −
N∑

k=1,k /= i

aik(t)euk(t−τik) −
M∑
l=1

cil(t)evl(t−ηil) ∈ Z,

Δj(U, t) = −rj(t) +
N∑
k=1

djk(t)euk(t−δjk) − ejj(t)evj (t) −
M∑

l=1,l /= j

ejl(t)evl(t−ξjl) ∈ Z.
(2.12)
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Now, we define the operators L,N as follows:

L : DomL ⊂ X −→ Z, L(u(t), v(t)) =

(
dui(t)
dt

,
dvj(t)
dt

)
∈ Z,

N : X −→ Z is defined by NU =
(
Δi(U, t)
Δj(U, t)

)
.

(2.13)

Define, respectively, the projectors P : X → X and Q : Z → Z by

PU =
1
ω

∫ω
0
U(t)dt, U ∈ X,

QU =
1
ω

∫ω
0
U(t)dt, U ∈ Z.

(2.14)

It is obvious that the domain of L in X is actually the whole space, and

KerL = {x(t) ∈ X | Lx(t) = 0, i.e. ẋ(t) = 0} = R
N+M,

ImL =
{
z(t) ∈ Z |

∫ω
0
z(t)dt = 0

}
is closed in Z.

(2.15)

Moreover, P, Q are continuous operators such that

ImP = R
N = KerL, ImL = KerQ = Im(I −Q),

dimKerL = codim ImL =N +M < +∞.
(2.16)

It follows that L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) KP : ImL → DomL ∩ KerP exists, which is given by

KP

(
y
)
=
∫ t
0
y(s)ds − 1

ω

∫ω
0

∫ t
0
y(s)dsdt. (2.17)

Then QN : X → Z and KP (I −Q)N : X → X are defined by

QNU =

⎛
⎜⎜⎜⎜⎝

1
ω

∫ω
0
Δi(U, t)dt

1
ω

∫ω
0
Δj(U, t)dt

⎞
⎟⎟⎟⎟⎠,

KP (I −Q)Nx =
∫ t
0
NU(s)ds − 1

ω

∫ω
0

∫ t
0
NU(s)dsdt −

(
t

ω
− 1
2

)∫ω
0
NU(s)ds.

(2.18)



8 Abstract and Applied Analysis

Clearly,QN andKP (I−Q)N are continuous. By using the generalized Arzela-Ascoli theorem,
it is not difficult to prove that (KP (I −Q)N)(Ω) is relatively compact in the space (X, ‖ · ‖1).
The proof of this step is complete.

Then, in order to apply condition (i) of Lemma 2.3, we need to search for an
appropriate open bounded subset Ω, denoted by

Ω = Un(t) ∈ X | |Un(t)|1 = |Un(t)|0 +
∣∣U̇n(t)

∣∣
0 < hn. (2.19)

Specifically, our aim is to find an appropriate hn. Corresponding to the operator equation
Lx = λNx for each λ ∈ (0, 1), we have

u̇i(t) = λ

⎡
⎣bi(t) − aii(t)eui(t) −

N∑
k=1,k /= i

aik(t)euk(t−τik) −
M∑
l=1

cil(t)evl(t−ηil)
⎤
⎦,

v̇j(t) = λ

⎡
⎣−rj(t) +

N∑
k=1

djk(t)euk(t−δjk) − ejj(t)evj (t) −
M∑

l=1,l /= j

ejl(t)evl(t−ξjl)
⎤
⎦.

(2.20)

Since U(t) ∈ X, each Un(t), n = 1, 2, . . . ,N + M, as components of U(t), is continuously
differentiable and ω-periodic. In view of continuity and periodicity, there exists ti ∈ [0, ω]
such that ui(ti) = maxt∈[0,ω]|ui(t)|, i = 1, 2, . . . ,N, and there also exists tN+j ∈ [0, ω] such that
vj(tN+j) = maxt∈[0,ω]|vj(t)|, j = 1, 2, . . . ,M. Accordingly, u̇i(ti) = 0, v̇j(tN+j) = 0, and we get

bi(ti) − aii(ti)eui(ti) −
N∑

k=1,k /= i

aik(ti)euk(ti−τik) −
M∑
l=1

cil(ti)evl(tN+j−ηil) = 0,

−rj
(
tN+j

)
+

N∑
k=1

djk
(
tN+j

)
euk(ti−δjk) − ejj

(
tN+j

)
evj (tN+j ) −

M∑
l=1,l /= j

ejl
(
tN+j

)
evl(tN+j−ξjl) = 0.

(2.21)

That is,

aii(ti)eui(ti) = bi(ti) −
N∑

k=1,k /= i

aik(ti)euk(ti−τik) −
M∑
l=1

cil(ti)evl(tN+j−ηil),

ejj
(
tN+j

)
evj (tN+j ) = −rj

(
tN+j

)
+

N∑
k=1

djk
(
tN+j

)
euk(ti−δjk) −

M∑
l=1,l /= j

ejl
(
tN+j

)
evl(tN+j−ξjl).

(2.22)

Note that uk(tk) = maxt∈[0,ω]|uk(t)| and vl(tN+l) = maxt∈[0,ω]|vl(t)|, which implies

uk(ti) ≤ uk(tk), uk(ti − τik) ≤ uk(tk), uk
(
ti − δjk

) ≤ uk(tk);
vl
(
tN+j

) ≤ vl(tN+l), vl
(
tN+j − ηil

) ≤ vl(tN+l), vl
(
tN+j − ξjl

) ≤ vl(tN+l).
(2.23)
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It follows that

aiie
ui(ti) ≤

∣∣∣aii(ti)eui(ti)
∣∣∣

=

∣∣∣∣∣∣bi(ti) −
N∑

k=1,k /= i

aik(ti)euk(ti−τik) −
M∑
l=1

cil(ti)evl(tN+j−ηil)

∣∣∣∣∣∣

≤ bi +
N∑

k=1,k /= i

aike
uk(ti−τik) +

M∑
l=1

cile
vl(tN+j−ηil)

≤ bi +
N∑

k=1,k /= i

aike
uk(tk) +

M∑
l=1

cile
vl(tN+l),

ejje
vj (tN+j ) ≤

∣∣∣ejj(tN+j
)
evj (tN+j )

∣∣∣

=

∣∣∣∣∣∣−rj
(
tN+j

)
+

N∑
k=1

djk
(
tN+j

)
euk(ti−δjk) −

M∑
l=1,l /= j

ejl
(
tN+j

)
evl(tN+j−ξjl)

∣∣∣∣∣∣

≤ rj +
N∑
k=1

djke
uk(ti−δjk) +

M∑
l=1,l /= j

ejle
vl(tN+j−ξjl)

≤ rj +
N∑
k=1

djke
uk(tk) +

M∑
l=1,l /= j

ejle
vl(tN+l).

(2.24)

Let

aiie
ui(ti) = zi(ti), ejje

vj (tN+j ) = z̃j
(
tN+j

)
. (2.25)

Using (2.25), the inequalities (2.24) become

zi(ti) ≤ bi +
N∑

k=1,k /= i

aika
−1
kkzk(tk) +

M∑
l=1

cile
−1
ll z̃l(tN+l),

z̃j
(
tN+j

) ≤ rj +
N∑
k=1

djka
−1
kkzk(tk) +

M∑
l=1,l /= j

ejle
−1
ll z̃l(tN+l),

(2.26)

or

zi(ti) −
N∑

k=1,k /= i

aika
−1
kkzk(tk) −

M∑
l=1

cile
−1
ll z̃l(tN+l) ≤ bi,

z̃j
(
tN+j

) − N∑
k=1

djka
−1
kkzk(tk) −

M∑
l=1,l /= j

ejle
−1
ll z̃l(tN+l) ≤ rj ,

(2.27)
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which implies

(
EN×N − PN×N −QN×M

−MM×N EM×M −NM×M

)
(N+M)×(N+M)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1(t1),
. . . ,

zN(tN),
z̃1(tN+1),
. . . ,

z̃M(tN+M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1,
. . . ,

bN,
r1,
. . . ,
rM

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.28)

where

PN×N =
(
pik
)
N×N, pik =

{
0, i = k,
aika

−1
kk, i /= k,

QN×M =
(
qil
)
N×M, qil = cile−1ll ,

MM×N =
(
mjk

)
M×N, mjk = djka−1kk,

NM×M =
(
njl
)
M×M, njl =

{
0, j = l,
ejle

−1
ll
, j /= l.

(2.29)

Set D = (b1, . . . , bN, r1, . . . , rM)T . It follows from (2.28) and (H2) that

(E −K)(z1(t1), . . . , zN(tN), z̃1(tN+1), . . . , z̃M(tN+M))T ≤ D. (2.30)

In view of ρ(K) < 1 and Lemma 2.5, we get (EN+M −K)−1 ≥ 0. Let

H =
(
h̃1, . . . , h̃N, h̃N+1, . . . , h̃N+M

)T
:= (E −K)−1D ≥ 0. (2.31)

Using (2.30) and (2.31), we get

(z1(t1), . . . , zN(tN), z̃1(tN+1), . . . , z̃M(tN+M))T ≤ H, (2.32)

or

zi(ti) ≤ h̃i, i = 1, 2, . . . ,N, z̃j
(
tN+j

) ≤ h̃N+j , j = 1, 2, . . . ,M. (2.33)

Then

ui(ti) ≤ ln
h̃i
aii
, vj

(
tN+j

) ≤ ln
h̃N+j

ejj
, (2.34)
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which implies

|un(t)|0 = max
t∈[0,ω]

|un(t)| = max
t∈[0,ω]

{
ui(ti), vj

(
tN+j

)}
= max

{
ln

h̃i
aii
, ln

h̃N+j

ejj

}
. (2.35)

On the other hand, it follows from (2.31) that

(E −K)H = D, or H = KH +D, (2.36)

that is

h̃i =
N∑

k=1,k /= i

pikh̃k +
M∑
l=1

qilh̃N+l + bi,

h̃N+j =
N∑
k=1

mjkh̃k +
M∑

l=1,l /= j

njlh̃N+l + rj .

(2.37)

Estimating (2.20), by using (2.25), (2.33), and (2.37), we have

|u̇i(t)|0 = λ

∣∣∣∣∣∣bi(t) − aii(t)e
ui(t) −

N∑
k=1,k /= i

aik(t)euk(t−τik) −
M∑
l=1

cil(t)evl(t−ηil)

∣∣∣∣∣∣
0

≤ bi + aii
∣∣∣eui(t)

∣∣∣
0
+

N∑
k=1,k /= i

aik
∣∣∣euk(t−τik)

∣∣∣
0
+

M∑
l=1

cil
∣∣∣evl(t−ηil)

∣∣∣
0

= bi + aiieui(ti) +
N∑

k=1,k /= i

aike
uk(tk) +

M∑
l=1

cile
vl(tN+l)

= bi + aiia−1ii zi(ti) +
N∑

k=1,k /= i

aika
−1
kkzk(tk) +

M∑
l=1

cile
−1
ll z̃l(tN+l)

= bi + zi(ti) +
N∑

k=1,k /= i

aika
−1
kkzk(tk) +

M∑
l=1

cile
−1
ll z̃l(tN+l)

≤ bi + h̃i +
N∑

k=1,k /= i

pikh̃k +
M∑
l=1

qilh̃N+l

= h̃i + h̃i = 2h̃i,
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∣∣v̇j(t)∣∣0 = λ

∣∣∣∣∣∣−rj(t) +
N∑
k=1

djk(t)euk(t−δjk) − ejj(t)evj (t) −
M∑

l=1,l /= j

ejl(t)evl(t−ξjl)

∣∣∣∣∣∣
0

≤ rj +
N∑
k=1

djk
∣∣∣euk(t−δjk)

∣∣∣
0
+

M∑
l=1,l /= j

ejl
∣∣∣evl(t−ξjl)

∣∣∣
0
+ ejj

∣∣∣evj (t)
∣∣∣
0

= rj +
N∑
k=1

djke
uk(tk) +

M∑
l=1,l /= j

ejle
vl(tN+l) + ejjevj (tN+j )

= rj +
N∑
k=1

djka
−1
kkzk(tk) +

M∑
l=1,l /= j

ejle
−1
ll z̃l(tN+l) + ejje−1jj zj

(
tN+j

)

= rj +
N∑
k=1

djka
−1
kkzk(tk) +

M∑
l=1,l /= j

ejle
−1
ll z̃l(tN+l) + z̃j

(
tN+j

)

≤ rj +
N∑
k=1

mjkh̃k +
M∑

l=1,l /= j

njlh̃N+l + h̃N+j

= h̃N+j + h̃N+j = 2h̃N+j .

(2.38)

The above relations imply

|u̇n(t)|0 = max
t∈[0,ω]

|u̇n(t)| = max
t∈[0,ω]

{
u̇i(t), v̇j(t)

}
= max

{
2h̃i, 2h̃N+j

}
. (2.39)

Further, it follows form the definition of norm that

|un(t)|1 = |un(t)|0 + |u̇n(t)|0 = max

{
ln

h̃i
aii
, ln

h̃N+j

ejj

}
+max

{
2h̃i, 2h̃N+j

}
. (2.40)

Let us set the following:

hn = max

{
ln

h̃i
aii
, ln

h̃N+j

ejj

}
+max

{
2h̃i, 2h̃N+j

}
+ d, (2.41)

where d is any positive constant.
Then for any solution of Lx = λNx, we have |un(t)|1 = |un(t)|0 + |u̇n(t)|0 < hn for all

n = 1, 2, . . . ,N +M. Obviously, hn are independent of λ and the choice ofU(t). Consequently,
by taking this hn, the open subset Ω satisfies that Ω ∩ DomL, that is, the open subset Ω
satisfies the assumption (i) of Lemma 2.3.

Now in the last step of the proof, we need to verify that for the given open bounded
set Ω obtained in Step 2, the assumption (ii) of Lemma 2.3 also holds. That is, for each U ∈
∂Ω ∩ KerL, QNU/= 0 and deg{JQN,Ω ∩ KerL, 0}/= 0.
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Take U ∈ ∂Ω ∩ KerL. Then, in view of KerL = R
N+M, U is a constant vector in R

N+M,
denoted byU = (u1, . . . , uN, v1, . . . , vM)T and with the property

|Un| = |Un|0 = |Un|1 = hn. (2.42)

By operatingU by QN gives

(QNU)n =

⎛
⎜⎜⎜⎝

m(bi) −m(aii)eui −
N∑

k=1,k /= i
m(aik)euk −

M∑
l=1
m(cil)evl

m
(−rj) + N∑

k=1
m
(
djk
)
euk −m(ejj)evj − M∑

l=1,l /= j
m
(
ejl
)
evl

⎞
⎟⎟⎟⎠. (2.43)

It is easy to obtain that (QNU)n and deg{JQN,Ω∩KerL, 0}/= 0, where deg(·) is the Brouwer
degree and J is the identity mapping since ImQ = KerL. We have shown that the open subset
Ω ⊂ X satisfies all the assumptions of Lemma 2.3. Hence, by Lemma 2.3, the system (2.11)
has at least one positive ω-periodic solution in DomL ∩Ω. By (2.10), the system (1.3) has at
least one positive ω-periodic solution. This completes the proof of Theorem 2.6.

3. Globally Asymptotic Stability

Under the assumption of Theorem 2.6, we know that system (1.3) has at least one positive
ω-periodic solution, denoted by X∗(t) = (x∗

1(t), . . . , x
∗
N(t), y∗

1(t), . . . , y
∗
M(t))T . The aim of this

section is to derive a set of sufficient conditions which guarantee the existence and global
asymptotic stability of the positive ω-periodic solution X∗(t).

Before the formal analysis, we recall some facts which will be used in the proof.

Lemma 3.1 (see [25]). Let f be a nonnegative function defined on [0,+∞] such that f is integrable
on [0,+∞] and is uniformly continuous on [0,+∞]. Then limt→+∞f(t) = 0.

Lemma 3.2 (see [23, 24]). Let K = (Γij)n×n be a matrix with nonpositive off-diagonal elements. K
is anM-matrix if and only if there exists a positive diagonal matrix ξ = diag(ξ1, ξ2, . . . , ξn) such that

ξiaii >
∑
j /= i

ξjaij , i = 1, 2, . . . , n. (3.1)

Theorem 3.3. Assume that all the assumptions in Theorem 2.6 hold. Then system (1.3) has a unique
positive ω-periodic solution X∗(t) which is globally asymptotically stable.

Proof. Let X(t) = (x(t), y(t))T = (x1(t), . . . , xN(t), y1(t), . . . , yM(t))T be any positive solution
of system (1.3). It is easy to see that ρ(KT) = ρ(K) < 1. Thus, in view of Lemma 2.5 and
Definition 2.4, (E − KT ) is an M-matrix, where E denotes an identity matrix of size N +M.
Therefore, by Lemma 3.2, there exists a diagonal matrix L = diag(α1, . . . , αN, β1, . . . , βM) with
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positive diagonal elements such that the product (E − KT )L is strictly diagonally dominant
with positive diagonal entries, namely,

αiaii >
N∑

k=1,k /= i

αkaki +
M∑
l=1

βldli, i = 1, . . . ,N,

βjejj >
N∑
k=1

αkckj +
M∑

l=1,l /= j

βlelj , j = 1, . . . ,M.

(3.2)

Now, we define a Lyapunov function V (t) as follows:

V (t) =
N∑
i=1

αi

⎡
⎣∣∣lnxi(t) − lnx∗

i (t)
∣∣ + N∑

K=1,K /= i

∫ t
t−τik

aik(s + τik)
∣∣xk(t) − x∗

k(t)
∣∣ds

+
M∑
l=1

∫ t
t−ηil

cil
(
s + ηil

)∣∣yl(t) − y∗
l (t)

∣∣ds
⎤
⎦

+
M∑
j=1

βj

⎡
⎣∣∣∣lnyj(t) − lny∗

j (t)
∣∣∣ +

N∑
K=1

∫ t
t−δjk

djk
(
s + δjk

)∣∣xk(t) − x∗
k(t)

∣∣ds

+
M∑

l=1,l /= j

∫ t
t−ξjl

ejl
(
s + ξjl

)∣∣yl(t) − y∗
l (t)

∣∣ds
⎤
⎦, t ≥ t0.

(3.3)

Calculating the upper right derivative of V (t) and using (3.2), we get

D+V (t) ≤
N∑
i=1

αi

⎡
⎣ − aii(t)

∣∣xi(t) − x∗
i (t)

∣∣ + N∑
k=1,k /= i

aik(t + τik)
∣∣xk(t) − x∗

k(t)
∣∣

+
M∑
l=1

cil
(
t + ηil

)∣∣yl(t) − y∗
l (t)

∣∣
⎤
⎦

+
M∑
j=1

βj

⎡
⎣ − ejj(t)

∣∣∣yj(t) − y∗
j (t)

∣∣∣ +
N∑
k=1

djk
(
t + δjk

)∣∣xk(t) − x∗
k(t)

∣∣

+
M∑

l=1,l /= j

ejl
(
t + ξjl

)∣∣yl(t) − y∗
l (t)

∣∣
⎤
⎦
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≤ −
N∑
i=1

αi

⎡
⎣ − aii

∣∣xi(t) − x∗
i (t)

∣∣ + N∑
k=1,k /= i

aik
∣∣xk(t) − x∗

k(t)
∣∣

+
M∑
l=1

cil
∣∣yl(t) − y∗

l (t)
∣∣
⎤
⎦

+
M∑
j=1

βj

⎡
⎣ − ejj

∣∣∣yj(t) − y∗
j (t)

∣∣∣ +
N∑
k=1

djk
∣∣xk(t) − x∗

k(t)
∣∣

+
M∑

l=1,l /= j

ejl
∣∣yl(t) − y∗

l (t)
∣∣
⎤
⎦

= −
N∑
i=1

⎛
⎝αiaii −

N∑
k=1,k /= i

αkaki −
M∑
l=1

βldli

⎞
⎠∣∣xi(t) − x∗

i (t)
∣∣

−
M∑
j=1

⎛
⎝βjejj −

N∑
k=1

αkckj −
M∑

l=1,l /= j

βlelj

⎞
⎠∣∣∣yj(t) − y∗

j (t)
∣∣∣

= − c
⎧⎨
⎩

N∑
i=1

∣∣xi(t) − x∗
i (t)

∣∣ + M∑
j=1

∣∣∣yj(t) − y∗
j (t)

∣∣∣
⎫⎬
⎭,

(3.4)

where

c = min

⎧⎨
⎩αiaii −

N∑
k=1,k /= i

αkaki −
M∑
l=1

βldli, βjejj −
N∑
k=1

αkckj −
M∑

l=1,l /= j

βlelj

⎫⎬
⎭ > 0. (3.5)

It follows from (3.4) thatD+V (t) ≤ 0. Obviously, the zero solution of (1.3) is Lyapunov stable.
On the other hand, integrating (3.4) over [t0, t] leads to

V (t) − V (t0) � −c
∫ t
t0

⎡
⎣ N∑
i=1

∣∣xi(s) − x∗
i (s)

∣∣ + M∑
j=1

∣∣∣yj(s) − y∗
j (s)

∣∣∣
⎤
⎦ds, t � 0, (3.6)

or

V (t) + c
∫ t
t0

⎡
⎣ N∑
i=1

∣∣xi(s) − x∗
i (s)

∣∣ + M∑
j=1

∣∣∣yj(s) − y∗
j (s)

∣∣∣
⎤
⎦ds � V (t0) < +∞, t � t0. (3.7)

Noting that V (t) � 0, it follows that

∫ t
t0

⎡
⎣ N∑
i=1

∣∣xi(s) − x∗
i (s)

∣∣ + M∑
j=1

∣∣∣yj(s) − y∗
j (s)

∣∣∣
⎤
⎦ds � V (t0)

c
< +∞, t � t0. (3.8)
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Therefore, by Lemma 3.1, it is not difficult to conclude that

lim
t→+∞

∣∣Xi(t) −X∗
i (t)

∣∣ = 0. (3.9)

Theorem 3.3 follows.

4. Corollaries and Remarks

In order to illustrate some features of our main results, we will present some corollaries and
remarks in this section. From the proofs of Theorems 2.6 and 3.3, one can easily deduce the
following corollary.

Corollary 4.1. In addition to (H1), further suppose that E − K or E − KT is an M-matrix. Then
system (1.3) has a unique positive ω-periodic solution which is globally asymptotically stable.

Now recall that for a given matrixK, its spectral radius ρ(K) is equal to the minimum
of all matrix norms of K, that is, for any matrix norm ‖ · ‖, ρ(K) ≤ ‖K‖. Therefore, we have
the following corollary.

Corollary 4.2. In addition to (H1), if one further supposes that there exist positive constants ξi, i =
1, 2, . . . , n, ηj , j = 1, 2, . . . , m such that one of the following inequalities holds.

(1) max{max1≤k≤n{a−1kkξ−1k [
∑n

i=1,i /= k ξiaik +
∑m

l=1 ηjdjk]}, max1≤l≤m{e−1ll η−1l [
∑n

i=1 ξicli +∑m
j=1,j /= l ηjejl]}} < 1, or equivalently, for all k = 1, . . . , n, l = 1, 2, . . . , n,

ξkakk >
n∑

i=1,i /= k

ξiaik +
m∑
l=1

ηjdjk,

ηlell >
n∑
i=1

ξicli +
m∑

j=1,j /= l

ηjejl.

(4.1)

(2)
∑n+m

i=1
∑n+m

j=1 (ξ−1i ξjkij)
2 < 1, whereK = (kij)(n+m)×(n+m) has been defined in Theorem 2.6.

(3) max{max1≤i≤n{a−1ii ξ−1i [
∑n

k=1,k /= i ξkaki +
∑m

l=1 ηldli]}, max1≤j≤m{e−1jj η−1j [
∑n

k=1 ξkckj +∑m
l=1,l /= j ηlelj]}} < 1, or equivalently, for all i = 1, . . . , n, j = 1, 2, . . . , n,

ξiaii >
n∑

k=1,k /= i

ξk|aki| +
m∑
l=1

ηl|dli|,

ηjejj >
n∑
k=1

ξk
∣∣ckj∣∣ +

m∑
l=1,l /= j

ηl
∣∣elj∣∣.

(4.2)

Then system (1.3) has a unique positive ω-periodic solution which is globally asymptotically stable.

Proof. For any matrix norm ‖ · ‖ and any nonsingular matrix S, ‖K‖S = ‖S−1KS‖ also
defines a matrix norm. Let us denote D = diag(ξ1, ξ2, . . . , ξn), then the conditions (1.2) and
(1.3) correspond to the column norms and Frobenius norm of matrix DKD−1, respectively.
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Figure 1: Asymptotic behavior of system (5.1) with initial values (x1(0), x2(0), y1(0)) = (1, 1, 1),
(0.3, 0.3, 0.3), (7, 7, 7), respectively, t ∈ [0, 25].

Condition (2.10) corresponds to the row norms of DKTD−1 and note that ρ(DKTD−1) =
ρ(DKD−1). Now Corollary 4.2 follows immediately.

5. Example

In this section, an example and its simulations are presented to illustrate the feasibility and
effectiveness of our results.

Example 5.1. Consider the following periodic predator-prey model with 2-predators and 1-
prey:

ẋ1(t) = x1(t)
[
7 + sin t − x1(t) − 1

4
x2(t) − 1

10
y1(t − 1)

]
,

ẋ2(t) = x2(t)
[
7 + cos t − 1

4
x1(t) − x2(t) − 1

4
y1(t)

]
,

ẏ1(t) = y1(t)
[
− 1
20

(1 + cos t) +
3
2
x1(t − 1) +

1
4
x2(t) − 1

2
y1(t)

]
.

(5.1)

Simple computation leads to

K =

⎛
⎜⎜⎜⎜⎜⎝

0 a−122a12 e−111c11

a−111a21 0 e−111c21

a−111d11 a−122d12 0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
4

1
5

1
4

0 0

3
2

1
4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.2)
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By using mathematica, we see that ρ(K) = 0.633982 < 1. Thus, the system (5.1) has a periodic
solution which is globally asymptotically stable. Figure 1 shows the asymptotic behavior of
the periodic solution.

Remark 5.2. In this example, one can observe that though the spectral ρ(K) < 1, the matrix
norms of the matrix K are all bigger than 1. For instance, the column norm: is

‖K‖1 = max
1≤j≤3

⎧⎨
⎩a−1jj

3∑
i=1,i /= j

aij

⎫⎬
⎭ = 0 +

3
2
+
1
4
> 1. (5.3)
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