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We independently propose a new kind of the definition of fractional difference, fractional sum, and
fractional difference equation, give some basic properties of fractional difference and fractional
sum, and give some examples to demonstrate several methods of how to solve certain fractional
difference equations.

1. Introduction

Fractional calculus is an emerging field recently drawing attention from both theoretical and
applied disciplines. During the last two decades, it has been successfully applied to several
fields [1–6], and it is well known that there is a large quantity of research on what is usually
called integer-order difference equations [7, 8]. However, discrete fractional calculus and
fractional difference equations represent a very new area for scientists. A pioneering work
has been done by Atici et al. [9–12], Anastassiou [13, 14], Bastos et al. [15], Abdeljawad
et al. [16–20], and Cheng [21–23], and so forth. In this paper, limited to the length of the
paper, we will introduce some of our basic works about discrete fractional calculus and
fractional difference equations. Some proofs and results of the theorems and examples in
Sections 3–5 are well proved by a more concise method. We refer to the monographer [23]
for more further results. In [23] we also aim at presenting some basic properties about
discrete fractional calculus and, in a systematic manner, results including the existence and
uniqueness of solutions for the Cauchy Type and Cauchy problems, involving nonlinear
fractional difference equations, explicit solutions of linear difference equations and linear
difference system by their deduction to Volterra sum equation and by using operational
methods, applications of Z-transform, R-transform, N-transform, Adomian decomposition
method, method of undetermined coefficients, Jordan matrix theory method, and by discrete
Mittag-Leffler function and discrete Green’ function, and a theory of so-called sequential
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linear fractional difference equations, as well as some introduction for discrete fractional
difference variational problem, and so forth.

2. Integer-Order Difference and Sum with Real Variable

Let us start from sum and difference of the integer order. Define

h

t∑

s=a
x(s) � [x(a) + x(a + h) + x(a + 2h) + · · · + x(t)], (2.1)

where t = a + jh, j ∈ N0 = {0, 1, 2, . . .}.

Definition 2.1. Let a, t be real numbers, and let h be a positive number, we call

a∇−1
h x(t) = h

t∑

s=a
x(s)h (2.2)

one-order backward sum of x(t), where t = a + jh, j ∈ N0 = {0, 1, 2, . . .}. We call

a∇−k
h x(t) = a∇−1

h

(
a∇−(k−1)

h x(t)
)

(2.3)

k-order backward sum of x(t), where k is a positive integer number.

Definition 2.2. Let a, t be real numbers, and let h be a positive number, we call

aΔ−1
h x(t) = h

t−h∑

s=a
x(s)h (2.4)

one-order forward sum of x(t), where t = a + jh, j ∈ N1 = {1, 2, . . .}. We call

aΔ−k
h x(t) = aΔ−1

h

(
aΔ

−(k−1)
h x(t)

)
(2.5)

k-order forward difference of x(t), where k is a positive integer number.

Definition 2.3. Let t be a real number, and let h be a positive number, we call

∇hx(t) =
x(t) − x(t − h)

h
(2.6)

one-order backward difference of x(t), where h is step. We call

∇k
hx(t) = ∇h

(
∇k−1

h x(t)
)

(2.7)

k-order backward difference of x(t), where k is a positive integer number.

Similarly, we can define forward difference as follows.
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Definition 2.4. Let t be a real number, and let h be a positive number, we call

Δhx(t) =
x(t + h) − x(t)

h
(2.8)

one-order forward difference of x(t), where h is step. We call

Δk
hx(t) = Δh

(
Δk−1

h x(t)
)

(2.9)

k-order forward difference of x(t), where k is a positive integer number.

Theorem 2.5. The following two equalities hold:

(1) ∇h(a∇−1
h x(t)) = x(t),

(2) Δh(aΔ
−1
h x(t)) = x(t).

Definition 2.6. If k, t are real numbers, and let h be a positive number, define

tkh = hk Γ(t/h + k)
Γ(t/h)

, (k ∈ R) (2.10)

rising factorial function, and set t0
h
= 1. If k is a positive integer number, then we have

tkh = t(t + h)(t + 2h) · · · (t + (k − 1)h). (2.11)

Definition 2.7. Let k, t be real numbers, and let h be a positive number, define

t
(k)
h

= hk Γ(t/h + 1)
Γ(t/h + 1 − k)

, (k ∈ R) (2.12)

down factorial function, and set t(0)
h

= 1. If k is an positive integer number, then

t
(k)
h = t(t − h)(t − 2h) · · · (t − (k − 1)h). (2.13)

In Definitions 2.6 and 2.7, if h = 1, we can simply denote tk
h
, t(k)

h
as tk, t(k).

Definition 2.8. For any k, γ ∈ R, h > 0, we define

[
γ
k

]
�

Γ
(
k + γ

)

Γ
(
γ
)
Γ(k + 1)

,

[
γ
k

]

h

� hγ

⎡
⎢⎣
γ

k

h

⎤
⎥⎦. (2.14)
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If k ∈ N, h = 1, then it is easy to see that

[
γ
k

]
=

γ
(
γ + 1

) · · · (γ + k − 1
)

k!
. (2.15)

If we let t/h = t̃, or t = t̃h, then we clearly have the following.

Theorem 2.9. Assume that k ∈ R, h > 0, t/h = t̃; then

tkh = hkt̃k; t
(k)
h = hkt̃(k). (2.16)

Theorem 2.10. Let k ∈ R, h > 0, then, following equality holds:

lim
h→ 0

tkh = lim
h→ 0

t
(k)
h = tk. (2.17)

3. Fractional Sum and Difference with Real Variable

Before giving the definitions of fractional sum a∇−γ
h
x(t), γ > 0, let us revisit the calculation of

the sum of the integer order. By Definition 2.1, we have

a∇−1
h x(t) = h

t∑

s=a
x(s)h, t = a + jh, j ∈ N0, (3.1)

then

a∇−2
h x(t) = a∇−1

h

[
a∇−1

h x(t)
]
= h

t∑

s=a
a∇−1

h x(s)h = h

[

h

t∑

s=a
h

s∑

r=a
x(r)h

]

= h2

[

h

t∑

r=a
h

t∑

s=r
x(r)

]
= h2

[

h

t∑

r=a

t − r + h

h
x(r)

]
= h

t∑

r=a
(t − r + h)1hx(r)h,

a∇−3
h x(t) = a∇−1

h

[
a∇−2

h x(t)
]
= h

t∑

s=a
a∇−2

h x(s)h = h2

[

h

t∑

s=a
h

s∑

r=a

t − r + h

h
x(r)h

]

=
h3

2

[

h

t∑

r=a

(
t − r + h

h

)(
t − r + 2h

h

)
x(r)

]
=

1
2!

[

h

t∑

r=a
(t − r + h)2hx(r)h

]
. . . .

(3.2)

By recursive, it is not hard to obtain

a∇−m
h x(t) =

hm

(m − 1)!

[

h

t∑

s=a

(
t − s + h

h

)(
t − s + 2h

h

)
· · ·
(
t − s + (m − 1)h

h

)
x(s)

]

=
1

Γ(m)

[

h

t∑

s=a
(t − s + h)m−1

h x(s)h

]
=

1
Γ(m)

[

h

t∑

s=a

(
t − ρh(s)

)m−1
h x(s)h

]
,

(3.3)

where ρh(s) = s − h.
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Obviously, the right side of formula (3.3) is also meaningful for all real m > 0, so we
define fractional sum as follows.

Definition 3.1. Let γ > 0, a ∈ R, h > 0, t = a + kh, k ∈ N0, we call

a∇−γ
h
x(t) =

1
Γ
(
γ
)
[

h

t∑

s=a

(
t − ρh(s)

)γ−1
h

x(s)h

]
(3.4)

γ order fractional sum of x(t).

For any positive number order fractional difference, we take the following.

Definition 3.2. Let μ > 0, and assume that m − 1 < μ < m, where m denotes a positive integer.
Define

a∇μ

hx(t) = ∇m
h

(
a∇−(m−μ)

h x(t)
)

(3.5)

as μ order R-L type backward fractional difference. Meantime, define

C
a∇μ

hx(t) =
(
a∇−(m−μ)

h

)
∇m

h x(t) (3.6)

as μ order Caputo type backward fractional difference.

If we start from Definition 2.2,

aΔ−1
h x(t) = h

t−h∑

s=a
x(s)h, t = a + jh, j ∈ N1, (3.7)

completely in a similar way, we get positive integer m-order forward sum

aΔ−m
h x(t) =

1
Γ(m)

[

h

t−mh∑

s=a
(t − σh(s))

(m−1)
h x(s)h

]
, (3.8)

where σh(s) = s + h.
The right side of (3.8) is meaningful for all real m > 0, so we can define forward

fractional sum as follows.

Definition 3.3. Let γ > 0, a ∈ R, h > 0, t = a + γh + kh, k ∈ N0, define

aΔ
−γ
h x(t) =

1
Γ(ν)

⎡

⎣h

t−γh∑

s=a
(t − σh(s))

(γ−1)
h x(s)h

⎤

⎦ (3.9)

as γ order fractional sum of x(t), where σh(s) = s + h.
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Definition 3.4. Let μ > 0, and assume that m − 1 < μ < m, where m denotes a positive integer.
Define

aΔ
μ

h
x(t) = Δm

h

(
aΔ

−(m−μ)
h

x(t)
)

(3.10)

as μ order R-L type forward fractional difference. Meantime, define

C
aΔ

μ

h
x(t) =

(
aΔ

−(m−μ)
h

)
Δm

h x(t) (3.11)

as μ order Caputo type forward fractional difference.

In Definitions 3.1–3.4, if step h = 1, it is a kind of important situation. At this time, we
simply denote a∇−γ

h , aΔ
−γ
h ; ∇μ

h, Δ
μ

h as a∇−γ , aΔ−γ ; ∇μ, Δμ. When h = 1, backward fractional
sum is defined as follows.

Definition 3.5. Let γ > 0, and define

a∇−γx(t) =
1

Γ
(
γ
)

t∑

s=a

(
t − ρ(s)

)γ−1
x(s) (3.12)

as γ order fractional sum of x(t), where t = a mod (1), ρ(s) = s − 1.

For any positive number order fractional difference, we can take the following way.

Definition 3.6. Let μ > 0 and assume that m − 1 < μ < m, where m denotes a positive integer.
Define

a∇μx(t) = ∇m
(
a∇−(m−μ)x(t)

)
(3.13)

as μ order R-L type backward fractional difference. Meantime, define

C
a∇μx(t) =

(
a∇−(m−μ)

)
∇mx(t) (3.14)

as μ order Caputo type backward fractional difference.

We can define forward fractional sum as follows.

Definition 3.7. Let γ > 0, and define

aΔ−γx(t) =
1

Γ
(
γ
)

t−γ∑

s=a
(t − σ(s))(γ−1)x(s) (3.15)

as γ order forward fractional sum of x(t), where t − γ = a mod (1), σ(s) = s + 1.
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Definition 3.8. Let μ > 0, and assume that m − 1 < μ < m, where m denotes a positive integer.
Define

aΔμx(t) = Δm
(
aΔ−(m−μ)x(t)

)
(3.16)

as μ order R-L type forward fractional difference. Meantime, define

C
aΔ

μx(t) =
(
aΔ−(m−μ)

)
Δmx(t) (3.17)

as μ order Caputo type forward fractional difference.

By Definition 2.8, it is easy to calculate

[
γ

t − s

]
=

1
Γ
(
γ
)
(
t − ρ(s)

)γ−1
,

[
γ

t − γ − s

]
=

1
Γ
(
γ
) (t − σ(s))γ−1.

(3.18)

By Theorem 2.9 we have

(t − s + h)γ−1h

Γ
(
γ
) = hγ−1 ((t − s)/h + 1)γ−1

Γ
(
γ
) = hγ−1

⎡
⎢⎣

γ

t − s

h

⎤
⎥⎦,

(t − s − h)(γ−1)h

Γ
(
γ
) = hγ−1 ((t − s)/h − 1)(γ−1)

Γ
(
γ
) = hγ−1

⎡
⎢⎣

γ

t − s

h
− γ

⎤
⎥⎦.

(3.19)

Therefore, if we adopt Definition 2.8, then Definitions 3.1, 3.3, 3.5, and 3.7 can be
rewritten as follows.

Definition 3.9. Assume that γ > 0, let a ∈ R, h > 0, t = a + kh, k ∈ N0, and define

a∇−γ
h x(t) = h

t∑

s=a

[
γ

t − s

]

h

x(s) (3.20)

as γ order backward fractional sum of x(t).

Definition 3.10. Assume that γ > 0, let a ∈ R, h > 0, t = a + γh + kh, k ∈ N0, and define

aΔ
−γ
h
x(t) = h

t−γh∑

s=a

[
γ

t − s − γh

]

h

x(s) (3.21)

as γ order forward fractional sum of x(t).
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Definition 3.11. Assume that γ > 0, t, a ∈ R, and t = a mod (1), and define

a∇−γx(t) =
t∑

s=a

[
γ

t − s

]
x(s) (3.22)

as γ order backward fractional sum of x(t).

Definition 3.12. Assume that γ > 0, t, a ∈ R, and t − γ = a mod (1), and define

aΔ−γx(t) =
t−γ∑

s=a

[
γ

t − γ − s

]
x(s) (3.23)

as γ order forward fractional sum of x(t).

Set a/h = ã, t/h = t̃, or a = ãh, t = t̃h, and set x(t) = x(t̃h) = y(t̃); then by Theorem 2.9
and Definitions 3.1–3.4, one obtains the following.

Theorem 3.13. For any γ, μ > 0, the following equalities hold:

(1) a∇−γ
h
x(t) = hγ[ã∇−γy(t̃)]; aΔ

−γ
h
x(t) = hγ[ãΔ

−γy(t̃)],

(2) a∇μ

h
x(t) = h−μ[ã∇μy(t̃)]; aΔ

μ

h
x(t) = h−μ[ãΔ

μy(t̃)],

(3) C
a∇μ

hx(t) = h−μ[Cã∇μy(t̃)]; C
aΔ

μ

hx(t) = h−μ[CãΔ
μy(t̃)].

From Theorem 3.13 we can see, by stretching t = t̃h, the functions a∇−γ
h
x(t) and

a∇μ

h
x(t), with common step h, can be convert into the functions a∇−γy(t̃) and a∇μy(t̃) with

step h = 1, respectively. In essence, nothing arises much different, but the latter is more
convenient in research.

In view of Definitions 3.1–3.4 and Theorem 2.10, if we let h → 0, then we can obtain
the following.

Corollary 3.14. Assume that x(t) is integrable, then:

(1) limh→ 0(a∇−γ
h
x(t)) = limh→ 0(a∇−γ

h
x(t)) = (1/Γ(γ))

∫ t
a(t − s)γ−1x(t)ds � D

−γ
t x(t),

(2) limh→ 0(a∇μ

hx(t)) = limh→ 0(a∇μ

hx(t)) = Dm(aD
−(m−μ)
t x(t)) �a D

μ
t x(t),

(3) limh→ 0(
C
a∇μ

h
x(t)) = limh→ 0(

C
a∇μ

h
x(t)) = Dm(aD

−(m−μ)
t x(t)) �C

a D
μ
t x(t).

4. Some Basic Properties

We sometimes only list some basic results here, for more detailed results and their proofs can
been seen in monographer [23].

Theorem 4.1. Assume that the following function is well defined; then

(1) ∇ht
γ

h
= γt

γ−1
h

, Δht
(γ)
h

= γt
(γ−1)
h

,

(2) (t + γh)tγ
h
= t

γ+1
h

, (t − γh)t(γ)
h

= t
(γ+1)
h

, γ ∈ R,
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(3) If 0 < γ < 1, then t
αγ

h ≤ (tαh)
γ , t(αγ)h ≥ (t(α)h )γ ,

(4) tα+β
h

= (t + β)αht
β

h
, t(α+β)

h
= (t − β)(α)

h
t
(β)
h
,

(5) Let 0 < t ≤ r, if γ > 0, then t
γ

h
≤ r

γ

h
, t

(γ)
h

≤ r
γ

h
; If γ < 0, then t

γ

h
≥ r

γ

h
, t

(γ)
h

≥ r
γ

h
.

Theorem 4.2. Let 0 ≤ m−1 < γ ≤ m,m ∈ N, where x(t) is defined inNh,a = {a, a+h, a+2h, . . .},
then

(1) a∇−γ
h
x(t) = aΔ

−γ
h
x(t + γh), t ∈ Nh,a,

(2) a∇γx(t) = aΔγx(t − γh), t ∈ Nh,m+a.

Theorem 4.3. Let 0 ≤ m − 1 < γ ≤ m, m ∈ N, x(t) is defined inNh,a = {a, a + h, a + 2h, . . .}, then
(1) aΔ

−γ
h
x(t) = a∇−γ

h
x(t − γh), t ∈ Nh,a+γ ,

(2) aΔ
γ

h
x(t) = a∇γ

h
x(t + γh), t ∈ Nh,a−γ+m.

Theorem 4.4. For any real γ , the following equality holds:

(1) a∇−γ
h ∇hx(t) = ∇h(a∇−γ

h )x(t) − ((t − a − 1)γ−1h /Γ(γ))x(a − h),

(2) aΔ
−γ
h
Δhx(t) = Δh(aΔ

−γ
h
)x(t) − ((t − a)(γ−1)

h
/Γ(γ))x(a).

Theorem 4.5. For any real γ and p > 0, the following equality holds:

(1) a∇−γ
h
∇p

h
x(t) = ∇p

h
(a∇−γ

h
x(t)) −∑p−1

k=0((t − a + 1)γ−p+k
h

/Γ(γ + k − p + 1))∇k
h
x(a − h),

(2) aΔ
−γ
h Δp

hx(t) = Δp

h(aΔ
−γ
h x(t)) −∑p−1

k=0((t − a)(γ−p+k)h /Γ(γ + k − p + 1))Δk
hx(a).

Theorem 4.6. Let p, γ > 0, then

(1) ∇p

h(a∇
−γ
h x(t)) = a∇−(γ−p)

h x(t),

(2) Δp

h
(aΔ

−γ
h
x(t)) = aΔ

−(γ−p)
h

x(t).

In the previous theorems, we only need to consider the simplest case h = 1, but actually
the methods of proof and conclusions can also be extended for general step h > 0. In fact, we
only need do a stretching transformation and then make use of Theorem 2.9.

Next, we discusses fractional sum transform such as: Z transform, N transform, R
transform, and some properties of these transforms.

Definition 4.7. Let f(t) be defined inN0 = {0, 1, 2, . . .}, we call

f(t) =
∞∑

t=0

f(t)z−t (4.1)

is a Z transform of f(t), denote it by Z[f(t)].

Definition 4.8. Let f(t) be defined inNt0 = {t0, t0+1, t0+2, . . .}, t0 ∈ R, and defineN transform
as follows:

Nt0

(
f(t)
)
(s) =

∞∑

t=t0

(1 − s)t−1f(t). (4.2)

If the domain of the function f(t) is N1, then we use the notation N(f(t)).
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If we set t − t0 = n ∈ N0, define

f
{t0}
n = f(n + t0) = f(t), f

{t0}
n−1 = f(n − 1 + t0) = f(t − 1), . . . ,

f
{t0}
0 = f(0 + t0) = f(t0).

(4.3)

Then, f(t0), f(t0 + 1), . . . , f(t), . . . can be regarded as a sequence

f
{t0}
0 , f

{t0}
1 , . . . f

{t0}
n , . . . . (4.4)

Under this definition, N transform can be simply rewritten as

N0
(
f(t)
)
(s) =

∞∑

t=t0

(1 − s)t−1f(s)

=
∞∑

n=0
(1 − s)n+t0−1f(n + t0)

= (1 − s)t0−1
∞∑

n=0
(1 − s)nf{t0}

n .

(4.5)

Set z = 1/(1 − s), then we have

N0
(
f(t)
)
(s) = z1−t0

∞∑

n=0

f
{t0}
n z−n = z1−t0F(z), (4.6)

where F(z) is Z transform of sequence f{t0}
n .

If t0 = 1, then

N
(
f(t)
)
= F(z),

(
z =

1
1 − s

)
. (4.7)

Theorem 4.9. For any γ ∈ R \ {. . . ,−2,−1, 0}, then

(1) N(t
γ−1
)(s) = Γ(γ)/sγ , |1 − s| < 1,

(2) N(t
γ−1
α−t)(s) = αγ−1Γ(γ)/(s + α − 1)γ , |1 − s| < α.

Proof. (1) Making use of (4.7), we get

N

(
tγ−1

Γ
(
γ
)
)

= F(z), (4.8)
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where F(z) is Z transform of sequence f{1}
n = f(n + 1),

f
{1}
n = f(n + 1) =

(n + 1)γ−1

Γ
(
γ
) =

[
γ
n

]
. (4.9)

Since (see [21–23])

F

([
γ
n

])
=
(
z − 1
z

)−γ
=

1
sγ

, (|z| > 1, |1 − s| < 1), (4.10)

hence

N

(
tγ−1

Γ
(
γ
)
)

=
1
sγ

, (|1 − s| < 1). (4.11)

(2) It is only to use

∞∑

t=1

(1 − s)t−1tγ−1α−t =
1
α

∞∑

t=1

(
1 − s + α − 1

α

)t−1
tγ−1, (4.12)

then the proof of (2) follows from the proof of (1).

Theorem 4.10. Let f(t) and g(t) be defined inNa, and define convolution of f(t), g(t) as follows:

(
h ∗ g)a(t) =

t∑

s=a
h
(
t − ρ(s)

)
g(s). (4.13)

For h(t) = tγ−1/Γ(γ), then

(
h ∗ g)a(t) =

1
Γ
(
γ
)

t∑

s=a

(
t − ρ(s)

)γ−1
g(s) = a∇−γg(t). (4.14)

Theorem 4.11. Let f , g be defined inNa, then

Na

(
f ∗ g) = N1

(
f
)
Na

(
g
)
. (4.15)

Theorem 4.12. For any real γ , one has

Na

(
a∇−γf(t)

)
= s−γNa

(
f(t)
)
. (4.16)

Theorem 4.13. For 0 < γ ≤ 1, one has

Na+1
(
a∇−γf(t)

)
= sγNa

(
f(t)
)
(s) − (1 − s)α−1f(a), (4.17)

where f is defined inNa.
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Theorem 4.14. Let μ ∈ R \ {. . . ,−2,−1, 0}, γ > 0, then

1∇−γ
(

tμ

Γ
(
μ + 1

)
)

=
tμ+γ

Γ
(
μ + γ + 1

) . (4.18)

Theorem 4.15. Let f be a real function, μ, γ > 0, then

a∇−γ[
a∇−μf(t)

]
= a∇−(μ+γ)f(t) = a∇−μ[

a∇−γf(t)
]
. (4.19)

Definition 4.16. Let f(t) be defined inNt0 , and define R transform as follows:

Rt0

(
f(t)
)
=

∞∑

t=t0

(
1

s + 1

)t+1

f(t). (4.20)

In Definition 4.16, if we set t − t0 = n ∈ N0, and define:

f
{t0}
n = f(n + t0) = f(t), f

{t0}
n−1 = f(n − 1 + t0) = f(t − 1), . . . ,

f
{t0}
0 = f(0 + t0) = f(t0),

(4.21)

then, f(t0), f(t0 + 1), . . . , f(t), . . . can be regarded as a sequence

f
{t0}
0 , f

{t0}
1 , . . . f

{t0}
n , . . . . (4.22)

Under this definition, R transform can be simply rewritten as

Rt0

(
f(t)
)
(s) =

∞∑

t=t0

(
1

s + 1

)t+1

f(t)

=
∞∑

n=0

(
1

s + 1

)n+t0+1

f(n + t0)

=
(

1
s + 1

)t0+1 ∞∑

n=0

(
1

1 + s

)n

f
{t0}
n .

(4.23)

Set z = 1 + s, then

Rt0

(
f(t)
)
(s) = z−1−t0

∞∑

n=0

f
{t0}
n z−n = z−1−t0F(z), (4.24)

where F(z) is a Z transform of sequence f{t0}
n .



Abstract and Applied Analysis 13

Theorem 4.17. For any γ ∈ R \ {. . . ,−2,−1, 0}, then

(1) Rγ−1(t(γ−1))(s) = Γ(γ)/sγ ,

(2) Rγ−1(t(γ−1)αt)(s) = αγ−1Γ(γ)/(s + 1 − α)γ .

Proof. (1) let t0 = γ − 1, then

Rγ−1

(
t(γ−1)

Γ
(
γ
)
)

= z−γF(z), (4.25)

where F(z) is a Z transform of sequence f{γ−1}
n . Since

f
{γ−1}
n = f

(
n + γ − 1

)
=

(
n + γ − 1

)(γ−1)

Γ
(
γ
) =

[
γ
n

]
, (4.26)

and (see [22, 23])

F

([
γ
n

])
=
(
z − 1
z

)−γ
, (4.27)

hence

Rγ−1

(
t(γ−1)

Γ
(
γ
)
)

= (z − 1)−γ = s−γ , (|1 + s| < 1), (4.28)

or

Rγ−1

(
t(γ−1)

Γ
(
γ
)
)

=
1
sγ

, (|1 + s| < 1). (4.29)

(2) The proof of (2) follows from the proof of (1).

Definition 4.18. Define convolution of h(t) and g(t) as follows:

(
h ∗ g)(t) =

t−γ∑

s=a
h(t − σ(s))g(s). (4.30)

If h(t) = t(γ−1)/Γ(γ), then

(
h ∗ g)a(t) =

1
Γ
(
γ
)

t−γ∑

s=a

(
t − ρ(s)

)(γ−1)
g(s) = aΔ−γg(t). (4.31)
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Theorem 4.19. For any γ ∈ R \ {. . . ,−2,−1, 0}, then

Rγ+a
(
h ∗ g) = Rγ−1(h)Ra

(
g
)
. (4.32)

Theorem 4.20. Let μ > 0, m − 1 < μ ≤ m ∈ N1, and let f(t) be defined inNμ−m = {μ −m,μ −m +
1, . . .}, then

R0
(
Δμf(t)

)
(s) = sμRμ−m

(
f(t)
)
(s) −

m−1∑

k=0

sm−k−1Δk−m+μf(t)

∣∣∣∣∣
t=0

. (4.33)

Theorem 4.21. Let μ ∈ R \ {. . . ,−2,−1, 0}, γ > 0, then

Δ−γ
(

t(μ)

Γ
(
μ + 1

)
)

=
t(μ+γ)

Γ
(
μ + γ + 1

) . (4.34)

Theorem 4.22. Let f be a real function, μ, γ > 0, then for all t = μ + γ mod (1), one has

Δ−γ[Δ−μf(t)
]
= Δ−(μ+γ)f(t) = Δ−μ[Δ−γf(t)

]
. (4.35)

5. The Solution of the Fractional Difference Equations with
Real Variable

In this section, we give examples to demonstrate the solving method of fractional difference
equations and reveal the inner relationship between fractional differential equations and
fractional differential equations.

Theorem 5.1. Let μ ∈ R, γ ∈ R, then

(1) ∇γ tμ = μ(γ)tμ−γ , Δγ t(μ) = μ(γ)t(μ−γ),

(2) Δγ tμ = μ(γ)(t + γ)μ−γ , ∇γ t(μ) = μ(γ)(t − γ)(μ−γ).

Proof. (1) The proof of (1) directly follows from Theorem 4.1 and Theorem 4.2.
(2) By Theorem 4.2 and (1), we have

Δγ tμ = ∇γ(t + γ
)μ = μ(γ)(t + γ

)μ−γ
,

∇γ t(μ) = Δγ(t − γ
)(μ) = μ(γ)(t − γ

)(μ−γ)
.

(5.1)

Example 5.2. Consider Euler type fractional difference equations

t2αΔ2αx(t) + atαΔαx(t) + bx(t) = 0, (0 < α < 1). (5.2)
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Set x(t) = tγ , and take it into previous equation, we get

t2αγ (2α)(t + 2α)γ−2α + atαγ (α)(t + α)γ−α + btγ = 0. (5.3)

By Theorem 4.1 (4), we obtain

γ (2α)tγ + aγ (α)tγ + btγ = 0, (5.4)

and get indicator equation

γ (2α) + aγ (α) + b = 0. (5.5)

Therefore, we can transform Euler type fractional difference equations into its indicator equa-
tion.

Example 5.3. Consider initial value problem of homogeneous linear γ order (0 < γ ≤ 1)
fractional difference equation with constant coefficient

∇γy(t) + a∇0y(t) = 0, t ∈ N0,

∇γ−1(t)
∣∣∣
t=−1

= a0.
(5.6)

Note that ∇γ−1y(t) is defined inN−1 = {−1, 0, 1, 2, . . .}, since

−1∇γ−1f(t)
∣∣∣
t=−1

=
1

Γ
(
1 − γ

)
t∑

s=−1

(
t − ρ(s)

)−γ
y(s)

=
1−γ

Γ
(
1 − γ

)y(−1) = y(−1).
(5.7)

Therefore, initial problem of (5.6) is equivalent to initial problem

∇γy(t) + a∇0y(t) = 0, t ∈ N,

y(−1) = a0.
(5.8)

The solution of initial problem of (5.6) is equivalent to the solution of sum equations

y(t) =
(t + 1)γ−1

Γ
(
γ
) a0 + a

t∑

s=0

(
t − ρ(s)

)γ−1
y(s). (5.9)
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We use approximation method to solve these sum equations. Set

y0(t) =
(t + 1)γ−1

Γ
(
γ
) a0,

ym(t) = y0(t) +
a

Γ
(
γ
)

t∑

s=0

(
t − ρ(s)

)γ−1
ym−1(s)

= y0(t) + a∇−γym−1(t), m = 1, 2, . . . .

(5.10)

Applying power law (Theorem 4.22), we get

y1(t) = y0(t) + a∇−γy0(t) = a0

(
(t + 1)γ−1

Γ
(
γ
) + a

(t + 1)2γ−1

Γ
(
2γ
)
)
. (5.11)

Applying power law repeatedly, and by recursion, we obtain

ym(t) = a0

m∑

i=0

aitiγ+γ−1

Γ
(
(i + 1)γ

) , m = 0, 1, 2, . . . . (5.12)

Let m → ∞, then

y(t) = a0

∞∑

i=0

ai(t + 1)iγ+γ−1

Γ
(
(i + 1)γ

) = a0

∞∑

i=0

ai

[
iγ + γ

t

]
. (5.13)

Example 5.4. Let γ = 1/q, q ∈ N, we call

∇γy(t) − a∇0y(t) = 0, t ∈ N0, (5.14)

the fractional difference equation of order (1, q).

In order to solve this equation, we need to introduce some special functions.

Definition 5.5. Define function

Λ
(
t, γ, λ

)
= a∇−γλt, γ ∈ R, (5.15)

where t = a mod (1). Sometimes denote it Λ(γ, λ) or Λ(t, γ, λ;a).

In view of Theorems 4.2 and 4.3, we can establish the following theorem.

Theorem 5.6. Assume the following function is well defined; then

(1) Λ(t, γ, λ) = (1 − 1/λ)Λ(t, γ + 1, λ) + (t − a + 1)γ/Γ(γ + 1),

(2) ∇Λ(t, γ + 1, λ) = Λ(t, γ, λ),

(3) ∇pΛ(t, γ + t, λ) = Λ(t, γ, λ), where p = 0, 1, 2, . . .,
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(4) ∇μΛ(t, γ, λ) = Λ(t, γ − μ, λ), where p − 1 < μ ≤ p,

(5) ∇−μΛ(t, γ, λ) = Λ(t, γ + μ, λ).

Now we will use the method of undetermined coefficients to solve Example 5.4. By
Theorem 5.6, we notice that

∇γΛ(t, 0, λ) = Λ
(
t,−γ, λ),

∇γΛ
(
t,−γ, λ) = Λ

(
t,−2γ, λ),

...

∇γΛ
(
t,−(q − 2

)
γ, λ
)
= Λ
(
t,−(q − 1

)
γ, λ
)
,

∇γΛ
(
t,−(q − 1

)
γ, λ
)
= Λ(t,−1, λ) =

(
1 − 1

λ

)
Λ(t, 0, λ).

(5.16)

The significance of these applications is that if we apply the operator ∇γ to

Λ(t, 0, λ),Λ
(
t,−γ, λ), . . . ,Λ(t,−(q − 1

)
γ, λ
)
, (5.17)

then we get a cyclic permutation of the same functions. That is, no new functions are
introduced. Therefore, we will choose a linear combination of these functions as a candidate
for a solution of (5.14). Say

y(t) = b0Λ(t, 0, λ) + b1Λ
(
t,−γ, λ)

+ . . . + bq−2Λ
(
t,−(q − 2

)
γ, λ
)
+ bq−1Λ

(
t,−(q − 1

)
γ, λ
)
.

(5.18)

Then

∇γy(t) = b0Λ
(
t,−γ, λ) + b1Λ

(
t,−2γ, λ)

+ . . . + bq−2Λ
(
t,−(q − 1

)
γ, λ
)
+ bq−1

(
1 − 1

λ

)
Λ(t, 0, λ).

(5.19)

Taking y(t), ∇γy(t) into the left side of (5.14), we obtain

∇γy(t) − ay(t) =
[
bq−1

(
1 − 1

λ

)
− ab0

]
Λ(t, 0, λ)

+ (b0 − ab1)Λ
(
t,−γ, λ) + · · · + (bq−2 − abq−1

)
Λ
(
t,−(q − 1

)
γ, λ
)
.

(5.20)

In order to make the right side equate zero, set

bk = cα−k,
(
k = 1, 2, . . . , q − 1

)
. (5.21)
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Then

bk−1 − abk = c
(
α−k+1 − aα−k

)
= cα−k(α − a). (5.22)

If we let α be a root of the indicial equation

P(x) = x − a = 0, (5.23)

or α = a, then we have

bk−1 − abk = ca−kP(a) = 0
(
k = 1, 2, . . . , q − 1

)
. (5.24)

Since we also need

0 = bq−1

(
1 − 1

λ

)
− ab0 = ac

[(
1 − 1

λ

)
a−q − 1

]
, (5.25)

so let us set

(
1 − 1

λ

)
= aq, λ =

1
1 − αq

. (5.26)

Since c is an arbitrary number, set c = aq−1, then

bk = aq−1−k. (5.27)

Therefore, we obtain a solution of fractional difference of order (1, q) as

y(t) =
q−1∑

k=0

bkΛ
(
t,−kγ, λ)

=
q−1∑

k=0

aq−1−kΛ
(
t,−kγ, 1

1 − aq

)
� λa(t).

(5.28)

The fractional difference equation of order (1, q) in Example 5.4 can be solved by the
method of N0 transform. Make N1 transform to the following equation:

∇γy(t) − a∇0y(t) = 0. (5.29)



Abstract and Applied Analysis 19

We have

sγN0
(
f(t)
) − (1 − s)−1f(0) + aN1

(
f(t)
)
= 0,

N1
(
f(t)
)
=

∞∑

t=1

(1 − s)t−1f(t)

=
∞∑

t=0
(1 − s)t−1f(t) − (1 − s)−1f(0).

(5.30)

Taking them into previos equation, we get

sγN0
(
f(t)
) − (1 − a)(1 − s)−1f(0) − aN0

(
f(t)
)
= 0, (5.31)

and we have

N0
(
f(t)
)
= (1 − a)y(0)

1
(1 − s)(sγ − a)

= (1 − a)y(0)

∑q−1
k=0 a

q−1−kskγ

(1 − s)(sγ − a)
∑q−1

k=0 a
q−1−kskγ

= (1 − a)y(0)

∑q−1
k=0 a

q−1−kskγ

(1 − s)(s − aq)
.

(5.32)

In [23], we have the following

Theorem 5.7. The following equality holds:

(1) N0(Λ(t, 0, λ)) = N0(λt) = 1/(1 − s) · 1/(1 − (1 − s)λ),

(2) N0(Λ(t,−kγ, λ)) = N0(∇kγλt) = 1/(1 − s) · skγ/(1 − (1 − s)λ) · (k = 1, 2, . . . , q − 1).

Set λ = 1/(1 − aq), then

N0Λ
(
t, 0,

1
1 − aq

)
=

1
1 − s

· 1 − aq

s − aq
,

N0Λ
(
t,−kγ, 1

1 − aq

)
=

skγ

1 − s
· 1 − aq

s − aq
.
(
k = 1, 2, . . . , q − 1

)
.

(5.33)

By Theorem 5.7 and (5.33), we know that

y(t) = (1 − a)y(0)
q−1∑

k=0

aq−1−kΛ
(
t,−kγ, 1

1 − aq

)
(5.34)

is a solution of (5.14). Except a constant, the solution y(t) is the same as the solution (5.28), where

y(t) = λa(t), (5.35)

which is solved by the method of undetermined coefficients before.
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6. Relationship between the Fractional Difference Equations and
the Fractional Differential Equations

In this section, we only give an example to demonstrate the relationship between integers
order difference equations and integral order differential equation.

Let us recall the definition of fractional sum when step h = 1

a∇−γ
t f(t) =

1
Γ
(
γ
)

t∑

s=a

(
t − ρ(s)

)γ−1
f(s), (6.1)

where t ∈ Na = {a, a + 1, a + 2, . . .}. If we set

t − a = n ∈ N0, s − a = r ∈ N0,

f
{a}
r = f(r + a) = f(s), f

{a}
n = f(n + a) = f(t),

(6.2)

then

1
Γ
(
γ
)

t∑

s=a

(
t − ρ(s)

)γ−1
f(s) =

1
Γ
(
γ
)
n+a∑

s=a

(
n + a − ρ(s)

)γ−1
f(s)

=
1

Γ
(
γ
)

n∑

r=0
(n + a − (r + a + 1))γ−1f(r + a)

=
1

Γ
(
γ
)

n∑

r=0
(n − r + 1)γ−1f{a}

r = 0∇−γ
n f

{a}
n .

(6.3)

And it is easy to prove that

a∇μ
t f(t)=0∇μ

nf
{a}
n ,

(
μ > 0

)
. (6.4)

Therefore, we have the following.

Theorem 6.1. Let t ∈ Na, and set t − a = n ∈ N0, f
{a}
n = f(n + a) = f(t), then

a∇−γ
t f(t) = 0∇−γ

n f
{a}
n ; a∇μ

t f(t) = 0∇μ
nf

{a}
n ,

(
μ, γ > 0

)
. (6.5)

Example 6.2. (1) Set γ = 1/q, q ∈ N,n ∈ N, and solve the fractional difference equation of
order (1, q),

∇γx(n) − αx(n) = 0. (6.6)

(2) Let t ∈ R, and solve the equation

∇γx(t) − αx(t) = 0. (6.7)
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(3) Let h ∈ R+, t ∈ R, and solve the equation

∇γ

h
x(t) − αx(t) = 0. (6.8)

(4) If we let h → 0, we ask whether the limit solution of (6.8) is equivalent to that of
the following fractional differential equation? Consider

Dγx(t) − αx(t) = 0, (t ∈ R). (6.9)

Solution 1. (1) By a result in Chapter 7 of book [23], the solution of (6.6) is

x(n) = λα(n) =
q−1∑

k=0

αq−k−1Λn

[
−kγ,

(
1

1 − αq

)n]
. (6.10)

(2) Set t − t0 = n ∈ N0, and define

x
{t0}
n = x(n + t0) = x(t), x

{t0}
n−1 = x(n − 1 + t0) = x(t − 1), . . . ,

x
{t0}
0 = x(0 + t0) = x(t0).

(6.11)

Hence, we can regard the following x(t0), x(t0 + 1), . . . , x(t), . . . as a sequence

x
{t0}
0 , x

{t0}
1 , . . . x

{t0}
n , . . . . (6.12)

Under this definition, (6.7) is actually equivalent to the following integer variable difference
equation:

∇γx
{t0}
n − αx

{t0}
n = 0. (6.13)

By (1), we know that its solution is

x
{t0}
n =

q−1∑

k=0

αq−k−1Λn

[
−kγ,

(
1

1 − αq

)n]

=
q−1∑

k=0

αq−k−1Λ

[
t,−kγ,

(
1

1 − αq

)t
]
.

(6.14)

That is

x(t) =
q−1∑

k=0

αq−k−1Λ

[
t,−kγ,

(
1

1 − αq

)t
]

� λα(t). (6.15)
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(3) Set t = sh, x(t) = x(sh) = y(s), then (6.8) is equivalent to

h−γ∇γy(s) − αy(s) = 0. (6.16)

By (2), we obtain that the solution of (6.16) is

x(t) = y(s) = λαhγ (s)

=
q−1∑

k=0

(αhγ)q−k−1Λ
[
s,−kγ,

(
1

1 − (αhγ)q

)s]
.

(6.17)

Since

Λ
[
s,−kγ,

(
1

1 − (αhγ)q

)s]
= hkγΛh

[
t,−kγ,

(
1

1 − (αhγ)q

)t/h
]
, (6.18)

hence we have

x(t) =
q−1∑

k=0

(αhγ)q−k−1hkγΛh

[
t,−kγ,

(
1

1 − (αhγ)q

)t/h
]
. (6.19)

(4) Let h → 0, and since

(
1

1 − αqh

)t/h

−→ eα
q

,

hkγΛh

[
t,−kγ,

(
1

1 − αqh

)t/h
]
= hkγ∇kγ

h

(
1

1 − αqh

)t/h

−→ Dkγeα
q

= E
(−kγ, αq).

(6.20)

We then obtain

x(t) = eα(t) =
q−1∑

k=0

αq−k−1E
(−kγ, αq), (6.21)

and this is exactly the solution of (6.9). (See Chapter 5 in monographer [2]).

Remark 6.3. If we take γ = 1/2, q = 2, then the followong occurs.
(1) The solution of (6.19) reduces to

x(t) = α

(
1

1 − α2

)t

+∇1/2
(

1
1 − α2

)t

= αF

(
t, 0,

1
1 − α2

)
+ F

(
t,−1

2
,

1
1 − α2

)
,

(6.22)

and this result is consistent with the solution (5.28) or (5.34) in Example 5.4 in Section 5.
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(2) The solution (6.21) reduces to

x(t) = αh1/2
(

1
1 − αqh

)t/h

+ h1/2∇1/2
h

(
1

1 − αqh

)t/h

= h1/2

[
α

(
1

1 − αqh

)t/h

+∇1/2
h

(
1

1 − αqh

)t/h
]
.

(6.23)

Let h → 0, then
[
α

(
1

1 − αqh

)t/h

+∇1/2
h

(
1

1 − αqh

)t/h
]

(6.24)

tend to

αeα
qt +D1/2eα

qt = eα(t). (6.25)

The results perfectly coincide with the monographer [2].

From Theorem 6.1, we see that if we take t as a, a+1, a+2, . . ., it is only a sequence with
step 1, but the initial time is not zero but a. If we make a translation variable transformation,
set t = n + a, n ∈ N0, then we can change the definition of fractional sum and fractional
difference with real variable into the definition of fractional sum and difference with integer
variable. But, no doubt, it will be more convenient for us to study fractional sum and
difference with integer variable.

7. Conclusion

This work reveals some results in discrete fractional calculus and fractional h-difference
equations. This study also provides a reference for researchers in this area. First, this
paper gives the definition of the fractional h-difference from the difference of integer order.
Then some integral transforms are proposed, that is, Z transform, N transform, and R
transform. These integral transforms are applied to linear fractional h-difference equations,
and approximate solutions are obtained. At last, the study explains the relationship between
the fractional difference equations and the fractional differential equations.
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