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We consider a nonlinear Dirichlet elliptic equation driven by a nonhomogeneous differential op-
erator and with a Carathéodory reaction f(z, ζ), whose primitive f(z, ζ) is p-superlinear near ±∞,
but need not satisfy the usual in such cases, the Ambrosetti-Rabinowitz condition. Using a
combination of variational methods with the Morse theory (critical groups), we show that the
problem has at least three nontrivial smooth solutions. Our result unifies the study of “superlinear”
equations monitored by some differential operators of interest like the p-Laplacian, the (p, q)-
Laplacian, and the p-generalized mean curvature operator.

1. Introduction

The motivation for this paper comes from the work of Wang [1] on superlinear Dirichlet
equations. More precisely, letΩ ⊆ R

N be a domain with a C2-boundary ∂Ω. Wang [1] studied
the following Dirichlet problem:

−Δu(z) = f(u(z)) in Ω,

u|∂Ω = 0.
(1.1)

He assumes that f ∈ C1(R), f(0) = f ′(0) = 0, |f ′(ζ)| ≤ c(1 + |ζ|r−2), with 1 < r < 2∗, where

2∗ =

⎧
⎨

⎩

2N
N − 2

if N ≥ 3,

+∞ if N = 1, 2
(1.2)
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and that there exist μ > 2 andM > 0, such that

0 < μF(ζ) ≤ f(ζ)ζ ∀|ζ| ≥ M, (1.3)

where

F(ζ) =
∫ ζ

0
f(s)ds (1.4)

(this is the so-called Ambrosetti-Rabinowitz condition). Under these hypotheses, Wang [1]
proved that problem (1.1) has at least three nontrivial solutions.

The aim of this work is to establish the result of Wang [1] for a larger class of nonlinear
Dirichlet problems driven by a nonhomogeneous nonlinear differential operator. In fact, our
formulation unifies the treatment of “superlinear” equations driven by the p-Laplacian, the
(p, q)-Laplacian, and the p-generalized mean curvature operators. In addition, our reaction
term f(z, ζ) is z dependent, need not be C1 in the ζ-variable, and in general does not satisfy
the Ambrosetti-Rabinowitz condition. Instead, we employ a weaker “superlinear” condition,
which incorporates in our framework functions with “slower” growth near ±∞. An earlier
extension of the result of Wang [1] to equations driven by the p-Laplacian was obtained by
Jiang [2, Theorem 12, p.1236] with a continuous “superlinear” reaction f(z, ζ) satisfying the
Ambrosetti-Rabinowitz condition.

So, let Ω ⊆ R
N be as above. The problem under consideration is the following:

−div a(∇u(z)) = f(z, u(z)) a.e. in Ω,

u|∂Ω = 0.
(1.5)

Here a : R
N → R

N is a map which is strictly monotone and satisfies certain other reg-
ularity conditions. The precise conditions on a are formulated in hypotheses H(a). These
hypotheses are rather general, and as we already mentioned, they unify the treatment of
various differential operators of interest. The reaction f(z, ζ) is a Carathéodory function (i.e.,
for all ζ ∈ R, the function z �→ f(z, ζ) is measurable and for almost all z ∈ Ω, the function
ζ �→ f(z, ζ) is continuous). We assume that the primitive

F(z, ζ) =
∫ ζ

0
f(z, s)ds (1.6)

exhibits p-superlinear growth near ±∞. However, we do not employ the usual in such cases,
the Ambrosetti-Rabinowitz condition. Instead we use a weaker condition (see hypotheses
H(f)), which permits the consideration of a broader class of reaction terms.

Our approach is variational based on the critical point theory combined with Morse
theory (critical groups). In the next section for easy reference, we present the main mathe-
matical tools that we will use in the paper. We also state the precise hypotheses on the maps
a and f and explore some useful consequences of them.
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2. Mathematical Background and Hypotheses

Let X be a Banach space, and let X∗ be its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies the Cerami condition if the
following is true:

“every sequence {xn}n≥1 ⊆ X, such that {ϕ(xn)}n≥1 is bounded and

(1 + ‖xn‖)ϕ′(xn) −→ 0 in X∗, (2.1)

admits a strongly convergent subsequence.”
This compactness-type condition is in general weaker than the usual Palais-Smale condition.
Nevertheless, the Cerami condition suffices to have a deformation theorem, and from it the
minimax theory of certain critical values of ϕ is derive (see, e.g., Gasiński and Papageorgiou
[3]). In particular, we can state the following theorem, known in the literature as the
“mountain pass theorem.”

Theorem 2.1. If ϕ ∈ C1(X) satisfies the Cerami condition, x0, x1 ∈ X are such that ‖x1−x0‖ > � > 0,
and

max
{
ϕ(x0), ϕ(x1)

}
< inf

{
ϕ(x) : ‖x − x0‖ = �

}
= η�,

c = inf
γ∈Γ

max
0≤t≤1

ϕ
(
γ(t)
)
,

(2.2)

where

Γ =
{
γ ∈ C([0, 1];X) : γ(0) = x0, γ(1) = x1

}
, (2.3)

then c ≥ η� and c is a critical value of ϕ.

In the analysis of problem (1.5) in addition to the Sobolev spaceW1,p
0 (Ω), we will also

use the Banach space

C1
0

(
Ω
)
=
{
u ∈ C1

(
Ω
)
: u|∂Ω = 0

}
. (2.4)

This is an ordered Banach space with positive cone

C+ =
{
u ∈ C1

0

(
Ω
)
: u(z) ≥ 0 ∀z ∈ Ω

}
. (2.5)

This cone has a nonempty interior, given by

int C+ =
{

u ∈ C+ : u(z) > 0 ∀z ∈ Ω,
∂u

∂n
(z) < 0 ∀z ∈ ∂Ω

}

, (2.6)

where n(·) denotes the outward unit normal on ∂Ω.
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In what follows, by λ̂1 we denote the first eigenvalue of (−Δp, W
1,p
0 (Ω)), where Δp

denotes the p-Laplace operator, defined by

Δpu = div
(
‖∇u‖p−2∇u

)
∀u ∈ W

1,p
0 (Ω). (2.7)

We know (see, e.g., Gasiński and Papageorgiou [3]) that λ̂1 > 0 is isolated and simple (i.e.,
the corresponding eigenspace is one-dimensional) and

λ̂1 = inf

{‖∇u‖pp
‖u‖pp

: u ∈ W
1,p
0 (Ω), u /= 0

}

. (2.8)

In this variational characterization of λ̂1, the infimum is realized on the corresponding one-
dimensional eigenspace. From (2.8), we see that the elements of the eigenspace do not
change sign. In what follows, by û1 we denote the Lp-normalized (i.e., ‖û1‖p = 1) positive
eigenfunction corresponding to λ̂1 > 0. The nonlinear regularity theory for the p-Laplacian
equations (see, e.g., Gasiński and Papageorgiou [3, p. 737]) and the nonlinear maximum
principle of Vázquez [4] imply that û1 ∈ int C+.

Now, let ϕ ∈ C1(X) and let c ∈ R. We introduce the following notation:

ϕc =
{
x ∈ X : ϕ(x) ≤ c

}
,

Kϕ =
{
x ∈ X : ϕ′(x) = 0

}
,

Kc
ϕ =
{
x ∈ Kϕ : ϕ(x) = c

}
.

(2.9)

Let (Y1, Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0, by
Hk(Y1, Y2) we denote the kth relative singular homology group for the pair (Y1, Y2) with
integer coefficients. The critical groups of ϕ at an isolated point x0 ∈ Kϕ with ϕ(x0) = c (i.e.,
x0 ∈ Kc

ϕ) are defined by

Ck

(
ϕ, x0

)
= Hk

(
ϕc ∩U, ϕc ∩U \ {x0}

) ∀k ≥ 0, (2.10)

where U is a neighbourhood of x0, such that Kϕ ∩ ϕc ∩ U = {x0}. The excision property of
singular homology implies that this definition is independent of the particular choice of the
neighbourhood U.

Suppose that ϕ ∈ C1(X) satisfies the Cerami condition and ϕ(Kϕ) > −∞. Let c <
infϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck

(
ϕ,∞) = Hk

(
X,ϕc) ∀k ≥ 0. (2.11)

The second deformation theorem (see, e.g., Gasiński and Papageorgiou [3, p. 628])
guarantees that this definition is independent of the particular choice of the level c <
infϕ(Kϕ).
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Suppose that Kϕ is finite. We set

M(t, x) =
∑

k≥0
rank Ck

(
ϕ, x
)
tk ∀t ∈ R, x ∈ Kϕ,

P(t,∞) =
∑

k≥0
rank Ck

(
ϕ,∞)tk ∀t ∈ R.

(2.12)

The Morse relation says that

∑

x∈Kϕ

M(t, x) = P(t,∞) + (1 + t)Q(t), (2.13)

where

Q(t) =
∑

k≥0
βkt

k
(2.14)

is a formal series in t ∈ R with nonnegative integer coefficients βk ∈ N.
Now we will introduce the hypotheses on the maps a(y) and f(z, ζ). So, let h ∈

C1(0,+∞) be such that

0 <
th′(t)
h(t)

≤ c0 ∀t > 0, (2.15)

for some c0 > 0 and

c1t
p−1 ≤ h(t) ≤ c2

(
1 + |t|p−1

)
∀t > 0, (2.16)

for some c1, c2 > 0.
The hypotheses on the map a(y) are the following:
H(a) : a(y) = a0(‖y‖)y, where a0(t) > 0 for all t > 0 and

(i) a ∈ C(RN ;RN) ∩ C1(RN \ {0};RN),

(ii) there exists c3 > 0, such that

∥
∥∇a

(
y
)∥
∥ ≤ c3

h
(∥
∥y
∥
∥
)

∥
∥y
∥
∥

∀y ∈ R
N \ {0}, (2.17)

(iii) we have

(∇a
(
y
)
ξ, ξ
)

RN ≥ h
(∥
∥y
∥
∥
)

∥
∥y
∥
∥

‖ξ‖2 ∀y ∈ R
N \ {0}, ξ ∈ R

N, (2.18)
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(iv) if G : R
N → R

N is a function, such that ∇G(y) = a(y) for y ∈ R
N and G(0) = 0,

then there exists c4 > 0, such that

pG
(
y
) − (a(y), y)

RN ≥ −c4 ∀y ∈ R
N. (2.19)

Remark 2.2. Let

G0(t) =
∫ t

0
a0(s)s ds ∀t ≥ 0. (2.20)

Evidently G0 is strictly convex and strictly increasing on R+ = [0,+∞). We set

G
(
y
)
= G0

(∥
∥y
∥
∥
) ∀y ∈ R

N. (2.21)

Then G is convex, G(0) = 0, and

∇G
(
y
)
= G′

0
(∥
∥y
∥
∥
) y
∥
∥y
∥
∥
= a0

(∥
∥y
∥
∥
)
y = a

(
y
) ∀y ∈ R

N \ {0}. (2.22)

Hence the primitive function G(y) used in hypothesis H(a)(iv) is uniquely defined. Note
that the convexity of G implies that

G
(
y
) ≤ (a(y), y)

RN ∀y ∈ R
N. (2.23)

HypothesesH(a) and (2.23) lead easily to the following lemma summarizing themain
properties of a.

Lemma 2.3. If hypothesesH(a) hold, then

(a) the map y �→ a(y) is maximal monotone and strictly monotone,

(b) there exists c5 > 0, such that

∥
∥a
(
y
)∥
∥ ≤ c5

(
1 +
∥
∥y
∥
∥p−1

)
∀y ∈ R

N, (2.24)

(c) we have

(
a
(
y
)
, y
)

RN ≥ c1
p − 1

∥
∥y
∥
∥p ∀y ∈ R

N (2.25)

(where c1 > 0 is as in (2.16)).

From the above lemma and the integral form of the mean value theorem, we have the
following result.
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Corollary 2.4. If hypothesesH(a) hold, then there exists c6 > 0, such that

c1

p
(
p − 1

)
∥
∥y
∥
∥p ≤ G

(
y
) ≤ c6

(
1 +
∥
∥y
∥
∥p
) ∀y ∈ R

N. (2.26)

Example 2.5. The following maps satisfy hypotheses H(a):

(a) a(y) = ‖y‖p−2y with 1 < p < +∞.

This map corresponds to the p-Laplace differential operator

Δpu = div
(
‖∇u‖p−2∇u

)
∀u ∈ W

1,p
0 (Ω). (2.27)

(b) a(y) = ‖y‖p−2y + μ‖y‖p−2y with 2 ≤ q < p < +∞, μ ≥ 0.

This map corresponds to the (p, q)-Laplace differential operator

Δpu + μΔqu ∀u ∈ W
1,p
0 (Ω). (2.28)

This is an important operator occurring in quantum physics (see Benci et al. [5]). Recently
there have been some papers dealing with the existence and multiplicity of solutions for
equations driven by such operators. We mention the works of Cingolani and Degiovanni [6],
Figueiredo [7], and Sun [8]:

(c) a(y) = (1 + ‖y‖2)(p−2)/2y, with 2 ≤ p < +∞.

This map corresponds to the p-generalized mean curvature operator

div
((

1 + ‖∇u‖2
)(p−2)/2∇u

)

∀u ∈ W
1,p
0 (Ω). (2.29)

Such equations were investigated by Chen-Shen [9]:

(d) a(y) = ‖y‖p−2y + ‖y‖p−2y/(1 + ‖y‖p), with 1 < p < +∞,

(e) a(y) = ‖y‖p−2y + ln(1 + ‖y‖p−2)y, with 2 ≤ p < +∞.

Let A : W1,p
0 (Ω) → W−1,p′(Ω) = W

1,p
0 (Ω)∗ (with 1/p + 1/p′ = 1) be the nonlinear map,

defined by

〈
A(u), y

〉
=
∫

Ω

(
a(∇u(z)),∇y(z)

)

RNdz ∀u, y ∈ W
1,p
0 (Ω). (2.30)

From Gasiński and Papageorgiou [10, Proposition 3.1, p. 852], we have the following result
for this map.
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Proposition 2.6. If hypotheses H(a) hold, then the map A : W1,p
0 (Ω) → W−1,p′(Ω) defined by

(2.30) is bounded, continuous, strictly monotone, hence maximal monotone too, and of type (S)+; that
is, if un → u weakly inW

1,p
0 (Ω) and

lim sup
n→+∞

〈A(un), un − u〉 ≤ 0, (2.31)

then un → u inW
1,p
0 (Ω).

The next lemma is an easy consequence of (2.8) and of the fact that û1 ∈ int C+ (see,
e.g., Papageorgiou and Kyritsi-Yiallourou [11, p. 356]).

Proposition 2.7. If ϑ ∈ L∞(Ω)+, ϑ(z) ≤ (c1/p(p−1))λ̂1 for almost all z ∈ Ω, ϑ/= (c1/p(p−1))λ̂1,
then there exists ξ0 > 0, such that

c1
p − 1

‖∇u‖pp −
∫

Ω
ϑ(z)|u(z)|p dz ≥ ξ0‖∇u‖pp ∀u ∈ W

1,p
0 (Ω). (2.32)

The hypotheses on the reaction f(z, ζ) are the following:
H(f) : f : Ω ×R → R is a Carathéodory function, such that f(z, 0) = 0 for almost all z ∈ Ω

and

(i) there exist a ∈ L∞(Ω)+, c > 0 and r ∈ (p, p∗), with

p∗ =

⎧
⎪⎨

⎪⎩

Np

N − p
if p < N,

+∞ if p ≥ N,

(2.33)

such that

∣
∣f(z, ζ)

∣
∣ ≤ a(z) + c|ζ|r−1 for almost all z ∈ Ω, all ζ ∈ R; (2.34)

(ii) if

F(z, ζ) =
∫ ζ

0
f(z, s)ds, (2.35)

then

lim
ζ→±∞

F(z, ζ)
|ζ|p = +∞ uniformly for almost all z ∈ Ω, (2.36)

(iii) there exist τ ∈ ((r − p)max{1,N/p}, p∗) and β0 > 0, such that

lim inf
ζ→±∞

f(z, ζ)ζ − pF(z, ζ)
|ζ|τ ≥ β0 uniformly for almost all z ∈ Ω, (2.37)
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(iv) there exists ϑ ∈ L∞(Ω)+, such that ϑ(z) ≤ (c1/p(p − 1))λ̂1 for almost all z ∈ Ω,
ϑ/= (c1/p(p − 1))λ̂1, and

lim sup
ζ→ 0

pF(z, ζ)
|ζ|p ≤ ϑ(z) uniformly for almost all z ∈ Ω; (2.38)

(v) for every � > 0, there exists ξ� > 0, such that

f(z, ζ)ζ + ξ�|ζ|p ≥ 0 for almost all z ∈ Ω, all |ζ| ≤ �. (2.39)

Remark 2.8. Hypothesis H(f)(ii) implies that for almost all z ∈ Ω, the primitive F(z, ·) is
p-superlinear. Evidently, this condition is satisfied if

lim
ζ→±∞

f(z, ζ)

|ζ|p−2ζ
= +∞ uniformly for almost all z ∈ Ω, (2.40)

that is, for almost all z ∈ Ω, the reaction f(z, ·) is (p − 1)-superlinear. However, we do not use
the usual for “superlinear” problems, the Ambrosetti-Rabinowitz condition. We recall that
this condition says that there exist μ > 0 andM > 0, such that

0 < μF(z, ζ) ≤ f(z, ζ)ζ for almost all z ∈ Ω, all |ζ| ≥ M,

ess sup
Ω

F(·,M) > 0. (2.41)

Integrating (2.41), we obtain the weaker condition

c7|ζ|μ ≤ F(z, ζ) for almost all z ∈ Ω, all |ζ| ≥ M, (2.42)

with c7 > 0. Evidently from (2.42) we have the much weaker condition

lim
ζ→±∞

F(z, ζ)
|ζ|p = +∞ uniformly for almost all z ∈ Ω. (2.43)

Here, the p-superlinearity condition (2.43) is coupled with hypothesis H(f)(iii), which is
weaker than the Ambrosetti-Rabinowitz condition (2.41). Indeed, suppose that the Ambro-
setti-Rabinowitz condition is satisfied. We may assume that μ > (r − p)max{1,N/p}. Then

f(z, ζ)ζ − pF(z, ζ)
|ζ|μ =

f(z, ζ)ζ − μF(z, ζ)
|ζ|μ +

(
μ − p

)
F(z, ζ)

|ζ|μ ≥ (μ − p
)
c7 (2.44)

(see (2.41) and (2.42)). Therefore, hypothesis H(f)(iii) is satisfied.
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Example 2.9. The following function satisfies hypotheses H(f), but not the Ambrosetti-
Rabinowitz condition. For the sake of simplicity we drop the z-dependence:

f(ζ) =

⎧
⎪⎨

⎪⎩

|ζ|q−2ζ if |ζ| ≤ 1,

p|ζ|p−2ζ
(

ln|ζ| + 1
p

)

if |ζ| > 1,
(2.45)

with 1 < p < q < +∞.
In this work, for every u ∈ W

1,p
0 (Ω), we set

‖u‖ = ‖∇u‖p (2.46)

(by virtue of the Poincaré inequality). We mention that the notation ‖ · ‖ will also be used
to denote the R

N-norm. However, no confusion is possible, since it is always clear from the
context, whose norm is used. For every ζ ∈ R, we set

ζ± = max{±ζ, 0}, (2.47)

and for u ∈ W
1,p
0 (Ω), we define

u±(·) = u(·)±. (2.48)

Then u± ∈ W
1,p
0 (Ω), and we have

u = u+ − u−, |u| = u+ + u−. (2.49)

By | · |N we denote the Lebesgue measure on R
N . Finally, for a given measurable function

h : Ω × R → R (e.g., a Carathéodory function), we define

Nh(u)(·) = h(·, u(·)) ∀u ∈ W
1,p
0 (Ω) (2.50)

(the Nemytskii map corresponding to h(·, ·)).

3. Three-Solution Theorem

In this section, we prove a multiplicity theorem for problem (1.5), producing three nontrivial
smooth solutions, two of which have constant sign (one positive, the other negative).

First we produce two constant sign solutions of (1.5). For this purpose, we introduce
the positive and negative truncations of f(z, ·), namely:

f±(z, ζ) = f
(
z,±ζ±) ∀(z, ζ) ∈ Ω × R. (3.1)
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Both are Carathéodory functions. We set

F±(z, ζ) =
∫ ζ

0
f±(z, s)ds (3.2)

and consider the C1-functionals ϕ± : W1,p
0 (Ω) → R, defined by

ϕ±(u) =
∫

Ω
G(∇u(z))dz −

∫

Ω
F±(z, u(z))dz ∀u ∈ W

1,p
0 (Ω). (3.3)

Also, let ϕ : W1,p
0 (Ω) → R be the C1-energy functional for problem (1.5), defined by

ϕ(u) =
∫

Ω
G(∇u(z))dz −

∫

Ω
F(z, u(z))dz ∀u ∈ W

1,p
0 (Ω). (3.4)

Proposition 3.1. If hypotheses H(a) and H(f) hold, then the functionals ϕ± satisfy the Cerami
condition.

Proof. We do the proof for ϕ+, the proof for ϕ− being similar.
So, let {un}n≥1 ⊆ W

1,p
0 (Ω) be a sequence, such that

∣
∣ϕ+(un)

∣
∣ ≤ M1 ∀n ≥ 1, (3.5)

for some M1 > 0, and

(1 + ‖un‖)ϕ′
+(un) −→ 0 in W−1,p′(Ω). (3.6)

From (3.6), we have

∣
∣
〈
ϕ′

+(un), v
〉∣
∣ ≤ εn‖v‖

1 + ‖un‖ ∀v ∈ W
1,p
0 (Ω), (3.7)

with εn ↘ 0, so

∣
∣
∣
∣〈A(un), v〉 −

∫

Ω
f+(z, un)v dz

∣
∣
∣
∣ ≤

εn‖v‖
1 + ‖un‖ ∀n ≥ 1. (3.8)

In (3.8), first we choose v = −u−
n ∈ W

1,p
0 (Ω). Then using Lemma 2.3(c), we have

c1
p − 1

∥
∥∇u−

n

∥
∥p
p ≤ εn ∀n ≥ 1, (3.9)

so

u−
n −→ 0 in W

1,p
0 (Ω). (3.10)
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Next, in (3.8) we choose v = u+
n ∈ W

1,p
0 (Ω). We obtain

−
∫

Ω
(a(∇u+

n), ∇u+
n)RN +

∫

Ω
f(z, u+

n)u
+
n dz ≤ εn ∀n ≥ 1. (3.11)

From (3.5) and (3.10), we have

∫

Ω
pG(∇u+

n)dz −
∫

Ω
pF(z, u+

n)dz ≤ M2 ∀n ≥ 1 (3.12)

for some M2 > 0. Adding (3.11) and (3.12), we obtain

∫

Ω

(
pG(∇u+

n) − (a(∇u+
n),∇u+

n)RN

)
dz +

∫

Ω

(
f(z, u+

n)u
+
n − pF(z, u+

n)
)
dz ≤ M3 ∀n ≥ 1,

(3.13)

for some M3 > 0, so

∫

Ω

(
f(z, u+

n)u
+
n − pF(z, u+

n)
)
dz ≤ M4 = M3 + c4|Ω|N ∀n ≥ 1 (3.14)

(see hypothesis H(a)(iv)).
Hypotheses H(f)(i) and (iii) imply that we can find β1 ∈ (0, β0) and c8 > 0, such that

β1|ζ|τ − c8 ≤ f(z, ζ)ζ − pF(z, ζ) for almost all z ∈ Ω, all ζ ∈ R. (3.15)

Using (3.15) and (3.14), we obtain

β1‖u+
n‖ττ ≤ M5 ∀n ≥ 1, (3.16)

withM5 = M4 + c8|Ω|N > 0 and so

the sequence {u+
n}n≥1 ⊆ Lτ(Ω) is bounded. (3.17)

First suppose that N/= p. From hypothesis H(f)(iii), it is clear that we can always assume
that τ ≤ r < p∗. So, we can find t ∈ [0, 1), such that

1
r

=
1 − t

τ
+

t

p∗
. (3.18)

Invoking the interpolation inequality (see, e.g., Gasiński and Papageorgiou [3, p. 905]), we
have

‖u+
n‖r ≤ ‖u+

n‖1−tτ ‖u+
n‖tp∗ , (3.19)
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so

‖u+
n‖rr ≤ M6‖u+

n‖tr ∀n ≥ 1, (3.20)

for some M6 > 0 (see (3.17) and use the Sobolev embedding theorem).
Recall that

∣
∣
∣
∣

∫

Ω
(a(∇u+

n),∇u+
n)RNdz −

∫

Ω
f(z, u+

n)u
+
n dz

∣
∣
∣
∣ ≤ εn ∀n ≥ 1. (3.21)

From hypothesis H(f)(i), we have

f(z, ζ)ζ ≤ â(z) + ĉ|ζ|r for almost all z ∈ Ω, all ζ ∈ R, (3.22)

with â ∈ L∞(Ω)+, ĉ > 0. Therefore, from (3.21) and Lemma 2.3(c), we have

c1
p − 1

‖∇u+
n‖pp ≤ c9

(
1 + ‖u+

n‖rr
) ∀n ≥ 1, (3.23)

for some c9 > 0 and so

‖u+
n‖p ≤ c10

(
1 + ‖u+

n‖tr
)

∀n ≥ 1, (3.24)

for some c10 > 0 (see (3.20)). The hypothesis on τ (see H(f)(iii)) implies that tr < p, and so

the sequence {u+
n}n≥1 ⊆ W

1,p
0 (Ω) is bounded, (3.25)

and thus

the sequence {un}n≥1 ⊆ W
1,p
0 (Ω) is bounded (3.26)

(see (3.26)).
Now, suppose that N = p. In this case, we have p∗ = +∞, while from the Sobolev

embedding theorem, we have thatW1,p
0 (Ω) ⊆ Lq(Ω) for all q ∈ [1,+∞). So, we need to modify

the previous argument. Let ϑ > r ≥ τ . Then we choose t ∈ [0, 1), such that

1
r
=

1 − t

τ
+

t

ϑ
, (3.27)

so

tr =
ϑ(r − τ)
ϑ − τ

. (3.28)
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Note that

ϑ(r − τ)
ϑ − τ

−→ r − τ as ϑ −→ +∞ = p∗. (3.29)

SinceN = p, we have r − τ < p (see H(f)(iii)). Therefore, for large ϑ > r, we have that tr < p
(see (3.28)). Hence, if in the previous argument, we replace p∗ with such a large ϑ > r, again
we reach (3.26).

Because of (3.26), we may assume that

un −→ u weakly in W
1,p
0 (Ω), (3.30)

un −→ u in Lp(Ω). (3.31)

In (3.8), we choose v = un − u ∈ W
1,p
0 (Ω), pass to the limit as n → +∞, and use (3.30). Then

lim inf
n→+∞

〈A(un), un − u〉 = 0, (3.32)

so

un −→ u in W
1,p
0 (Ω) (3.33)

(see Proposition 2.6). This proves that ϕ+ satisfies the Cerami condition.
Similarly we show that ϕ− satisfies the Cerami condition.

With some obvious minor modifications in the above proof, we can also have the
following result.

Proposition 3.2. If hypotheses H(a) and H(f) hold, then the functional ϕ satisfies the Cerami
condition.

Next we determine the structure of the trivial critical point u = 0 for the functionals ϕ±
and ϕ.

Proposition 3.3. If hypotheses H(a) and H(f) hold, then u = 0 is a local minimizer for the
functionals ϕ± and ϕ.

Proof. By virtue of hypothesesH(f)(i) and (iv), for a given ε > 0 we can find cε > 0, such that

F(z, ζ) ≤ 1
p
(ϑ(z) + ε)|ζ|p + cε|ζ|r for almost all z ∈ Ω, all ζ ∈ R. (3.34)
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Then for all u ∈ W
1,p
0 (Ω), we have

ϕ+(u) =
∫

Ω
G(∇u)dz −

∫

Ω
F(z, u+)dz

≥ c1

p
(
p − 1

)‖∇u‖pp −
1
p

∫

Ω
ϑ(u+)p dz − ε

pλ̂1
‖u‖p − c11‖u‖r

≥ 1
p

(

ξ0 − ε

λ̂1

)

‖u‖p − c11‖u‖r ,

(3.35)

for some c11 > 0 (see Corollary 2.4, (2.8), (3.34), and Proposition 2.7). Choosing ε ∈ (0, λ̂1ξ0),
we have

ϕ+(u) ≥ c12‖u‖p − c11‖u‖r ∀u ∈ W
1,p
0 (Ω), (3.36)

for some c12 > 0. Since r > p, from (3.36), it follows that we can find small � ∈ (0, 1), such that

ϕ+(u) > 0 ∀u, with 0 < ‖u‖ ≤ �, (3.37)

so

u = 0 is a local minimizer of ϕ+. (3.38)

Similarly, we show that u = 0 is a local minimizer for the functionals ϕ− and ϕ.

We may assume that u = 0 is an isolated critical point of ϕ+ (resp., ϕ−). Otherwise,
we already have a sequence of distinct positive (resp., negative) solutions of (1.5) and so we
are done. Moreover, as in Gasiński and Papageorgiou [12, proof of Theorem 3.4,]we can find
small �± ∈ (0, 1), such that

inf
{
ϕ±(u) : ‖u‖ = �±

}
= η± > 0. (3.39)

By virtue of hypothesisH(f)(ii) (the p-superlinear condition), we have the next result, which
completes the mountain pass geometry for problem (1.1).

Proposition 3.4. If hypotheses H(a) and H(f) hold and u ∈ int C+, then ϕ±(tu) → −∞ as t →
±∞.

Proof. By virtue of hypotheses H(f)(i) and (ii), for a given ξ > 0, we can find c13 = c13(ξ) > 0,
such that

ξ|ζ|p − c13 ≤ F(z, ζ) for almost all z ∈ Ω, all ζ ∈ R. (3.40)
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Then for u ∈ int C+ and t > 0, we have

ϕ+(tu) =
∫

Ω
G(t∇u)dz −

∫

Ω
F(z, tu)dz

≤ c14
(
1 + tp‖u‖p) − ξtp‖u‖pp + c13|Ω|N

= tp
(
c14‖u‖p − ξ‖u‖pp

)
+ c15,

(3.41)

for some c14 > 0 and with c15 = c14 + c13|Ω|N > 0 (see Corollary 2.4 and (3.40)).
Choosing ξ > c14(‖u‖p/‖u‖pp), from (3.41), it follows that

ϕ+(tu) −→ −∞ as t −→ +∞. (3.42)

Similarly, we show that

ϕ−(tu) −→ −∞ as t −→ −∞. (3.43)

Now we are ready to produce two constant sign smooth solutions of (1.5).

Proposition 3.5. If hypotheses H(a) and H(f) hold, then problem (1.5) has at least two nontrivial
constant sign smooth solutions

u0 ∈ int C+, v0 ∈ − int C+. (3.44)

Proof. From (3.39), we have

ϕ+(0) = 0 < inf
{
ϕ+(u) : ‖u‖ = �+

}
= η+. (3.45)

Moreover, according to Proposition 3.4, for u ∈ int C+, we can find large t > 0, such that

ϕ+(tu) ≤ ϕ+(0) = 0 < η+, ‖tu‖ > �+. (3.46)

Then because of (3.45), (3.46), and Proposition 3.1, we can apply the mountain pass theorem
(see Theorem 2.1) and find u0 ∈ W

1,p
0 (Ω), such that

ϕ+(0) = 0 < η+ ≤ ϕ+(u0), (3.47)

ϕ′
+(u0) = 0. (3.48)

From (3.47) we see that u0 /= 0. From (3.48), we have

A(u0) = Nf+(u0). (3.49)
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On (3.49)we act with −u−
0 ∈ W

1,p
0 (Ω) and obtain

c1
p − 1

∥
∥∇u−

0

∥
∥p
p ≤ 0 (3.50)

(see Lemma 2.3(c)), so

u0 ≥ 0, u0 /= 0. (3.51)

Then, from (3.49), we have

−div a(∇u0(z)) = f(z, u0(z)) a.e. in Ω,

u0|∂Ω = 0.
(3.52)

Theorem 7.1 of Ladyzhenskaya and Uraltseva [13, p. 286] implies that u0 ∈ L∞(Ω). Then
from Lieberman [14, p. 320], we have that u0 ∈ C1,α

0 (Ω) for some α ∈ (0, 1). Let � = ‖u0‖∞,
and let ξ� > 0 be as postulated by hypothesis H(f)(v). Then

−div a(∇u0(z)) + ξ�u0(z)p−1 ≥ 0 for almost all z ∈ Ω (3.53)

(see (3.52) and hypothesis H(f)(iv)), so

div a(∇u0(z)) ≤ ξ�u0(z)p−1 for almost all z ∈ Ω. (3.54)

Then, from Theorem 5.5.1 of Pucci and Serrin [15, p. 120], we have that u0 ∈ int C+.
Similarly, working with ϕ−, we obtain another constant sign smooth solution v0 ∈

− int C+.

Next, using the Morse theory (critical groups), we will produce a third nontrivial
smooth solution. To this end, first we compute the critical groups of ϕ± at infinity (see also
Wang [1] and Jiang [2]).

Proposition 3.6. If hypothesesH(a) and H(f) hold, then

Ck

(
ϕ±,∞

)
= 0 ∀k ≥ 0. (3.55)

Proof. We do the proof for ϕ+, the proof for ϕ− being similar.
By virtue of hypothesesH(f)(i) and (ii), for a given ξ > 0, we can find c16 = c16(ξ) > 0,

such that

F+(z, ζ) ≥ ξ(ζ+)p − c16 for almost all z ∈ Ω, all ζ ∈ R. (3.56)

Let

E+ = {u ∈ ∂B1 : u+
/= 0}, (3.57)
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where

∂B1 =
{
u ∈ W

1,p
0 (Ω) : ‖u‖ = 1

}
. (3.58)

For u ∈ E+ and t > 0, we have

ϕ+(tu) =
∫

Ω
G(t∇u)dz −

∫

Ω
F+(z, tu)dz

≤ c17(1 + tp) − ξtp‖u+‖pp − c16|Ω|N

= tp
(
c17 − ξ‖u+‖pp

)
+ c17 + c16|Ω|N

(3.59)

for some c17 > 0 (see Corollary 2.4, (3.56) and recall that ‖u‖ = ‖∇u‖p = 1).
Choosing ξ > c17/‖u+‖pp, we see that

ϕ+(tu) −→ −∞ as t −→ +∞. (3.60)

Hypothesis H(f)(iii) implies that we can find β1 ∈ (0, β0) and M7 > 0, such that

f+(z, ζ)ζ − pF(z, ζ) ≥ β1ζ
τ for almost all z ∈ Ω, all ζ ≥ M7. (3.61)

Then for all y ∈ W
1,p
0 (Ω), we have

∫

Ω

(
pF+
(
z, y
) − f+

(
z, y
)
y
)
dz ≤ −

∫

{y≥M7}
β1y

τ dz + c18, (3.62)

for some c18 > 0 (see (3.61)). Let c19 = c18 + c4|Ω|N > 0 (see hypothesis H(a)(iv)) and choose
γ < −c19. Because of (3.60), for u ∈ E+ and for large t > 0, we have

ϕ+(tu) =
∫

Ω
G(t∇u)dz −

∫

Ω
F+(z, tu)dz ≤ γ. (3.63)

Since ϕ+(0) = 0, we can find t∗ > 0, such that

ϕ+(t∗u) = γ. (3.64)
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Also, for large t > 0, we have

d

dt
ϕ+(tu) = 〈ϕ′

+(tu), u〉

=
1
t

〈
ϕ′

+(tu), tu
〉

=
1
t

(∫

Ω
(a(t∇u), t∇u)

RN dz −
∫

Ω
f+(z, tu)tu dz

)

≤ 1
t

(∫

Ω
pG(t∇u)dz + c4|Ω|N −

∫

Ω
pF+(z, tu)dz + c18

)

≤ 1
t

(
γ + c18 + c4|Ω|n

)

< 0

(3.65)

(see hypothesis H(a)(iv), (3.62), (3.63), and recall that pϕ+(tu) ≤ ϕ+(tu) ≤ γ < 0). Hence, by
the implicit function theorem, t∗ is unique and in fact there is a unique function μ+ ∈ C(E+),
such that

ϕ+
(
μ+(u)u

)
= γ ∀u ∈ E+. (3.66)

Let

D+ =
{
u ∈ W

1,p
0 (Ω) : u+

/= 0
}
. (3.67)

We set

μ̂+(u) =
1

‖u‖μ+

(
u

‖u‖
)

∀u ∈ D+. (3.68)

Then μ̂+ ∈ C(D+) and

ϕ+
(
μ̂+(u)u

)
= γ ∀u ∈ D+. (3.69)

Moreover, if ϕ+(u) = γ , then μ̂+(u) = 1. We set

μ̃+(u) =

⎧
⎨

⎩

1 if ϕ+(u) ≤ γ,

μ̂+(u) if ϕ+(u) > γ.
(3.70)

Evidently μ̂+ ∈ C(E+). Let h+ : [0, 1] ×D+ → D+ be defined by

h+(t, u) = (1 − t)u + tμ̃+(u)u. (3.71)
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Clearly h+ is continuous and

h+(0, u) = u, h+(1, u) = μ̃+(u)u ∈ ϕ
γ
+,

h+(t, u) = u ∀t ∈ [0, 1], u ∈ ϕ
γ
+

(3.72)

(see (3.70)) and so

ϕ
γ
+ is a strict deformation retract of D+. (3.73)

It is easy to see that D+ is contractible in itself. Hence

Hk

(
W

1,p
0 (Ω), D+

)
= 0 ∀k ≥ 0 (3.74)

(see Granas and Dugundji [16, p. 389]), so

Hk

(
W

1,p
0 (Ω), ϕγ

+

)
= 0 ∀k ≥ 0 (3.75)

(see (3.73)) and thus

Ck

(
ϕ+,∞

)
= 0 ∀k ≥ 0 (3.76)

(choosing γ < 0 negative enough).
The same applies for ϕ−, using this time the sets

E− =
{
u ∈ ∂B1 : u−

/= 0
}
,

D− =
{
u ∈ W

1,p
0 (Ω) : u−

/= 0
}
.

(3.77)

With suitable changes in the above proof, we can have the following result.

Proposition 3.7. If hypothesesH(a) and H(f) hold, then

Ck

(
ϕ,∞) = 0 ∀k ≥ 0. (3.78)

Proof. As before, hypotheses H(f)(i) and (ii) imply that for a given ξ > 0, we can find c20 =
c20(ξ) > 0, such that

F(z, ζ) ≥ ξ|ζ|p − c20 for almost all z ∈ Ω, all ζ ∈ R. (3.79)
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Let u ∈ ∂B1 = {u ∈ W
1,p
0 (Ω) : ‖u‖ = 1} and t > 0. Then

ϕ(tu) =
∫

Ω
G(t∇u)dz −

∫

Ω
F(z, tu)dz

≤ c21(1 + tp) − ξtp‖u‖pp + c20|Ω|N

≤ tp
(
c21 − ξ‖u‖pp

)
+ c21 + c20|Ω|N

(3.80)

for some c21 > 0 (see Corollary 2.4, (3.79) and recall that ‖u‖ = 1). Choosing ξ > c21/‖u‖pp, we
see that

ϕ(tu) −→ −∞ as t −→ +∞. (3.81)

Hypothesis H(f)(iii) implies that we can find β1 ∈ (0, β0) and M8 > 0, such that

f(z, ζ)ζ − pF(z, ζ) ≥ β1|ζ|τ for almost all z ∈ Ω, all |ζ| ≥ M8. (3.82)

Then, for any y ∈ W
1,p
0 (Ω), we have

∫

Ω

(
pF
(
z, y
)−f(z, y)y)d =

∫

{|y|<M8}

(
pF
(
z, y
)−f(z, y)y)dz+

∫

{|y|≥M8}

(
pF
(
z, y
)−f(z, y)y)dz

≤ −
∫

{|y|≥M8}
β
∣
∣y
∣
∣τ dz + c22,

(3.83)

for some c22 > 0 (see hypothesis H(f)(i)).
Let c23 = c22 + c4|Ω|N (see hypothesisH(a)(iv)) and choose γ < −c23. Because of (3.81),

for a given u ∈ ∂B1 and for large t > 0, we have

ϕ(tu) =
∫

Ω
G(t∇u)dz −

∫

Ω
F(z, tu)dz ≤ γ. (3.84)
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We also have

d

dt
ϕ(tu) =

〈
ϕ′(tu), u

〉

=
1
t

〈
ϕ′(tu), tu

〉

=
1
t

(∫

Ω
(a(t∇u), t∇u)

RN −
∫

Ω
f(z, tu)tu dz

)

≤ 1
t

(∫

Ω
pG(t∇u) dz + c4|Ω|N −

∫

Ω
pF(z, tu)dz + c22

)

≤ 1
t

(
γ + c22 + c4|Ω|N

)

< 0

(3.85)

(see hypothesis H(f)(iv), (3.83), (3.84) and note that pϕ(tu) ≤ ϕ(tu) ≤ γ < 0).
The implicit function theorem implies that there exists unique μ ∈ C(∂B1), such that

ϕ
(
μ(u)u

)
= γ ∀u ∈ ∂B1. (3.86)

We define

μ̂(u) =
1

‖u‖μ
(

u

‖u‖
)

∀u/= 0. (3.87)

Then μ̂ ∈ C(W1,p
0 (Ω) \ {0}) and

ϕ
(
μ̂(u)u

)
= γ ∀u ∈ W

1,p
0 (Ω) \ {0}. (3.88)

Moreover, if ϕ(u) = γ , then μ̂(u) = 1. We introduce

μ̃(u) =

⎧
⎨

⎩

1 if ϕ(u) ≤ γ,

μ̂(u) if ϕ(u) > γ.
(3.89)

Evidently ũ ∈ C(W1,p
0 (Ω) \ {0}). Let h : [0, 1] × (W1,p

0 (Ω) \ {0}) → W
1,p
0 (Ω) \ {0} be defined

by

h(t, u) = (1 − t)u + tμ̃(u)u. (3.90)

Then

h(0, u) = u, h(1, u) = μ̃(u)u ∈ ϕγ ,

h(t, u) = u ∀t ∈ [0, 1], u ∈ ϕγ ,
(3.91)
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so

ϕγ is a strong deformation retract of W1,p
0 (Ω) \ {0}. (3.92)

Via the radial retraction, we see that ∂B1 is a retract of W1,p
0 (Ω) \ {0} and W

1,p
0 (Ω) \ {0} is

deformable into ∂B1. Invoking Theorem 6.5 of Dugundji [17, p. 325], we have that

∂B1 is a deformation retract of W1,p
0 (Ω) \ {0}, (3.93)

so

∂B1 and ϕγ are homotopy equivalent. (3.94)

Thus

Hk

(
W

1,p
0 (Ω), ∂B1

)
= Hk

(
W

1,p
0 (Ω), ϕγ

)
∀k ≥ 0, (3.95)

and finally

Ck

(
ϕ,∞) = Hk

(
W

1,p
0 (Ω), ∂B1

)
∀k ≥ 0. (3.96)

But ∂B1 is an absolute retract of W1,p
0 (Ω) (see, e.g., Gasiński and Papageorgiou [3, p. 691]),

hence contractible in itself. Therefore

Hk

(
W

1,p
0 (Ω), ∂B1

)
= 0 ∀k ≥ 0, (3.97)

so

Ck

(
ϕ,∞) = 0 ∀k ≥ 0. (3.98)

Now we are ready to produce the third nontrivial smooth solution for problem (1.5).

Theorem 3.8. If hypotheses H(a) and H(f) hold, then problem (1.5) has at least three nontrivial
smooth solutions

u0 ∈ int C+, v0 ∈ − int C+, y0 ∈ C1
0

(
Ω
)
\ {0}. (3.99)

Proof. From Proposition 3.5, we already have two nontrivial constant sign and smooth solu-
tions

u0 ∈ int C+, v0 ∈ − int C+. (3.100)
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We assume that

Kϕ = {0, u0, v0}. (3.101)

Otherwise we already have a third nontrivial solution y0, and by the nonlinear regularity
theory, y0 ∈ C1

0(Ω), so we completed the proof.

Claim 1. Ck(ϕ+, u0) = Ck(ϕ−, v0) = δk,1Z for all k ≥ 0.
We do the proof for the pair (ϕ+, u0), the proof for the pair (ϕ−, v0) being similar.
We start by noting that Kϕ+ = {0, u0}. Indeed, suppose that u ∈ Kϕ+ \ {0}. Then

A(u) = Nf+(u). (3.102)

Acting with −u− ∈ W
1,p
0 (Ω), we obtain

c1
p − 1

∥
∥∇u−∥∥p

p ≤ 0 (3.103)

(see Lemma 2.3(c)) and so u0 ≥ 0, u0 /= 0. Moreover, by nonlinear regularity (see Ladyzhen-
skaya and Uraltseva [13] and Lieberman [14]), we have that u ∈ C+ \ {0}. Since ϕ′|C+ = ϕ′

+|C+ ,
we infer that u ∈ Kϕ = {0, u0, v0}, and hence u = u0.

Choose γ, ϑ ∈ R, such that

γ < 0 = ϕ+(0) < ϑ < η+ ≤ ϕ+(u0) (3.104)

(see (3.47)), and consider the following set:

ϕ
γ
+ ⊆ ϕϑ

+ ⊆ W
1,p
0 (Ω) = W. (3.105)

We consider the long exact sequence of singular homology groups corresponding to the above
triple. We have

· · · −→ Hk

(
W,ϕ

γ
+

)
i∗→ Hk

(
W,ϕϑ

+

)
∂∗→ Hk−1

(
ϕϑ
+ , ϕ

γ
+

)
−→ · · · ∀k ≥ 0, (3.106)

where i∗ is the group homomorphism induced by the embedding i : ϕγ
+ → ϕϑ

+ and ∂∗ is the
boundary homomorphism. Note that

Hk

(
W,ϕ

γ
+

)
= Ck

(
ϕ+,∞

) ∀k ≥ 0 (3.107)

(since γ < 0, Kϕ+ = {0, u0} and 0 = ϕ+(0) < η+ ≤ ϕ+(u0); see (3.47)), so

Hk

(
W,ϕ

γ
+

)
= 0 ∀k ≥ 0 (3.108)

(see Proposition 3.6).
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From the choice of ϑ > 0, the only critical value of ϕ+ in the interval (γ, ϑ) is 0. Hence

Hk−1
(
ϕϑ
+ , ϕ

γ
+

)
= Ck−1

(
ϕ+, 0

)
= δk−1,0Z = δk,1Z ∀k ≥ 0 (3.109)

(see Proposition 3.3).
Finally, for the same reason, we have

Hk

(
W,ϕϑ

+

)
= Ck

(
ϕ+, u0

) ∀k ≥ 0. (3.110)

From (3.108), (3.109), and (3.110), it follows that in (3.106) only the tail (i.e., k = 1) is
nontrivial. The rank theorem implies that

rank H1

(
W,ϕϑ

+

)
= rank im ∂∗ + rank ker ∂∗

= rank im ∂∗ + rank im i∗

= 1 + 0 = 1

(3.111)

(by virtue of the exactness of (3.106)), so

rank C1
(
ϕ+, u0

) ≤ 1 (3.112)

(see (3.110)).
But u0 is a critical point of mountain pass type for ϕ+. Hence

rank C1
(
ϕ+, u0

) ≥ 1. (3.113)

From (3.112) and (3.113) and since

Ck

(
ϕ+, u0

)
= Hk

(
W,ϕϑ

+

)
= 0 ∀k /= 1, (3.114)

we infer that

Ck

(
ϕ+, u0

)
= δk,1Z ∀k ≥ 0. (3.115)

Similarly, we show that

Ck

(
ϕ−, v0

)
= δk,1Z ∀k ≥ 0. (3.116)

This proves Claim 1.

Claim 2. Ck(ϕ, u0) = Ck(ϕ+, u0), Ck(ϕ, v0) = Ck(ϕ−, v0) for all k ≥ 0.
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We consider the homotopy

h1(t, u) = (1 − t)ϕ+(u) + tϕ(u) ∀(t, u) ∈ [0, 1] ×W
1,p
0 (Ω). (3.117)

Clearly u0 ∈ Kh(t,·) for all t ∈ [0, 1]. We will show that there exists � > 0, such that

B�(u0) ∩Kh1(t,·) = {u0} ∀t ∈ [0, 1], (3.118)

where

B�(u0) =
{
u ∈ W

1,p
0 (Ω) : ‖u − u0‖ < �

}
. (3.119)

Arguing by contradiction, suppose that (3.118) is not true for any � > 0. Then we can find
two sequences {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W

1,p
0 (Ω) \ {u0}, such that

tn −→ t in [0, 1],

un −→ u0 in W
1,p
0 (Ω),

(htn)
′(un) = 0 ∀n ≥ 1.

(3.120)

For every n ≥ 1, we have

A(un) = (1 − tn)Nf+(un) + tnNf(un), (3.121)

so

− div a(∇un(z)) = (1 − tn)f(z, u+
n(z)) + tnf(z, un(z)) a.e. in Ω,

un|∂Ω = 0.
(3.122)

From Ladyzhenskaya and Uraltseva [13, p. 286], we know that we can findM9 > 0, such that

‖un‖∞ ≤ M9 ∀n ≥ 1. (3.123)

Then from Lieberman [14, p. 320], we infer that there exist α ∈ (0, 1) and M10 > 0, such that

un ∈ C1,α
0

(
Ω
)
, ‖un‖C1,α

0 (Ω) ≤ M10 ∀n ≥ 1. (3.124)

The compactness of the embedding C1,α
0 (Ω) into C1

0(Ω) and (3.120) imply that

un −→ u0 in C1
0

(
Ω
)
, (3.125)
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so, there exists n0 ≥ 1, such that

un ∈ int C+ ∀n ≥ n0 (3.126)

(recall that u0 ∈ int C+; see Proposition 3.5) and thus {un}n≥n0
⊆ Kϕ+ are distinct solutions of

(1.5), a contradiction.
Therefore (3.118) holds for some � > 0. Invoking the homotopy invariance property of

critical groups, we have

Ck

(
ϕ, u0

)
= Ck

(
ϕ+, u0

) ∀k ≥ 0. (3.127)

Similarly, we show that

Ck

(
ϕ, v0

)
= Ck

(
ϕ−, v0

) ∀k ≥ 0. (3.128)

This proves Claim 2.
From Claims 1 and 2, we have that

Ck

(
ϕ, u0

)
= Ck

(
ϕ, v0

)
= δk,1 Z ∀k ≥ 0. (3.129)

Also, we have

Ck

(
ϕ, 0
)
= δk,0Z ∀k ≥ 0 (3.130)

(see Proposition 3.3) and

Ck

(
ϕ,∞) = 0 ∀k ≥ 0 (3.131)

(see Proposition 3.7).
SinceKϕ = {0, u0, v0}, from (3.129), (3.130), (3.131), and the Morse relation (2.13)with

t = −1, we have

2(−1)1 + (−1)0 = 0, (3.132)

a contradiction.
Therefore, there exists y0 ∈ Kϕ, y0 /∈ {0, u0, v0}. So, y0 solves (1.5), and by the nonlinear

regularity theory, y0 ∈ C1
0(Ω).

Remark 3.9. Even in the Hilbert space case (i.e., p = 2), our result is more general than that
of Wang [1], since we go beyond the Laplace differential operator and our hypotheses on the
reaction f are considerably more general.
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[3] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, vol. 9 of Series in Mathematical Analysis and
Applications, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2006.

[4] J. L. Vázquez, “A strong maximum principle for some quasilinear elliptic equations,” Applied
Mathematics and Optimization, vol. 12, no. 3, pp. 191–202, 1984.

[5] V. Benci, D. Fortunato, and L. Pisani, “Soliton like solutions of a Lorentz invariant equation in dimen-
sion 3,” Reviews in Mathematical Physics, vol. 10, no. 3, pp. 315–344, 1998.

[6] S. Cingolani and M. Degiovanni, “Nontrivial solutions for p-Laplace equations with right-hand side
having p-linear growth at infinity,” Communications in Partial Differential Equations, vol. 30, no. 7-9, pp.
1191–1203, 2005.

[7] G.M. Figueiredo, “Existence of positive solutions for a class of q elliptic problems with critical growth
on n,” Journal of Mathematical Analysis and Applications, vol. 378, no. 2, pp. 507–518, 2011.

[8] M. Sun, “Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance,” Journal
of Mathematical Analysis and Applications, vol. 386, no. 2, pp. 661–668, 2012.

[9] Z. Chen and Y. Shen, “Infinitely many solutions of Dirichlet problem for p-mean curvature operator,”
Applied Mathematics. A Journal of Chinese Universities. Series B, vol. 18, no. 2, pp. 161–172, 2003.
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