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We first establish the explicit structure of nonlinear gradient flow systems on metric spaces and
then develop Gamma-convergence of the systems of nonlinear gradient flows, which is a scheme
meant to ensure that if a family of energy functionals of several variables depending on a para-
meter Gamma-converges, then the solutions to the associated systems of gradient flows converge
as well. This scheme is a nonlinear system edition of the notion initiated by Sylvia Serfaty in 2011.

1. Introduction

The theory of Gamma-convergence was introduced by De Giorgi in the 1970s. It has become
both a standard criterion for the study of variational problems and one of the extremely
important topics in the calculus of variations. Gradient flows which are defined on metric
spaces were also noticed by De Giorgi, that is, the notion replacing “gradient flows in a
differentiable structure” then that of “curve of maximal slope in metric space.” This notion
was introduced in [1] then further developed in [2–5]. It turns out to be useful in many
applications, in particular for defining gradient flows over the probability measure spaces
equipped with the Wasserstein metric.

In 2004, Gamma-convergence of gradient flows on Hilbert spaces was introduced by
Sandier and Serfaty in [6]. This abstract method states that if a family of energy functionals
{Jε}ε>0 Γ-converges to a limiting functional J , then, under suitable conditions, solutions of
the gradient flow of Jε converge to solutions of the gradient flow of J . This scheme was
used successfully for the dynamics of Ginzburg-Landau vortices (cf. [6]), the Cahn-Hilliard
equation (cf. [7, 8]), and the Allen-Cahn equation (cf. [9]).

The notion of Gamma-convergence of gradient flows on metric spaces was initiated
by Serfaty [9] in 2011. She presented and proved the following.



2 Abstract and Applied Analysis

Proposition 1.1 (cf. [9] Gamma-convergence of gradient flows in the metric spaces setting).
Let (Xε, dε) and (X, d) be complete metric spaces. Let Φε and Φ be functionals defined on metric
spaces (Xε, dε) and (X, d), respectively. Assume that there is a sense of convergence S of uε ∈ Xε to
u ∈ X which can be general and with respect to the Γ-liminf convergence of Φε to Φ:

uε
S
⇀ u =⇒ lim inf

ε→ 0
Φε(uε) ≥ Φ(u). (1.1)

Let gε and g be strong upper gradients of Φε and Φ, respectively. Assume in addition the following
relations.

(1) Lower bound on the metric derivatives: if uε(t)
S
⇀ u(t), for t ∈ [0, T) then for all s ∈ [0, T)

lim inf
ε→ 0

∫s
0

∣∣u′ε∣∣pdε(t)dt ≥
∫s
0

∣∣u′∣∣pd(t)dt. (1.2)

(2) Lower bound on the slopes: if uε
S
⇀ u, then

lim inf
ε→ 0

gε(uε) ≥ g(u). (1.3)

Let uε(t) be a p-curve of maximal slope on (0, T) for Φε with respect to gε, such that uε(t)
S
⇀ u(t),

which is well prepared in the sense that

lim
ε→ 0

Φε(uε(0)) = Φ(u(0)). (1.4)

Then u is a p-curve of maximal slope with respect to g and

lim
ε→ 0

Φε(uε(t)) = Φ(u(t)) ∀t ∈ [0, T),

gε(uε) −→ g(u) in Lploc(0, T),∣∣u′ε∣∣dε −→
∣∣u′∣∣d in Lploc(0, T).

(1.5)

Obviously, this scheme (Proposition 1.1.) can be applied to single gradient flow prob-
lems only. To the best of our knowledge, nonlinear equations are more difficult than linear
equations, the problem of system of differential equations is more complicated and more
important than the problem of scalar equations, and the system of nonlinear gradient flows on
metric spaces has not appeared elsewhere. This gives us a motivation for studying the
systems of nonlinear gradient flows on metric spaces and then establishing its Gamma-con-
vergence structure which can be applied to the problems of nonlinear gradient flow systems
on metric spaces. This scheme can be regarded as a “nonlinear system” edition of the notion
initiated by Sylvia Serfaty.
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This paper is organized as follows. In Section 2, we introduce some necessary know-
ledge on gradient flows, basic definitions of absolutely continuous curve, metric derivative,
strong upper gradient, and curve of maximal slope for functional. In Section 3, we establish
the explicit structure of nonlinear gradient flow systems and Gamma-convergence of the
systems of nonlinear gradient flows on metric spaces. Finally, we give two examples to illus-
trate a special case of our main results in Section 4.

2. Basic Definitions and Preliminaries

Let (X, 〈·, ·〉) be a real Hilbert space with the corresponding norm ‖ · ‖ and let E : X → R be
a functional defined on X. We say that E is Fréchet differentiable at x ∈ X if there exists
x∗ ∈ X∗ ≡ L(X;R) (the space of all bounded linear functionals on X) such that

E(x + h) − E(x) = x∗(h) + o(‖h‖), (2.1)

where lim‖h‖→ 0(o(‖h‖)/‖h‖) = 0.
Note that if such an x∗ exists, then it is unique and we denote DE(x) ≡ x∗. In view of

the Riesz representation theorem there exists a unique element y ∈ X such that

〈
y, h

〉
= x∗(h) ∀h ∈ X. (2.2)

Moreover ‖x∗‖X∗ = ‖y‖.DE(x) is called the differentiable of E at x (notice that it is a bounded
linear functional on X). We denote ∇XE(x) ≡ y and we call ∇XE(x) the gradient of E at x.
Hence we have

DE(x)(h) = 〈∇XE(x), h〉 ∀h ∈ X. (2.3)

We say that E is of class C1 on X (i.e., E ∈ C1(X;R)) if the map x → DE(x) is continuous on
X. If E ∈ C1(X;R), then the directional derivative of E at u(∈ X) in direction ϕ exists and is
given by

d

dt

∣∣∣∣
t=0
E
(
u + tϕ

)
=
〈∇XE(u), ϕ

〉
. (2.4)

Let γ : R → X be a differentiable curve in X with γ(t0) = x ∈ X. Then

d

dt

∣∣∣∣
t=t0

E
(
γ(t)

)
=
〈∇XE

(
γ(t0)

)
, γ ′(t0)

〉
. (2.5)

The evolution equation

dx

dt
= −∇XE(x) (2.6)
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is called the gradient flow of E on Hilbert space (X, ‖ · ‖X). Using the definitions of Hilbert
spaces and Gradient flows, it is easy to show the following basic and useful lemma.

Lemma 2.1. Suppose that for each 1 ≤ i ≤ n, (Yi, 〈·, ·〉Yi) is an inner product space with induced
norm ‖ · ‖Yi . Let one defines

〈
x, y

〉
Y ≡

n∑
i=1

〈
xi, yi

〉
Yi

(2.7)

for each x = (x1, . . . , xn), y = (y1, . . . , yn) in Y ≡ Y1 × · · · × Yn. Then one has the following.

(i) We can see that (Y, 〈·, ·〉Y ) is an inner product space with induced norm

‖x‖2Y =
n∑
i=1

‖xi‖2Yi ∀x = (x1, . . . , xn) ∈ Y. (2.8)

Thus, (Y, ‖ · ‖Y ) is a Hilbert space.

(ii) Let F be a C1 functional defined on Y ≡ Y1 × · · · × Yn and let x = (x1, . . . , xn) ∈ Y . An
element y = (y1, . . . , yn) ∈ Y (and denote y = ∇YF(x)) is called the gradient of F at x on
the Hilbert space Y if for every differentiable curve γ(t) = (γ1(t), . . . , γn(t)) in Y satisfying
γ(t0) = x,

d

dt

(
F
(
γ(t)

))∣∣∣∣
t=t0

=
〈∇YF

(
γ(t0)

)
, γ ′(t0)

〉
Y =

n∑
i=1

〈
yi, γ

′
i(t0)

〉
Yi
. (2.9)

Let one denotes

yi = ∇YiF
(
γ(t0)

)
= ∇YiF(x) ∀1 ≤ i ≤ n. (2.10)

∇YiF(x) is called the gradient of F at x with respect to Yi. Hence one has

d

dt

(
F
(
γ(t)

))∣∣∣∣
t=t0

=
n∑
i=1

〈∇YiF
(
γ(t0)

)
, γ ′i(t0)

〉
Yi
. (2.11)

The evolution equation (the gradient flow of F on (Y, ‖ · ‖Y ))

dx

dt
= −∇YF(x), (2.12)
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can be expressed as the following system of gradient flows on Hilbert spaces:

dx1
dt

= −∇Y1F(x1(t), . . . , xn(t)) ∈ Y1,

dx2
dt

= −∇Y2F(x1(t), . . . , xn(t)) ∈ Y2,

...

dxn
dt

= −∇YnF(x1(t), . . . , xn(t)) ∈ Yn.

(2.13)

Definition 2.2 (p-absolutely continuous curve). Let (X, d) be a complete metric space equip-
ped with the distance d. A mapping v : (a, b) → X is called a p-absolutely continuous curve
or belongs to ACp(a, b;X), p ≥ 1, if there exists an Lp(a, b) functionm such that

d(v(s), v(t)) ≤
∫ t
s

m(r)dr ∀a < s ≤ t < b. (2.14)

Proposition 2.3 (cf. [5]). Let (X, d) be a metric space and let u : [a, b] → X. Then

(i) u ∈ AC([a, b];X) if and only if there existsm ∈ L1(a, b),m ≥ 0, such that

d(u(s), u(t)) ≤
∫ t
s

m(τ)dτ ∀a ≤ s < t ≤ b. (2.15)

(ii) If u ∈ AC([a, b];X), the metric derivative

∣∣u′∣∣d(t) ≡ lim
h→ 0

d(u(t + h), u(t))
|h| (2.16)

exists for a.e. t ∈ (a, b), |u′|d ∈ L1(a, b),

d(u(s), u(t)) ≤
∫ t
s

∣∣u′∣∣ddτ ∀a ≤ s < t ≤ b, (2.17)

and ifm satisfies (2.15), then |u′|d ≤ m a.e. on (a, b).

In the following, let us give amotivation for defining “gradient flow” onmetric spaces.
Here we completely follow the nice contents of Section 1.3 in [5]. Note that every solution u
of the gradient flow

du

dt
= −∇XE(u(t)) (2.18)
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can be characterized by the following the scalar equations:

d

dt
(E(u(t))) = (E ◦ u)′(t) = 〈∇XE(u(t)), u′(t)

〉

= − 〈∇XE(u(t)),∇XE(u(t))〉
= − 〈u′(t), u′(t)〉
= − ‖∇XE(u(t))‖

∥∥u′(t)∥∥,

(2.19)

∥∥u′(t)∥∥ = ‖∇XE(u(t))‖. (2.20)

Using Young’s inequality, (2.19) and (2.20) are equivalent to

(E ◦ u)′(t) = −1
2
∥∥u′(t)∥∥2 − 1

2
‖∇XE(u(t))‖2. (2.21)

We can impose (2.18), (2.19), (2.20), and (2.21) as a system of differential inequalities in the
couple (u, g) by using the following strategies.

(i) The function g is an upper bound for the modulus of the gradient

∣∣(E ◦ v)′∣∣ ≤ g(v) · ∥∥v′∥∥ (2.22)

for every regular curve v : (0,+∞) �→ X.

(ii) Impose that the functional E decreasing along u as much as possible compatibly
with (2.22), that is,

(E ◦ u)′(t) ≤ −g(u(t)) · ∥∥u′(t)∥∥ in (0,+∞). (2.23)

(iii) Prescribe the dependence of ‖u′‖ on g(u),
∥∥u′∥∥ = g(u) in (0,+∞), (2.24)

or even in a single formula

(E ◦ u)′(t) ≤ −1
2
∥∥u′(t)∥∥2 − 1

2
(
g(u(t))

)2 in (0,+∞). (2.25)

Whereas (2.18), (2.19), and (2.20) make sense only in a Hilbert space framework, the
formulas (2.21)∼(2.25) are of purelymetric nature and can be extended tomore general metric
space, provided we understand ‖u′‖ as the metric derivative of u, |u′|d. Of course, the concept
of upper gradient provides only an upper estimate for themodulus of∇XE in the regular case,
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but it is enough to define steepest descent curves, that is, curves which realize the minimal
selection of d/dt(E ◦ u)(t) compatible with

∣∣(E ◦ v)′(t)∣∣ ≤ g(v(t))∣∣v′∣∣
d(t) (2.26)

for a.e. t ∈ (0,+∞).
Suppose that u ∈ AC(a, b;X), and g ◦ u is Borel. Using (2.26), we have for any a < s <

t < b,

|(E ◦ u)(t) − (E ◦ u)(s)| =
∣∣∣∣∣
∫ t
s

(E ◦ u)′(τ)dτ
∣∣∣∣∣

≤
∫ t
s

∣∣(E ◦ u)′(τ)∣∣dτ

≤
∫ t
s

g(u(τ))
∣∣u′∣∣d(τ)dτ.

(2.27)

Therefore we say that g is a strong upper gradient for E if for each u ∈ AC(a, b;X), g ◦ u is
Borel and (2.27) holds for all a < s < t < b. Using the ideas (ii) and (iii) and Young’s inequa-
lity, we say that a locally absolutely continuous function u : (a, b) �→ X is a curve of maximal
slope for E with respect to its strong upper gradient g if E ◦ u is a.e. equal to a nonincreasing
map ϕ and

(E ◦ u)′(t) = ϕ′(t) ≤ −|u
′|2d(t)
2

−
(
g(u(t))

)2
2

(2.28)

for a.e. t ∈ (a, b). Let us present the main definitions and three lemmas as follows.

Definition 2.4 (strong upper gradient). Suppose that (Xi, di) is a complete metric space equip-
pedwith the distance di for i = 1, . . . , n. Let gi : X1×· · ·×Xn → [0,+∞] for each iwith 1 ≤ i ≤ n.
We say that g = (g1, . . . , gn) is a strong upper gradient for Φ : X1 × · · · × Xn → R if for each
(u1, . . . , un) ∈ AC(a, b;X1 × · · · ×Xn), gi ◦ (u1, . . . , un) is Borel for i = 1, . . . , n, and

|Φ(u1, . . . , un)(t) −Φ(u1, . . . , un)(s)| ≤
∫ t
s

(
n∑
i=1

∣∣u′i∣∣di(τ)gi(u1, . . . , un)(τ)
)
dτ ∀a < s ≤ t < b.

(2.29)

Definition 2.5 (a pair of Young’s functions). Suppose that F∗and G∗ : [0,+∞) → [0,+∞) are
two differentiable functions. We say that (F∗, G∗) is a pair of Young’s functions if they satisfy

(1) Young
′
s inequality: st ≤ F∗(t) +G∗(s) for all s, t ≥ 0,

(2) Young
′
s equality: st = F∗(t) +G∗(s) ⇔ s = f∗(t) or t = g∗(s),

where f∗ = (F∗)′ and g∗ = (G∗)′.
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Definition 2.6 (curve of maximal slope). Let (F∗
i , G

∗
i ) be a pair of Young’s functions for each i

with 1 ≤ i ≤ n. We say that (u1, . . . , un) : (a, b) → X1 × · · · × Xn is a (F∗
1 , . . . , F

∗
n)-curve of

maximal slope for the functional Φ with respect to the strong upper gradient g = (g1, . . . , gn)
if Φ(u1, . . . , un) is L1-a.e. equal to a nonincreasing map ϕ and

ϕ′(t) ≤ −
n∑
i=1

[
F∗
i

(∣∣u′i∣∣di(t)
)
+G∗

i

(
gi(u1, . . . , un)(t)

)]
(2.30)

for L1-a.e. t ∈ (a, b).

Definition 2.7 (Γ-liminf convergence). Let (Xi,ε, di,ε) and (Xi, di) be complete metric spaces for
all 1 ≤ i ≤ n and ε > 0. Suppose that Φε : X1,ε × · · · ×Xn,ε �→ (−∞,+∞] and Φ : X1 × · · · ×Xn �→
(−∞,+∞] are functionals defined on X1,ε × · · · × Xn,ε and X1 × · · · × Xn, respectively. We say
that ΦεΓ-liminf converges to Φ if

(u1,ε, . . . , un,ε)
S
⇀ (u1, . . . , un), (2.31)

then

lim inf
ε→ 0

Φε(u1,ε, . . . , un,ε) ≥ Φ(u1, . . . , un), (2.32)

where (u1,ε, . . . , un,ε) ∈ X1,ε×· · ·×Xn,ε, (u1, . . . , un) ∈ X1×· · ·×Xn, and the sense of convergence
S can be general.

Lemma 2.8. Suppose that α ≥ 0 and an ≥ 0 for each n ∈ N. If lim infn→∞an ≥ α and if f is a
continuous nondecreasing function on [0,+∞), then

lim inf
n→∞

f(an) ≥ f(α). (2.33)

Proof. (i) For each k ∈ N, a−k ≡ infn≥kan ≤ an, ∀n ≥ k.
(ii) Since f is non-decreasing on [0,∞), and using (i), we have

f
(
a−k
) ≤ f(an), ∀n ≥ k. (2.34)

Therefore,

f
(
a−k
)
is a lower bound for

{
f(an) | n ≥ k}, (2.35)

and so

f
(
a−k
) ≤ inf

n≥k
f(an), for each k ∈ N. (2.36)
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(iii) Since f is continuous on [0,∞), and using (ii), we have

f(α) ≤ f

(
lim inf
n→∞

an

)
= f

(
lim
k→∞

(
inf
n≥k

an

))

= f

(
lim
k→∞

a−k

)
= lim

k→∞
f
(
a−k
)

≤ lim
k→∞

(
inf
n≥k

f(an)
)

= lim inf
k→∞

f(ak).

(2.37)

Lemma 2.9 (see [10, Theorem 5.11]). Let f be nonnegative and measurable on E. Then
∫
E fdx = 0

if and only if f = 0 a.e. in E.

Lemma 2.10. Let (Xi, di) be a metric space for each 1 ≤ i ≤ n. LetX ≡ X1×· · ·×Xn = {(x1, · · · , xn) |
xi ∈ Xi for 1 ≤ i ≤ n}. Define the function d : X ×X �→ R by

d
(
x, y

) ≡ n∑
i=1

di
(
xi, yi

)
(2.38)

for each x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X. Then

(i) (X, d) is a metric space,

(ii) suppose that v = (v1, . . . , vn) ∈ AC(a, b;X). The metric derivative |v′|d can be expressed
as

∣∣v′∣∣
d(t) =

n∑
i=1

∣∣v′
i

∣∣
di
(t) (2.39)

for a.e. t ∈ (a, b).

3. Main Results

In the following theorem we introduce the systems of explicit nonlinear gradient flows of
energy functional with respect to the strong upper gradient on metric spaces and investigate
an upper control for some form of velocity of solutions by its dissipation rate of the energy
functional. Using this idea, we can see that if motion is driven by energy dissipation and if
there are solutions that move without losing much energy, then they must move very slowly
for each component solution.

Theorem 3.1. Let (Xi, di) be a complete metric spaces equipped with distance di for i = 1, 2, . . . , n.
LetΦ be a functional defined onX1 ×X2 × · · · ×Xn and let g = (g1, . . . , gn) be a strong upper gradient
forΦ. Assume that fi : [0,+∞) �→ [0,+∞) is a continuous, strictly increasing and surjective function
for each 1 ≤ i ≤ n. Let Fi and Gi be defined by

Fi(t) =
∫ t
0
fi(τ)dτ, Gi(t) =

∫ t
0
f−1
i (τ)dτ (3.1)
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for each t ≥ 0 and 1 ≤ i ≤ n. Suppose that (u1, , . . . , un) ∈ AC(a, b;X1 × · · · × Xn) and that is a
(F1, . . . , Fn)-curve of maximal slope for the functional Φ with respect to the strong upper gradient g
on (a, b) ⊂ R. Then one has the following.

(i)

Φ(u1, . . . , un)(s) −Φ(u1, . . . , un)(t)

=
∫ t
s

n∑
i=1

[
Fi
(∣∣u′i∣∣di(τ)

)
+Gi

(
gi(u1, . . . , un)

)
(τ)
]
dτ

=
∫ t
s

n∑
i=1

∣∣u′i∣∣di(τ)gi(u1, . . . , un)(τ)dτ

(3.2)

for a.e. a < s ≤ t < b.
(ii) (u1, . . . , un) satisfies the system of explicit nonlinear gradient flows ofΦ with respect to the

structure ((f1, . . . , fn), (g1, . . . , gn), X1 × · · · ×Xn)

f1
(∣∣u′1∣∣d1(t)

)
= g1(u1(t), . . . , un(t)),

f2
(∣∣u′2∣∣d2(t)

)
= g2(u1(t), . . . , un(t)),

...

fn
(∣∣u′n∣∣dn(t)

)
= gn(u1(t), . . . , un(t)),

(3.3)

for a.e. t ∈ (a, b).

(iii) Assume that function ψi(t) ≡ fi(t) · t is convex and strictly increasing on [0,+∞) for each
1 ≤ i ≤ n, then one has

(a)

n∑
i=1

ψi

(
di(ui(t), ui(s))

t − s
)

≤ Φ(u1, . . . , un)(s) −Φ(u1, . . . , un)(t)
t − s , (3.4)

for all a < s < t < b,

(b)

n∑
i=1

ψi
(∣∣u′i∣∣di(t)

)
≤ (Φ ◦ (u1, . . . , un))′(t), (3.5)

for a.e. t ∈ (a, b).
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(iv) If fi(t) = t for 1 ≤ i ≤ n, then (ii) can be expressed as

∣∣u′1∣∣d1 = g1(u1, . . . , un),∣∣u′2∣∣d2 = g2(u1, . . . , un),
...

∣∣u′n∣∣dn = gn(u1, . . . , un),

(3.6)

which is the system of explicit linear gradient flows of Φ with respect to the structure
((f1, . . . , fn), (g1, . . . , gn), X1 × · · · ×Xn).

Proof. According to the definitions of Fi and Gi, (Fi, Gi) is a pair of Young’s functions. Recall
we assume that (u1, . . . , un) is a (F1, . . . , Fn)-curve of maximal slope forΦwith respect to g on
(a, b). For a.e. a < s < t < b, we have

−
∫ t
s

(Φ ◦ (u1, . . . , un))′(τ)dτ ≥
∫ t
s

n∑
i=1

[
Fi
(∣∣u′i∣∣di(τ)

)
+Gi

(
gi(u1, . . . , un)

)
(τ)
]
dτ

≥
∫ t
s

n∑
i=1

∣∣u′i∣∣di(τ)gi(u1, . . . , un)(τ)dτ

≥ |Φ ◦ (u1, . . . , un)(t) −Φ ◦ (u1, . . . , un)(s)|.

(3.7)

The last inequality holds due to the assumption of strong upper gradient for g. Thus we easily
obtain the following formula:

∫ t
s

n∑
i=1

[
Fi
(∣∣u′i∣∣di(τ)

)
+Gi

(
gi(u1, . . . , un)

)
(τ)
]
dτ

=
∫ t
s

n∑
i=1

∣∣u′i∣∣di(τ)gi(u1, . . . , un)(τ)dτ

= Φ ◦ (u1, . . . , un)(s) −Φ ◦ (u1, . . . , un)(t),

(3.8)

for L1 a.e. a < s < t < b. Using the Young’s inequality and the Vanishing theorem (Lemma 2.9),
we obtain

Fi
(∣∣u′i∣∣di(τ)

)
+Gi

(
gi(u1, . . . , un)

)
(τ) =

∣∣u′i∣∣di(τ)gi(u1, . . . , un)(τ) (3.9)

for a.e. a < τ < b and for 1 ≤ i ≤ n. By Young’s equality, we discover that the system of explicit
gradient flows of Φwith respect to the structure ((f1, . . . , fn), g, X1 × · · · ×Xn) holds.
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We now prove assertion (iii). By using assertions (i), (ii), and the assumption for ψi,
we see that

n∑
i=1

∫ t
s

ψi
(∣∣u′i∣∣di(τ)

)
dτ = Φ ◦ (u1, . . . , un)(s) −Φ ◦ (u1, . . . , un)(t), (3.10)

for a.e. a < s < t < b. Owing to the metric derivative |u′i|di which is the smallest admissible
functionmi satisfying

di(ui(s), ui(t)) ≤
∫ t
s

mi(τ)dτ ∀a < s ≤ t < b (3.11)

and ψi is convex and strictly increasing on [0,+∞), by using Jensen’s inequality, we find

n∑
i=1

ψi

(
di(ui(t), ui(s))

t − s
)

≤
n∑
i=1

ψi

(
1

t − s
∫ t
s

∣∣u′i∣∣di(τ)dτ
)

≤ 1
t − s

n∑
i=1

∫ t
s

ψi
(∣∣u′i∣∣di(τ)

)
dτ

=
Φ ◦ (u1, . . . , un)(s) −Φ ◦ (u1, . . . , un)(t)

t − s .

(3.12)

This completes the proof of (a). By passing to the limit s → t in (a), we deduce that (b)
holds.

In our second main result, we study and establish the abstract structure of “Gamma-
convergence of gradient flow systems on metric spaces” which is a nonlinear system edition
of the notion (Proposition 1.1) and which can be applied to the problems involving a system
of nonlinear gradient flows on metric spaces.

Theorem 3.2 (Gamma-convergence of systems of gradient flows on metric spaces). Let (Xi,ε,
di,ε) and (Xi, di) be complete metric spaces for all 1 ≤ i ≤ n and ε > 0. Let Φε and Φ be functionals
defined on spacesX1,ε×· · ·×Xn,ε andX1×· · ·×Xn, respectively. Suppose that the Γ-lim inf convergence
of Φε to Φ holds. Let gε = (g1,ε, . . . , gn,ε) and g = (g1, . . . , gn) be strong upper gradients of Φε and
Φ, respectively. Let (F∗

i , G
∗
i ) be a pair of Young’s functions having continuous, strictly increasing and

surjective derivative (F∗
i )

′(= f∗
i ) for i = 1, . . . , n. Assume in addition the following relations.

(1) Lower bound on the metric derivatives: if (u1,ε, . . . , un,ε)(t)
S
⇀ (u1, . . . , un)(t), for t ∈

[0, T) then for all s ∈ [0, T)

lim inf
ε→ 0

∣∣∣u′i,ε
∣∣∣
di,ε

(s) ≥ ∣∣u′i∣∣di(s), for i = 1, . . . , n. (3.13)

(2) Lower bound on the strong upper gradients: If (u1,ε, . . . , un,ε)
S
⇀ (u1, . . . , un), then

lim inf
ε→ 0

gi,ε(u1,ε, . . . , un,ε) ≥ gi(u1, . . . , un) for i = 1, . . . , n. (3.14)
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Let (u1,ε, . . . , un,ε) be a (F∗
1 , . . . , F

∗
n)-curve of maximal slope on (0, T) for Φε with respect to gε =

(g1,ε, . . . , gn,ε) such that (u1,ε, . . . , un,ε)(t)
S
⇀ (u1, . . . , un)(t), which is well-prepared in the sense that

lim
ε→ 0

Φε(u1,ε, . . . , un,ε)(0) = Φ(u1, . . . , un)(0). (3.15)

Then

(i) (u1, . . . , un) is a (F∗
1 , . . . , F

∗
n)-curve of maximal slope on (0, T) for Φ with respect to g =

(g1, . . . , gn),

(ii)

lim
ε→ 0

Φε(u1,ε, . . . , un,ε)(t) = Φ(u1, . . . , un)(t) ∀t ∈ [0, T), (3.16)

(iii)

lim
ε→ 0

∫ s
0

n∑
i=1

[
F∗
i

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
)
+G∗

i

(
f∗
i

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
))]

dt

=
∫s
0

n∑
i=1

[
F∗
i

(∣∣u′i∣∣di(t)
)
+G∗

i

(
f∗
i

(∣∣u′i∣∣di(t)
))]

dt,

(3.17)

(iv)

lim
ε→ 0

∫s
0

n∑
i=1

[
F∗
i

(
g∗
i

(
gi,ε(u1,ε, . . . , un,ε)(t)

))
+G∗

i

(
gi,ε(u1,ε, . . . , un,ε)(t)

)]
dt

=
∫s
0

n∑
i=1

[
F∗
i

(
g∗
i

(
gi(u1, . . . , un)(t)

))
+G∗

i

(
gi(u1, . . . , un)(t)

)]
dt,

(3.18)

where g∗
i = (f∗

i )
−1.

Proof. Owing to the fact that (u1,ε, . . . , un,ε) is a (F∗
1 , . . . , F

∗
n)-curve of maximal slope for Φε

with respect to gε on [0, T), we recall that Theorem 3.1-(i) and (ii) yields

Φε(u1,ε, . . . , un,ε)(0) −Φε(u1,ε, . . . , un,ε)(s)

=
∫s
0

n∑
i=1

[
F∗
i

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
)
+G∗

i

(
gi,ε(u1,ε, . . . , un,ε)(t)

)]
dt

=
∫s
0

n∑
i=1

∣∣∣u′i,ε
∣∣∣
di,ε

(t)gi,ε(u1,ε, . . . , un,ε)(t)dt,

(3.19)
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for a.e. 0 < s < T ;

f∗
i

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
)

= gi,ε(u1,ε, . . . , un,ε)(t), (3.20)

for a.e. t ∈ [0, T) and for 1 ≤ i ≤ n.
Passing to the lim infε→ 0 to (3.19) and applying Fatou’s lemma, we deduce that

lim inf
ε→ 0

[Φε(u1,ε, . . . , un,ε)(0) −Φε(u1,ε, . . . , un,ε)(s)]

≥
n∑
i=1

[
lim inf
ε→ 0

∫s
0
F∗
i

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
)
dt + lim inf

ε→ 0

∫s
0
G∗
i

(
gi,ε(u1,ε, . . . , un,ε)(t)

)
dt

]

≥
n∑
i=1

[∫ s
0
lim inf
ε→ 0

F∗
i

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
)
dt +

∫ s
0
lim inf
ε→ 0

G∗
i

(
gi,ε(u1,ε, . . . , un,ε)(t)

)
dt

]

≥
n∑
i=1

[∫ s
0
F∗
i

(∣∣u′i∣∣di(t)
)
dt +

∫s
0
G∗
i

(
gi(u1, . . . , un)(t)

)
dt

]
.

(3.21)

The last inequality is achieved by the assumptions of (1) and (2) as well as Lemma 2.8.
Using the fact that each (F∗

i , G
∗
i ) is a pair of Young’s functions (hence Young’s inequa-

lity holds), (3.21), and the strong upper gradient assumption of g for Φ, we can check that

lim inf
ε→ 0

[Φε(u1,ε, . . . , un,ε)(0) −Φε(u1,ε, . . . , un,ε)(s)]

≥
n∑
i=1

[∫ s
0
F∗
i

(∣∣u′i∣∣di(t)
)
dt +

∫s
0
G∗
i

(
gi(u1, . . . , un)(t)

)
dt

]

≥
∫ s
0

n∑
i=1

∣∣u′i∣∣di(t)gi(u1, . . . , un)(t)dt

≥ Φ(u1, . . . , un)(0) −Φ(u1, . . . , un)(s).

(3.22)

We recall that (u1,ε, . . . , un,ε) is well prepared, and using (3.22), we can deduce that

lim sup
ε→ 0

Φε(u1,ε, . . . , un,ε)(s) ≤ Φ(u1, . . . , un)(s). (3.23)

Using the Γ-liminf convergence of Φε to Φ and (3.23), we obtain

lim
ε→ 0

Φε(u1,ε, . . . , un,ε)(s) = Φ(u1, . . . , un)(s), ∀s ∈ [0, T). (3.24)
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Combining (3.24) with (3.22), we can now conclude that, for each s ∈ [0, T),

∫s
0

n∑
i=1

[
F∗
i

(∣∣u′i∣∣di(t)
)
+G∗

i

(
gi(u1, . . . , un)(t)

)]
dt

=
∫s
0

n∑
i=1

∣∣u′i∣∣di(t)gi(u1, . . . , un)(t)dt

= Φ(u1, . . . , un)(0) −Φ(u1, . . . , un)(s).

(3.25)

Using the Young’s inequality and the Vanishing theorem (Lemma 2.9) again, we conclude
that, for a.e. t ∈ [0, T),

F∗
i

(∣∣u′i
∣∣
di
(t)
)
+G∗

i

(
gi(u1, . . . , un)(t)

)
=
∣∣u′i
∣∣
di
(t)gi(u1, . . . , un)(t), (3.26)

for all 1 ≤ i ≤ n. Moreover, by Young’s equality, we have, for a.e. t ∈ [0, T),

f∗
i

(∣∣u′i
∣∣
di
(t)
)
= gi(u1, . . . , un)(t), (3.27)

for each 1 ≤ i ≤ n.
Next, differentiating formulas (3.25)with respect to variable s, we see that (u1, . . . , un)

is a (F∗
1 , . . . , F

∗
n)-curve of maximal slope forΦwith respect to g on [0, T). Using formula (3.19),

(3.24), and (3.25)we can check that

lim
ε→ 0

∫s
0

n∑
i=1

[(
F∗
i

∣∣∣u′i,ε
∣∣∣
di,ε

(t)
)
+G∗

i

(
gi,ε(u1,ε, . . . , un,ε)(t)

)]
dt

=
∫s
0

n∑
i=1

[
F∗
i

(∣∣u′i∣∣di(t)
)
+G∗

i

(
gi(u1, . . . , un)(t)

)]
dt,

(3.28)

for all s ∈ [0, T). Finally, we recall formulas (3.20) and (3.27), and using (3.28), we obtain

lim
ε→ 0

∫s
0

n∑
i=1

[
F∗
i

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
)
+G∗

i

(
f∗
i

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
))]

dt

=
∫s
0

n∑
i=1

[
F∗
i

(∣∣u′i∣∣di(t)
)
+G∗

i

(
f∗
i

(∣∣u′i∣∣di(t)
))]

dt,

lim
ε→ 0

∫s
0

n∑
i=1

[
F∗
i

(
g∗
i

(
gi,ε(u1,ε, . . . , un,ε)(t)

))
+G∗

i

(
gi,ε(u1,ε, . . . , un,ε)(t)

)]
dt

=
∫s
0

n∑
i=1

[
F∗
i

(
g∗
i

(
gi(u1, . . . , un)(t)

))
+G∗

i

(
gi(u1, . . . , un)(t)

)]
dt

(3.29)

and complete the proof of Theorem 3.2.
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4. Examples

In this section, we present two examples to illustrate a special case of our main results.

Example 4.1. Let p > 1. If f∗
i (t) = tp−1 for each 1 ≤ i ≤ n, then (f∗

i )
−1(t) = tq−1 for i = 1, 2, . . . , n,

where (1/p) + (1/q) = 1. Hence

F∗
i (t) =

tp

p
, G∗

i (t) =
tq

q
for each 1 ≤ i ≤ n. (4.1)

In this case, Theorem 3.1 can be expressed as following.

(i) One has

Φ(u1, . . . , un)(s) −Φ(u1, . . . , un)(t) =
∫ t
s

n∑
i=1

[∣∣u′i
∣∣p
di
(τ)

p
+
g
q

i (u1, . . . , un)(τ)
q

]
dτ

=
∫ t
s

n∑
i=1

∣∣u′i∣∣di(τ)gi(u1, . . . , un)(τ)dτ.
(4.2)

(ii) The system of explicit nonlinear gradient flows of Φ with respect to the structure
((f∗

1 , . . . , f
∗
n), (g1, . . . , gn), X1 × · · · ×Xn) is

∣∣u′i∣∣p−1di
(t) = gi(u1(t), . . . , un(t)), for i = 1, 2, . . . , n. (4.3)

(iii) ψi(t) = tp for i = 1, . . . , n (ψi is convex and strictly increasing on [0,+∞) for each
1 ≤ i ≤ n). Then

(a)

n∑
i=1

(
di(ui(t), ui(s))

t − s
)p

≤ Φ(u1, . . . , un)(s) −Φ(u1, . . . , un)(t)
t − s (4.4)

for all a < s < t < b,

(b)

n∑
i=1

(∣∣u′i∣∣di(t)
)p

≤ (Φ ◦ (u1, . . . , un))′(t) for a.e. t ∈ (a, b). (4.5)
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Under the hypotheses of Theorem 3.2, we have

(i)

lim
ε→ 0

∫s
0

n∑
i=1

⎡
⎢⎢⎣

(∣∣∣u′i,ε
∣∣∣
di,ε

(t)
)p

p
+

(∣∣∣u′i,ε
∣∣∣p−1
di,ε

(t)
)q

q

⎤
⎥⎥⎦dt

=
∫s
0

n∑
i=1

⎡
⎢⎣
(∣∣u′i

∣∣
di
(t)
)p

p
+

(∣∣u′i
∣∣p−1
di

(t)
)q

q

⎤
⎥⎦dt,

(4.6)

that is, limε→ 0
∫s
0

∑n
i=1 |u′i,ε|pdi,ε(t)dt =

∫s
0

∑n
i=1 |u′i|

p

di
(t)dt.

(ii)

lim
ε→ 0

∫s
0

n∑
i=1

⎡
⎢⎣
((
gi,ε(u1,ε, . . . , un,ε)(t)

)q−1)p
p

+

(
gi,ε(u1,ε, . . . , un,ε)(t)

)q
q

⎤
⎥⎦dt

=
∫ s
0

n∑
i=1

⎡
⎢⎣
((
gi(u1, . . . , un)(t)

)q−1)p
p

+

(
gi(u1, . . . , un)(t)

)q
q

⎤
⎥⎦dt,

(4.7)

that is, limε→ 0
∫s
0

∑n
i=1 (gi,ε(u1,ε, . . . , un,ε)(t))

qdt =
∫s
0

∑n
i=1 (gi(u1, . . . , un)(t))

qdt.

Example 4.2. Considering the case p = 2 in Example 4.1, we have

(i)

Φ(u1, . . . , un)(s) −Φ(u1, . . . , un)(t) =
∫ t
s

n∑
i=1

⎡
⎣
∣∣u′i
∣∣2
di
(τ)

2
+

(
gi(u1, . . . , un)(τ)

)2
2

⎤
⎦dτ

=
∫ t
s

n∑
i=1

∣∣u′i∣∣di(τ)gi(u1, . . . , un)(τ)dτ.
(4.8)

(ii) The system of explicit linear gradient flows of Φ with respect to the structure is

∣∣u′1∣∣d1(t) = g1(u1(t), . . . , un(t))∣∣u′2∣∣d2(t) = g2(u1(t), . . . , un(t))
...

∣∣u′n∣∣dn(t) = gn(u1(t), . . . , un(t)).

(4.9)
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(iii)

n∑
i=1

(
di(ui(t), ui(s))

t − s
)2

≤ Φ(u1, . . . , un)(s) −Φ(u1, . . . , un)(t)
t − s (4.10)

for all a < s < t < b. Moreover, we have

n∑
i=1

∣∣u′i∣∣2di(t) ≤ (Φ ◦ (u1, . . . , un))′(t) for a.e. t ∈ (a, b). (4.11)

(iv)

lim
ε→ 0

∫s
0

n∑
i=1

∣∣∣u′i,ε
∣∣∣2
di,ε

(t)dt =
∫ s
0

n∑
i=1

∣∣u′i∣∣2di(t)dt. (4.12)

(v)

lim
ε→ 0

∫s
0

n∑
i=1

(
gi,ε(u1,ε, . . . , un,ε)(t)

)2
dt =

∫s
0

n∑
i=1

(
gi(u1, . . . , un)(t)

)2
dt. (4.13)
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