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We introduce the notion of a weak ψ-sharp minimizer for set-valued optimization problems. We
present some sufficient and necessary conditions that a pair point is a weak ψ-sharp minimizer
through the outer limit of set-valued map and develop the characterization of the weak ψ-sharp
minimizer in terms of a generalized nonlinear scalarization function. These results extend the
corresponding ones in Studniarski (2007).

1. Introduction

The notion of weak sharp minima in general mathematical program problems was first
introduced by Ferris in [1]. It is a generalization of a sharp minimum in [2] to include
the possibility of nonunique solution set. The study of weak sharp minima is motivated
primarily by applications in convex and convex composite programming, where such
minima commonly occur. Weak sharp minima plays an important role in the sensitivity
analysis [3, 4] and convergence analysis of a wide range of optimization algorithms [5].
Recently, the study of weak sharp solution set covers real-valued optimization problems [5–
8] and piecewise linear multiobjective optimization problems [9, 10].

In [11], Bednarczuk defined weak sharp Pareto minima of order m for vector-
valued mappings and used weak sharp Pareto minima to prove upper Hölderness and
Hölder calmness of the solution set-valued mappings for parametric vector optimization
problems. In [12], Studniarski gave the definition of weak ψ-sharp local Pareto minima
in multiobjective optimization problems and presented necessary and sufficient conditions.
In [13], Xu and Li established a sufficient and necessary condition for weak ψ-sharp local
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Pareto minima in vector optimization problems in infinite spaces, the approach is that they
transformed weak ψ-sharp local Pareto minima of a vector-valued function to weak ψ-
sharp local minima of a family of scalar functions. Most recently, Durea and Strugariu [14]
introduced the definition of weak ψ-sharp local minima by an oriented distance function in
set-valued optimization problems and established necessary optimality conditions in terms
of Mordukhovich coderivative.

In the paper, motivated by the work in [15, 16], we also introduce the notion of
weak ψ-sharp minima, which is different from one in [14], and establish some sufficient and
necessary conditions through the outer limit of set-valued map. In particular, we develop
the characterization of the weak ψ-sharp minimizer in terms of the generalized nonlinear
scalarization function.

This paper is organized as follows. In Section 2, we recall some basic definitions and
give the notion of the weak ψ-sharp local minimizer for set-valued optimization problems. In
Section 3, we present some sufficient and necessary conditions through the outer limit of the
set-valued map. In Section 4, we establish a characterization of weak ψ-sharp local minima in
terms of the generalized nonlinear scalarization function.

2. Preliminary Results

Throughout this paper, let X, Y be real normed spaces. B(x, δ) denotes the open ball with
center x ∈ X and radius δ > 0, N(x) is the family of all neighborhoods of x, and dist(x,W)
is the distance from the point x to the set W ⊂ X. The symbols Sc, clS, and intS denote,
respectively, the complement, closure, and interior of S. Let D ⊂ Y be a convex cone
(containing 0) with nonempty interior intD and let Y be partially ordered by D.

Let F : X → 2Y be a set-valued map. We denote the graph and domain of F,
respectively, by

GrF =
{(
x, y

) ∈ X × Y : y ∈ F(x)}, DomF = {x ∈ X : F(x)/= ∅}. (2.1)

If S is a subset of X, then F(S) = ∪x∈SF(x) and the inverse set-valued map of F is F−1 : Y →
2X given by (y, x) ∈ GrF−1 if and only if (x, y) ∈ GrF.

Definition 2.1. Suppose that D is a closed convex pointed ((−D) ∩ D = {0}) cone. A point
y0 ∈ A ⊂ Y is called a strict efficient (resp., weak) point of A, denoted by y0 ∈ StrDA (resp.,
y0 ∈WMinDA) if

(
A − y0

) ∩ (−D \ {0}) = ∅ (
resp.

(
A − y0

) ∩ (− intD) = ∅). (2.2)

Given a set-valued map F : X → 2Y and a subset S of X, the following abstract
optimization is considered:

minF(x), s.t. x ∈ S. (2.3)

Definition 2.2. Suppose that D is a closed convex pointed cone. A point (x0, y0) ∈ GrF,
with x0 ∈ S, is said to be a local strict (resp., weak) minimizer of F over S, written as
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(x0, y0) ∈ L StrD(F, S) (resp., (x0, y0) ∈ LWMinD(F, S)), if there exists a neighborhood U
of x0 in X such that

y0 ∈ StrD(F(U ∩ S)) (
resp., y0 ∈WminD(F(U ∩ S))),

that is, ∀x ∈ S∩U, (F(x) − y0
)∩(−D\{0}) = ∅ (

resp. ∀x ∈ S∩U, (F(x) − y0
)∩(− intD)=∅).

(2.4)

We will say that (x0, y0) is a global strict (global weak) minimizers when U = X.
The set of all global strict minimizers (resp., weak minimizers) is denoted by StrD
(F, S) (resp., WMinD(F, S)).

Definition 2.3. Let ψ : [0,+∞) → [0,+∞) be a nondecreasing function with the property
ψ(t) = 0 ⇔ t = 0 (such a family of functions is denoted by Ψ) and x0 ∈ S. We say that a point
pair (x0, y0) ∈ GrF ∩ (S × Y ) is a weak ψ-sharp local Pareto minimizer for (2.3), denoted by
(x0, y0) ∈WSL(ψ, F, S), if there exists a constant α > 0 andU ∈ N(x0) such that

(F(x) +D) ∩ B(y0, αψ(dist(x,W))
)
= ∅, ∀x ∈ S ∩U \W, (2.5)

where

W =
{
x ∈ S : y0 ∈ F(x)

}
= S ∩ F−1(y0

)
. (2.6)

If we choose U = X, we will say the point pair (x0, y0) ∈ GrF ∩ (S × Y ) is a weak ψ-sharp
minimizer for (2.3), denoted by (x0, y0) ∈ WS(ψ, F, S). In particular, let ψm(t) = tm for m =
1, 2, . . .. Then, we say (x0, y0) ∈ GrF ∩ (S × Y ) is a weak ψ-sharp local minimizer of order m
for (2.3) if (x0, y0) ∈WSL(ψm, F, S).

Obviously, condition (2.5) can be expressed in the following equivalent form:

F(x) ⊂ (
B
(
y0, αψ(dist(x,W))

) −D)c
, ∀x ∈ S ∩U \W. (2.7)

Remark 2.4. Clearly, if the map F is a vector-valued function, the notion is equivalent to
Definition 8.2.3 with ψ = ψm in [17] and the weak ψ-sharp local minimizer for vector
optimizations in [12].

Remark 2.5. In [14], the definition of weak ψ-sharp local minimizer for set-valued optimiza-
tion is given by the oriented distance function �. However, we establish the definition by the
map F. When the map F is the real-valued function and the cone D = R+, our definition is
equivalent to Definition 2.1 in [14].

3. Optimality Conditions for Weak ψ-Sharp Minimizer
for Set-Valued Optimization

In this section, we present sufficient and necessary conditions that a point pair is a weak
ψ-sharp local minimizer in set-valued optimization problems.
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Theorem 3.1. Let F : X → 2Y , x0 ∈ S, and ψ ∈ Ψ. Assume thatW defined in (2.6) is a closed set.
Then, (x0, y0) ∈WSL(ψ, F, S) if and only if

0 /∈ lim sup
x→x0,x∈S

F(x) − y0 +D
ψ(dist(x,W))

. (3.1)

Proof. Part “only if”: suppose that (3.1) is false, then there exist sequences xk ∈ S \W , yk ∈
F(xk), dk ∈ D such that xk → x0 and

lim
k→∞

yk + dk − y0
ψ(dist(xk,W))

= 0. (3.2)

Hence, for any ε > 0, there is k0 = k0(ε) such that

∥∥yk − y0 + dk
∥∥ < εψ(dist(xk,W)), ∀k ≥ k0. (3.3)

Namely, yk + dk ∈ B(y0, εψ(dist(xk,W))).
By assumption, there exist α > 0 and U = B(x0, δ) such that (2.5) holds. In particular,

for ε = min{α, δ}, there exists k0 = k0(ε) such that for each k ≥ k0, we have that xk ∈ S ∩
B(x0, δ) \W

yk + dk ∈ B(y0, εψ(dist(xk,W))
) ⊂ B(y0, αψ(dist(xk,W))

)
, (3.4)

which is contradiction to (2.5).
Part “if”: suppose that the relation (2.5) is false, then for any δ > 0 and α > 0, there

exist x ∈ S ∩ B(x0, δ) \W and y ∈ F(x) such that

(
y +D

) ∩ B(y0, αψ(dist(x,W))
)
/= ∅. (3.5)

In particular, choosing α = δ = 1/k, there exist xk ∈ S ∩ B(x0, 1/k) \W and yk ∈ F(xk) and
dk ∈ D such that

(
yk + dk

) ∈ B
(
y0,

1
k
ψ(dist(xk,W))

)
, (3.6)

that is,

∥∥yk + dk − y0
∥∥

ψ(dist(xk,W))
<

1
k
. (3.7)

Hence, for sufficiently large k, we have

∥∥yk + dk − y0
∥∥

ψ(dist(xk,W))
−→ 0, (3.8)

which contradicts (3.1).
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From Theorem 3.1, we easily obtain the following result.

Corollary 3.2. Let F : X → 2Y , x0 ∈ S, and ψ ∈ Ψ. Assume thatW defined in (2.6) is a closed set.
If (x0, y0) ∈WSL(ψ, F, S), then,

(

lim sup
x→x0,x∈S

F(x) − y0
ψ(dist(x,W))

)

∩ (−D) = ∅. (3.9)

Theorem 3.3. Let Y = Rp, D = R
p
+ = [0,+∞)p, and R

p

+ = [0,+∞]p. Let F : X → 2Y , x0 ∈ S.
Assume that W defined in (2.6) is a closed set and ψ ∈ Ψ. Then, the following statements are
equivalent:

(i) (x0, y0) /∈ WSL(ψ, F, S),

(ii) (lim supx→x0,x∈S((F(x) − y0)/ψ(dist(x,W)))) ∩ (−Rp

+)/= ∅.

Proof. (i ⇒ ii) By assumption and Theorem 3.1, there exist sequences xk ∈ S \W , yk ∈ F(xk),
dk ∈ Rp

+ such that xk → x0 and

lim
k→∞

yk + dk − y0
ψ(dist(xk,W))

= 0. (3.10)

Let bk = ak + ck, where

ak =
yk − y0

ψ(dist(xk,W))
, ck =

dk
ψ(dist(xk,W))

∈ Rp
+. (3.11)

Consider the first component of the vector ck = (c1k, c
2
k, . . . , c

p

k). Let c
1 = lim supk→∞c

1
k.

Then, there is an infinite set K1 ⊂ N such that limK1�k→∞c1k = c1. We have c1 ≥ 0 (it can be
taken +∞), since c1

k
≥ 0. Now, let us consider the second component of sequence (ck)k∈K1

. Let
c2 = lim supK1�k→∞c

2
k. Hence, there exists an infinite setK2 ⊂ K1 such that limK2�k→∞c2k = c2.

We still have c2 ≥ 0 (it can be taken +∞). So, we have limK2�k→∞(c1k, c
2
k
) = (c1, c2). Continuing

the process, we obtain a vector c = (c1, c2, . . . , cp) ∈ R
p

+ and an infinite set Kp ⊂ N such that
c = limKp�k→∞ck.

Since bk = ak + ck, taking the limit on both sides of the equation, we have

0 = lim
Kp�k→∞

bk = lim
Kp�k→∞

ak + lim
Kp�k→∞

ck. (3.12)

Therefore, d := limKp�k→∞ak = −c ≤ 0. Namely,

(

lim sup
x→x0,x∈S

F(x) − y0
ψ(dist(x,W))

)

∩
(
−Rp

+

)
/= ∅. (3.13)

(i ⇐ ii) If −d ∈ Rp
+, by Theorem 3.1, the result is true. So, we suppose that some com-

ponents of d are −∞. Reordering to d, let d = (d
1
, d

2
, . . . , d

n
, d

n+1
, . . . , d

p
) with d

i
= −∞ for
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i = 1, 2, . . . , n and d
i ∈ (−∞, 0] for i > n, with n ≥ 1. Hence, from relation (3.13), we see that

there exist xk ∈ S \W,xk → x0, yk ∈ F(xk) such that

lim
k→∞

yi
k
− yi0

ψ(dist(xk,W))
= −∞, i = 1, 2, . . . , n. (3.14)

Since, for sufficiently large k and for i = 1, 2, . . . , n, dik := −(yik − yi0) > 0. Let

dk =
(
d1
k, . . . , d

n
k,−ψ(dist(xk,W))d

n+1
, . . . ,−ψ(dist(xk,W))d

p
)

∈ Rp
+. (3.15)

Clearly, one has

lim
k→∞

yk − y0 + dk
ψ(dist(xk,W))

= 0. (3.16)

Namely,

0 ∈ lim sup
x→x0,x∈S

F(x) − y0 + Rp
+

ψ(dist(x,W))
. (3.17)

By Theorem 3.1, we derive the result.

4. Scalarization

Scalarization is one of the most important procedures in vector optimization. In this section,
we apply a generalized nonlinear scalarization function introduced by Hernández and
Rodrı́guez-Marı́n in [18] to discuss the weak ψ-sharp minimizer in set-valued optimization
problems.

Let D be a proper closed convex cone and intD/= ∅. Let e ∈ intD be a fixed point.

Definition 4.1 (see [18]). The generalized nonlinear scalarization functionG : 2Y → R∪{−∞}
is defined by

G(A) = inf{t ∈ R : te ∈ A +D}. (4.1)

A nonempty set A ⊂ Y is said to be D-proper if A +D/=Y .

Next, we present several properties about the generalized nonlinear scalarization
function G.

Lemma 4.2 (see [18]). A is D-proper if and only if G(A) > −∞.

Lemma 4.3 (see [16]). Let r ∈ R and A be a nonempty subset of Y . Then,

G(A) > r ⇐⇒ re /∈ cl(A +D). (4.2)
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Lemma 4.4 (see [18]). Let A ⊂ Y and y0 ∈ A. If y0 ∈ StrD A, then G(A − y0) = 0.

Given a set-valued map F : X → 2Y and (x0, y0) ∈ GrF. Define F : X → 2Y by

F(x) = F(x) − y0. (4.3)

Now, we consider weak ψ-sharp local minimizer for a set-valued map F through the
weak sharp local minimizer of the scalarization function G ◦ F : X → R ∪ {−∞}.

Theorem 4.5. Let x0 ∈ S and (x0, y0) ∈ GrF. Suppose that W defined in (2.6) is a closed set and
y0 ∈ StrD F(x0). Then,

(
x0, y0

) ∈WSL
(
ψ, F, S

) ⇐⇒ x0 ∈WSL
(
ψ,G ◦ F, S

)
. (4.4)

Proof. Part “only if”: assume that (x0, y0) ∈ WSL(ψ, F, S), there exist α > 0 and U ∈ N(x0)
such that

(
F(x) − y0 +D

) ∩ B(0, αψ(dist(x,W))
)
= ∅, ∀x ∈ S ∩U \W. (4.5)

Since B(0, αψ(dist(x,W)) is an open set,

B
(
0, αψ(dist(x,W))

) ⊂ (
cl
(
F(x) − y0 +D

))c
. (4.6)

Note that, whenW is a closed set,

α

4‖e‖ψ(dist(x,W))e ∈ B(0, αψ(dist(x,W))
)
. (4.7)

Hence,

α

4‖e‖ψ(dist(x,W))e /∈ cl
(
F(x) − y0 +D

)
. (4.8)

By Lemma 4.3, we have

G
(
F(x) − y0

)
>

α

4‖e‖ψ(dist(x,W)). (4.9)

On the other hand, since y0 ∈ StrF(x0), in terms of Lemma 4.4, we get

G
(
F(x0) − y0

)
= 0. (4.10)

This relation, together with (4.9), yields

G
(
F(x) − y0

)
> G

(
F(x0) − y0

)
+

α

4‖e‖ψ(dist(x,W)), ∀x ∈ S ∩U \W. (4.11)
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Namely,

(
G ◦ F

)
(x) >

(
G ◦ F

)
(x0) +

α

4‖e‖ψ(dist(x,W)), ∀x ∈ S ∩U \W, (4.12)

that is, x0 ∈WSL(ψ,G ◦ F, S).
Part “if”: by assumption, there exist β > 0 andU ∈ N(x0) such that

G
(
F(x)

)
> G

(
F(x0)

)
+ βψ(dist(x,W)), ∀x ∈ S ∩U \W. (4.13)

Since y0 ∈ StrDF(x0), by applying Lemma 4.4, we get G(F(x0) − y0) = 0. Thus, we have

G
(
F(x) − y0

)
> βψ(dist(x,W)), ∀x ∈ S ∩U \W. (4.14)

Once more using Lemma 4.3, one has

βψ(dist(x,W))e /∈ cl
(
F(x) − y0 +D

)
. (4.15)

Furthermore,

βψ(dist(x,W))e /∈ F(x) − y0 +D, (4.16)

which implies that

(
βψ(dist(x,W))e −D) ∩ (

F(x) − y0 +D
)
= ∅, ∀x ∈ S ∩U \W. (4.17)

Since e ∈ intD, there exists a number ε > 0 such that B(0, ε) ⊂ e −D. Moreover,

B(0, λε) ⊂ λe −D, ∀λ > 0. (4.18)

Hence, from (4.18), we obtain

B
(
0, εβψ(dist(x,W))

) ⊂ βψ(dist(x,W))e −D. (4.19)

Combining it with relation (4.17), we deduce that

B
(
0, εβψ(dist(x,W))

) ∩ (
F(x) − y0 +D

)
= ∅, ∀x ∈ S ∩U \W. (4.20)

By the definition of weak ψ-sharp local minimum, we have (x0, y0) ∈WSL(ψ, F, S).

In Theorem 4.5, if the map F is a vector-valued function and the function G becomes
the nonlinear scalarization function g, we easily obtain the following result, which is Theo-
rem 3.4 in [13].
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Corollary 4.6. Let x0 ∈ S, f : X → Y , and f(x) = f(x) − f(x0). Then,

x0 ∈WSL
(
ψ, f, S

) ⇐⇒ x0 ∈WSL
(
ψ, g ◦ f, S

)
. (4.21)

Acknowledgments

This research was partially supported by Heilongjiang Department of Education Science
and Technology Research Project (Grant no.: 12521457) and the National Natural Science
Foundation of China (no. 11071267).

References

[1] M. C. Ferris, Weak sharp minima and penalty functions in mathematical programming [Ph.D. thesis],
Universiy of Cambridge, Cambridge, UK, 1988.

[2] B. T. Polyak, “Sharp minima, Institue of control sciences lecture notes, Moscow,” in Presented at the
IIASA Workshop Om Generalized Lagrangians and Their Applications, IIASA, Laxenburg, Austria, 1979.

[3] R. Henrion and J. Outrata, “A subdifferential condition for calmness of multifunctions,” Journal of
Mathematical Analysis and Applications, vol. 258, no. 1, pp. 110–130, 2001.

[4] A. S. Lewis and J. S. Pang, “Eror bounds for convex inequality systems,” in Proceedings of the 5th
symposium on generalized convexity, J. P. Crouzeix, Ed., Marseille, France, 1996.

[5] J. V. Burke and M. C. Ferris, “Weak sharp minima in mathematical programming,” SIAM Journal on
Control and Optimization, vol. 31, no. 5, pp. 1340–1359, 1993.

[6] J. V. Burke and S. Deng, “Weak sharp minima revisited. I. Basic theory,” Control and Cybernetics, vol.
31, no. 3, pp. 439–469, 2002.

[7] J. V. Burke and S. Deng, “Weak sharp minima revisited. II. Application to linear regularity and error
bounds,”Mathematical Programming B, vol. 104, no. 2-3, pp. 235–261, 2005.

[8] J. V. Burke and S. Deng, “Weak sharp minima revisited. III. Error bounds for differentiable convex
inclusions,”Mathematical Programming B, vol. 116, no. 1-2, pp. 37–56, 2009.

[9] S. Deng and X. Q. Yang, “Weak sharp minima in multicriteria linear programming,” SIAM Journal on
Optimization, vol. 15, no. 2, pp. 456–460, 2004.

[10] X. Y. Zheng and X. Q. Yang, “Weak sharp minima for piecewise linear multiobjective optimization
in normed spaces,” Nonlinear Analysis: Theory, Methods & Applications , vol. 68, no. 12, pp. 3771–3779,
2008.

[11] E. M. Bednarczuk, “Weak sharp efficiency and growth condition for vector-valued functions with
applications,” Optimization, vol. 53, no. 5-6, pp. 455–474, 2004.

[12] M. Studniarski, “Weak sharp minima in multiobjective optimization,” Control and Cybernetics, vol. 36,
no. 4, pp. 925–937, 2007.

[13] S. Xu and S. J. Li, “Weak ψ-sharp minima in vector optimization problems,” Fixed Point Theory and
Applications, vol. 2010, Article ID 154598, 10 pages, 2010.

[14] M. Durea and R. Strugariu, “Necessary optimality conditions for weak sharp minima in set-valued
optimization,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 7, pp. 2148–2157, 2010.
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