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A simple Cohen-Grossberg neural network with discrete delays is investigated in this paper. The
existence of local Hopf bifurcations is first considered by choosing the appropriate bifurcation
parameter, and then explicit formulas are given to determine the direction of Hopf bifurcation and
stability of the periodic solutions. Moreover, a set of sufficient conditions are given to guarantee
the global Hopf bifurcation. Numerical simulations are given to illustrate the obtained results.

1. Introduction

In 1983, Cohen and Grossberg [1] proposed a kind of neural networks, which are now called
Cohen-Grossberg neural networks. The networks have been successfully applied to signal
processing, pattern recognition, optimization, and associative memories.

It is well known that the analysis of the dynamical behaviors is a necessary step for
practical design of neural networks since their applications heavily depend on the dynamical
behaviors. The research on dynamical behaviors of neural networks involves not only the
dynamic analysis of equilibrium but also that of periodic solution, bifurcation, and chaos,
especially, the periodic oscillatory behavior of the neural networks is of great interest in
many applications [2, 3]. Since periodic oscillatory can arise through the Hopf bifurcation
in different system with or without time delays, it is very important to discuss the Hopf
bifurcation of neural networks. Up to now, to the best of the author’s knowledge, bifurcation
of Hopfield neural networks has been discussed by many researchers [4–12], but only a
few results on the bifurcation of Cohen-Grossberg neural networks have been obtained.
Zhao discussed the bifurcation of a discrete-time Cohen-Grossberg neural network in [13]
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and the bifurcation of a continuous-time Cohen-Grossberg neural network with distributed
delays in which kernel function is αe−αs in [14]; Liu discussed the local Hopf bifurcation of
the following Cohen-Grossberg neural network with discrete delays by regarding time delay
as the bifurcation parameter in [15]:

ẋ1(t) = −a1(x1(t))
[
b1(x1(t)) − d1f2(x2(t − τ2))

]
,

ẋ2(t) = −a2(x2(t))
[
b2(x2(t)) − d2f1(x1(t − τ1))

]
,

(1.1)

where xi(t) denotes the state variable associated with the ith neuron; ai(·) represents
amplification function; fi(·) denotes the signal function of the ith neuron at time t; bi(·) is
appropriately behaved function; di(·) is connection weight of the neural network; discrete
delay τi corresponds to the finite speed of the axonal signal transmission at time t, i = 1, 2.

On the other hand, realistic modelling of neural networks inevitably depend on careful
design and variation of the connection weight; in [16], Liu discussed the Neimark-Sacker
bifurcation of a discrete-time version of the neural network (1.1) by regarding the connection
weight as the bifurcation parameter. The objective of this paper is to discuss Hopf bifurcation
of continuous-time system (1.1) by regarding the connection weight as the bifurcation
parameter while time delays are fixed. The rest of this paper is organized as follows. Stability
property, existence of Hopf bifurcation, and the stability of bifurcating periodic solutions for
system (1.1) are obtained in Section 2. Global existence of Hopf bifurcation for system (1.1) is
obtained in Section 3. An example is given in Section 4 to demonstrate the main results.

2. Stability Analysis and Existence of Local Hopf Bifurcation

Throughout this paper, we assume that

(H1) b1(0) = b2(0) = 0, f1(0) = f2(0) = 0;

(H2) there exist constants ai, ai such that 0 < ai ≤ ai(·) ≤ ai for i = 1, 2;

(H3) there exist constants bi such that b′i(·) ≥ bi > 0 for i = 1, 2.

Let u1(t) = x1(t − τ1) and u2(t) = x2(t); we transform system (1.1) into the following
system

u̇1(t) = −a1(u1(t))
[
b1(u1(t)) − d1f2(u2(t − τ))

]
,

u̇2(t) = −a2(u2(t))
[
b2(u2(t)) − d2f1(u1(t))

]
,

(2.1)

in which τ = τ1 + τ2.
Obviously, system (2.1) has an equilibrium (0, 0) under conditions (H1) and (H2).
The linearized system of system (2.1) at (0, 0) is

u̇1(t) = −a1(0)b′1(0)u1(t) + a1(0)d1f
′
2(0)u2(t − τ),

u̇2(t) = −a2(0)b′2(0)u2(t) + a2(0)d2f
′
1(0)u1(t).

(2.2)

The associated characteristic equation of system (2.2) is

λ2 + aλ + b
(
c − de−λτ

)
= 0, (2.3)
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in which

a = a1(0)b′1(0) + a2(0)b′2(0), b = a1(0)a2(0), c = b′1(0)b
′
2(0), d = d1d2f

′
1(0)f

′
2(0).
(2.4)

If τ = 0, it is easy to know that (2.3) has two roots with negative real parts when d < c.
Equation (2.10) has at least one positive root when d > c.

If τ /= 0, let us assume that λ = iω (ω > 0) is a root of (2.3); we have

bc −ω2 = bd cosωτ, aω = −bd sinωτ. (2.5)

Adding up the squares of the corresponding sides of the above equation (2.5), we obtain

ω4 + kω2 + b2
(
c2 − d2

)
= 0, (2.6)

where k = (a1(0)b′1(0))
2 + (a2(0)b′2(0))

2.
Denote z = ω2; then (2.6) becomes

z2 + kz + b2
(
c2 − d2

)
= 0. (2.7)

Since k > 0, (2.7) has no positive real roots when |d| ≤ c. Equation (2.7) has a positive real
roots when |d| > c, which means (2.3) has a pair of purely imaginary root for every |d| > c.

We have from (2.5) that

aω

ω2 − bc
= tanωτ. (2.8)

It has roots as follows [4, 12]:

ω+
j ∈
[
2
(
j − 1

)
π

τ
,

(
2j − 1

)
π

τ

]

, ω−
j ∈
[(

2j − 1
)
π

τ
,

(
4j − 1

)
π

2τ

]

, j = 1, 2, . . . . (2.9)

From (2.5) and the discussion of (2.7), we obtain that

d−
j = −

aω+
j

b sinω+
j τ

< −b′1(0)b′2(0) < 0, d+
j = −

aω−
j

b sinω−
j τ

> b′1(0)b
′
2(0) > 0, (2.10)

that is, (2.3) has a pair of purely imaginary roots ± iω0 when d = d±
j .

On the other hand, we have

λ′(d)−1 =
2λ + a

be−λτ
+ τd =

(
2λ + a

λ2 + aλ + bc
+ τ

)
d, (2.11)
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thus we have

Re
(
λ′(d)−1

)
|
d=d±

j

=

⎛

⎜
⎝

abc + a
(
ω±

j

)2

(
bc −ω±

j

)2
+ a2
(
ω±

j

)2 + τ

⎞

⎟
⎠d±

j ; (2.12)

which means

Re
(
λ′(d)−1

)
|
d=d+

j

> 0, Re
(
λ′(d)−1

)
|
d=d−

j

< 0, (2.13)

and note that at d = b1(0)b2(0) = c, (2.3) has a root λ(c) = 0, and λ′(c)−1 = (a/b + τ)c > 0
according to (2.11).

From the above discusses and Hopf bifurcation theorem in [17] for functional
differential equations, we have the following results.

Theorem 2.1. Under assumptions (H1)–(H3), we have

(1) if d1d2f
′
1(0)f

′
2(0) ∈ (d−, b′1(0)b

′
2(0)), the equilibrium (0, 0) of system (1.1) is asymptoti-

cally stable;

(2) if d1d2f
′
1(0)f

′
2(0) /∈ [d−, b′1(0)b

′
2(0)], the equilibrium (0, 0) of system (1.1) is unstable;

(3) d±
j (j = 0, 1, 2, . . .) are Hopf bifurcation values for system (1.1),

where d±
j is given by (2.10) and d− = maxj≥1{d−

j }.

From discussion above, we obtain some conditions under which system (1.1)
undergoes local Hopf bifurcation near d = d±

j (j = 1, 2, . . .). In addition, we can obtain explicit
formulas for determining the properties of the Hopf bifurcation at critical d = d±

j .
Based on the normal form theory and the center manifold theorem [18], similar to

discussion in [15], we can compute the following quantities:

C1(0) =
i

2ω∓
j τ

(

g20g11 − 2
∣∣g11
∣∣2 −

∣∣g20
∣∣2

3

)

+
g21
2

,

μ2 = − Re{C1(0)}
Re
{
λ′
(
d±
j

)} ,

β2 = 2Re{C1(0)},

T2 = −
Im{C1(0)} + μ2 Im

{
λ′
(
d±
j

)}

τω∓
j

,

(2.14)

where the explicit formulas for gij in (2.14) can be obtained when we replace τj and ω0 in gij
by τ and ω∓

j in [15], respectively.
It is well known that μ2 determines the direction of the Hopf bifurcation and β2

determines the stability of the bifurcating periodic solutions [18]. Since Re{λ′(d+
j )} > 0,
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we know if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical(subcritical), the
bifurcating periodic solutions exist for d > d+

j (d < d+
j ), and the bifurcating periodic

solutions are stable(unstable), and due to Re{λ′(d−
j )} < 0, we know if μ2 < 0 (μ2 > 0), then

the Hopf bifurcation is supercritical(subcritical), the bifurcating periodic solutions exist for
d < d−

j (d > d−
j ), and the bifurcating periodic solutions are stable(unstable). T2 determines the

period of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0 (T2 < 0).

Remark 2.2. The main results above coincide with the main results in [16].

3. Global Existence of Hopf Bifurcation for the Model

In this section, we mainly prove that the local Hopf bifurcation of (1.1) can be extended for
large values by applying the global Hopf bifurcation theorem in [19].

(H4) There exist constants Mi > 0 such that |fi(·)| ≤ Mi and f ′(·) ≥ 0, uif
′′(ui) < 0 for

i = 1, 2.

Remark 3.1. Assumption (H4) is suitable, for example, fi(ui) = tanhui and fi(ui) = (1 −
e−ui)/(1 + e−ui) satisfy (H4).

Theorem 3.2. Under assumptions (H1)–(H4) and either (d1, f1(0), f2(0)) or (d2, f1(0), f2(0)) is
fixed, system (1.1) has at least a periodic solution for d < d−

j .

Proof. First, we can prove that system (1.1) has a unique equilibrium (0, 0) under conditions
(H1)–(H4) when d < d−.

The equilibria of system (1.1) satisfy the following equation according to condition
(H2):

b1(u1) − d1f2(u2) = 0,

b2(u2) − d2f1(u1) = 0.
(3.1)

From the first equation of (3.1), we have u1 = b−1 (d1f2(u2)); substitute it into the second
equation of (3.1); we obtain

b2(u2) − d2f1
(
b−1
(
d1f2(u2)

))
= 0. (3.2)

Denote

g(u2) = b2(u2) − d2f1
(
b−1
(
d1f2(u2)

))
, (3.3)

and we have

g ′(u2) = b′2(u2)

[

1 − d1d2
f ′
1

(
b−1
(
d1f2(u2)

))
f ′
2(u2)

b′2(u2)b′1
(
d1f2(u2)

)

]

. (3.4)

When d1d2 < 0, obviously, g ′(u2) > 0 due to f ′
i(·) > 0 according to (H4). When d1d2 > 0, we

obtain that f ′
i(0) = maxui∈Rf

′
i(ui), i = 1, 2, due to uif

′′
i (ui) < 0 according to (H4), combined
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with d = d1d2f
′
1(0)f

′
2(0) < d− < 0 and condition (H3); we obtain d1d2f

′
1(b

−
1 (d1f2(u2)))f ′

2(u2) <
d−
1 < 0; consequently, g ′(u2) > 0. Hence g(u2) is an increasing bijective function, since g2(0) =

0, u2 = 0 is a unique solution of (3.3), and (3.1) has a unique solution (0, 0), that is, (0, 0) is a
unique equilibrium of system (1.1)when d < d−.

Second, let us prove the global existence of Hopf bifurcation of system (1.1). Following
the work of Wu [19], we make the following definitions.

Denote the equivalent system (2.1) of system (1.1) as follows:

u̇ = F(ut(θ), τ) (3.5)

in which u = (u1, u2), ut(θ) = u(t + θ) ∈ C([−τ, 0], R2).
And denote

X = C
(
[−τ, 0], R2

)
, Σ = cl

{(
u(t), d, p

) ∈ X × R × R+}, (3.6)

where u(t) is a p-periodic solution of (2.1). Let 	(0, d−
j , 2π/ω

+
j ) denote the connected

component through (0, d−
j , 2π/ω

+
j ) in Σ, where d−

j and ω+
j are given by (2.9) and (2.10),

respectively. From Theorem 2.1, we know that (0, d−
j , 2π/ω

+
j ) is nonempty, and all centers

are isolated center. At fact, sets of centers are

{(

0, d−
j ,

2π
ω+

j

)

, j = 1, 2, . . .

}

. (3.7)

The characteristic function

Δ
(
0, d, p

)
(λ) = λ2 + aλ + b

(
c − de−λτ

)
(3.8)

is continuous in (d, p, λ) ∈ R×R×R×C. Theorem 2.1 above ensures that there exist ε > 0, ε > 0
and a smooth curve λ : (d−

j − δ, d−
j + δ) → C such that Δ(λ(d)) = 0, |λ(d) − iω+

j | < ε for all

d ∈ [d−
j − δ, d−

j + δ], and λ(d−
j ) = iω+

j , Re(λ′(d)−1)|
d=d−

j

< 0. Define Ωε = {(u, p) : 0 < u <

ε, |p−2π/ω+
j | < ε. It is not difficult to show thatΔ(0, d, p)(u+i2π/p) = 0 on [d−

j −δ, d−
j +δ]×∂Ωε

if and only if d = d−
j , u = 0, p = 2π/ω+

j .
Moreover, if we define

H±
(

0, d−
j ,

2π
ω+

j

)
(
u, p
)
= Δ
(
0, d−

j ± δ, p
)(

u + i
2π
p

)
, (3.9)

and we can compute the crossing number of every isolated center (0, d−
j , 2π/(ω

+
j )) as follows:

γ

(

0, d−
j ,

2π
ω+

j

)

= degB

(

H−
(

0, d−
j ,

2π
ω+

j

)

,Ωε

)

− degB

(

H+

(

0, d−
j ,

2π
ω+

j

)

,Ωε

)

= −1, (3.10)

hence we can obtain from Theorem3.3 in [19] that the connected component 	(0, d−
j , 2π/

(ω+
j )) in Σ is unbounded.
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On the other hand, we can prove that all nontrivial periodic solutions of system (2.1)
are uniformly bounded.

Let V (t) =
√
u2
1 + u2

2, we have

V̇ (t) =
1

V (t)
[−a1(u1(t))b1(u1(t))u1(t) + d1f2(u2(t − τ))u1(t)

−a2(u2(t))b2(u2(t))u2(t) + d2f1(u1(t)u2(t))
]

≤ 1
V (t)

[−a1b1u1(t) + |d1|M2u1(t) − a2b2u2(t) + |d2|M1u2(t)
]

≤ 1
V (t)

[
−k1V 2(t) +

√
2k2V (t)

]

≤ −k1V (t) +
√
2k2,

(3.11)

where k1 = max{a1b1, a2b2} and k2 = max{|d1|M1, |d2|M2}. It follows that

V (t) ≤ k + V (0)e−kt t→+∞−−−−−−→ k, k =
√
2k2
k1

. (3.12)

Hence, all nontrivial periodic solutions of system (2.1) are uniformly bounded.
At the same time, we can prove that the period p of a periodic solution of system (2.1)

with d < d− on 	(0, d−
j , 2π/ω

+
j ) is also uniformly bounded. In fact, system has no nontrivial

τ-periodic solution. For a contradiction, suppose that system (2.1) has a nontrivial τ-periodic
solution, then the following differential equation also has a nontrivial τ-periodic solution

u̇1(t) = −a1(u1(t))
[
b1(u1(t)) − d1f2(u2(t))

]
= P(u1, u2),

u̇2(t) = −a2(u2(t))
[
b2(u2(t)) − d2f1(u1(t))

]
= Q(u1, u2).

(3.13)

On the other hand, let

B(u1, u2) =
1

a1(u1)a2(u2)
,

∂(BP)
∂u1

+
∂(BQ)
∂u2

= −
[
b′1(u1)
a2(u2)

+
b′2(u2)
a1(u1)

]

≤ −
[
b1
a2

+
b2
a2

]
< 0.

(3.14)

Thus, we conclude that system (2.6) has no τ-periodic solution according to Bendixson-Dulac
criterion. Consequently, system (2.1) has no τ/n-periodic solution for positive integer n ≥ 1.
From definition of ω+

j , we have

τ

m
< p <

2π
ω+

1
, (3.15)

where m is a positive integer. Therefore, the projection of 	(0, d−
j , 2π/ω

+
j ) on p-space is

bounded.
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Hence, we obtain that the projection 	(0, d−
j , 2π/ω

+
j ) on d-space must be unbounded.

As a result, for any d < d−
j , system (2.1) has at least a periodic solution with a period in

(τ/m, 2π/ω+
1 ) and the proof of Theorem 3.2 is complete.

Remark 3.3. The discussions of bifurcations of system (1.1) at d = b′1(0)b
′
2(0) are a very

cockamamie case. It is difficult to obtain good conditions to guarantee the global existence
of periodic solutions of system (1.1), but if a1(x1(t)) = a2(x2(t)) = 1, b1(t, x1(t)) = μ1x1(t),
and b2(t, x2(t)) = μ2(t)x2(t), system (1.1) reduces to the following Hopfield neural network:

ẋ1(t) = −μ1x1(t) + d1f2(x2(t − τ2)),

ẋ2(t) = −μ1x1(t) + d2f1(x1(t − τ1)).
(3.16)

A supercritical pitchfork of system (3.16) can occur at d = μ1μ2 under assumptions (H1)–
(H4) [11], and the periodic solutions of system (2.2) are also globally existent [12]. Of course,
Theorems 2.2 and Theorem 3.1 for (3.16) in [12] are special cases of Theorems 2.1 and 3.2 in
this paper.

4. A Numerical Example

Consider the following Cohen-Grossberg neural network with discrete delays:

ẋ1(t) = −(6 + cos(x1(t)))[x1(t) − d1 tanh(x2(t − 2))],

ẋ2(t) = −4[2x2(t) + tanh(x1(t − 1))].
(4.1)

Since f ′(0) = 1, b′1(0) = 1, b′2(0) = 2, a1(0) = 7, and a2(0) = 4, d2 = 1, using MATLAB 7.0, we
can obtain that

b′1(0)b
′
2(0) = 2,

d = d1d2f
′
1(0)f

′
2(0) = d1,

ω+
1 ≈ 0.9618, d−

1 ≈ −2.0334,
ω+

2 ≈ 2.8952, d−
2 ≈ −2.3023,

ω+
3 ≈ 4.8522, d−

3 ≈ −2.8461, . . . ,
d− = d−

1 ≈ 2.0334.

(4.2)

Moreover, due to f ′′(0) = 0, f ′′′(0) = 2, a′
1(0) = a′

2(0) = a′′
2(0) = 0, a′′

1(0) = 1, and
b′1(0) = b′2(0) = 0, it is easy to know that g20 = g11 = g02 = 0 and

g21 = 3D
[
14d1ρρ

2e−i3ω
+
j + 8

]
. (4.3)

Case 1. Let d1 = −1.8. Note that d = −1.8 ∈ (−2.0334, 2), system (4.1) satisfies Theorem 2.1,
and the equilibrium (0,0) of system (4.1) is asymptotically stable. Figure 1 shows the dynamic
behaviors of system (4.1)with initial condition (0.1, 0.2).
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Figure 1: (a) Phase plot in space (x1, x2) for system (4.1)with d1 = −1.8. (b) Phase plot in space (x1, x2) for
system (4.1) with d1 = −1.8.
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Figure 2: (a) Phase plot in space (x1, x2) for system (4.1)with d1 = −2.1. (b) Phase plot in space (x1, x2) for
system (4.1) with d1 = −2.1.

Case 2. Let d1 = −2.1 and −3.0, respectively. Note that d = −2.1,−3.0 < d− = −2.0334, the
equilibrium (0, 0) loses its stability, and Hopf bifurcations occurs, that is, periodic solutions
bifurcate from (0, 0) according to Theorem 3.2. Furthermore, we can from (4.3) obtain that
g21(d−

1 ) = −70.7796 − 1.8445i, g21(d−
2 ) = −9.7399 − 1.1614i, g21(d−

3 ) = −5.6912 − 0.9305i, . . .; so,
μ2 < 0 for d−

j , j = 1, 2, 3. Hence, the periodic solutions are stable for d1 = −2.1,−3.0. Figures 2
and 3 show the dynamic behaviors of system (4.1) with initial condition (0.1, 0.2).
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Figure 3: (a) Phase plot in space (x1, x2) for system (4.1)with d1 = −3.0. (b) Phase plot in space (x1, x2) for
system (4.1) with d1 = −3.0.

References

[1] M. A. Cohen and S. Grossberg, “Absolute stability of global pattern formation and parallel memory
storage by competitive neural networks,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 13,
no. 5, pp. 815–826, 1983.

[2] S. Townley, A. Ilchmann, M. G. Weiß et al., “Existence and learning of oscillations in recurrent neural
networks,” IEEE Transactions on Neural Networks, vol. 11, no. 1, pp. 205–214, 2000.

[3] Z. Huang and Y. Xia, “Exponential periodic attractor of impulsive BAM networks with finite dis-
tributed delays,” Chaos, Solitons and Fractals, vol. 39, no. 1, pp. 373–384, 2009.

[4] J. Wei and S. Ruan, “Stability and bifurcation in a neural network model with two delays,” Physica D,
vol. 130, no. 3-4, pp. 255–272, 1999.

[5] J. Cao and M. Xiao, “Stability and Hopf bifurcation in a simplified BAM neural network with two
time delays,” IEEE Transactions on Neural Networks, vol. 18, no. 2, pp. 416–430, 2007.

[6] S. Guo, L. Huang, and L. Wang, “Linear stability and Hopf bifurcation in a two-neuron network with
three delays,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 14,
no. 8, pp. 2799–2810, 2004.

[7] C. Huang, L. Huang, J. Feng, M. Nai, and Y. He, “Hopf bifurcation analysis of a two-neuron network
with four delays,” Chaos, Solitons and Fractals, vol. 34, no. 3, pp. 795–812, 2007.

[8] X. Zhou, Y. Wu, Y. Li, and X. Yao, “Stability and Hopf bifurcation analysis on a two-neuron network
with discrete and distributed delays,” Chaos, Solitons and Fractals, vol. 40, no. 3, pp. 1493–1505, 2009.

[9] Y. Yang and J. Ye, “Stability and bifurcation in a simplified five-neuron BAM neural network with
delays,” Chaos, Solitons and Fractals, vol. 42, no. 4, pp. 2357–2363, 2009.

[10] Y. Song, M. Han, and J. Wei, “Stability and Hopf bifurcation analysis on a simplified BAM neural
network with delays,” Physica D, vol. 200, no. 3-4, pp. 185–204, 2005.

[11] J. J. Wei, C. R. Zhang, and X. L. Li, “Bifurcation in a two-dimensional neural network model with
delay,” Applied Mathematics and Mechanics, vol. 26, no. 2, pp. 193–200, 2005 (Chinese).

[12] J. Wei, M. G. Velarde, and V. A. Makarov, “Oscillatory phenomena and stability of periodic solutions
in a simple neural network with delay,” Nonlinear Phenomena in Complex Systems, vol. 5, no. 4, pp.
407–417, 2002.

[13] H. Zhao and L. Wang, “Stability and bifurcation for discrete-time Cohen-Grossberg neural network,”
Applied Mathematics and Computation, vol. 179, no. 2, pp. 787–798, 2006.

[14] H. Zhao and L. Wang, “Hopf bifurcation in Cohen-Grossberg neural network with distributed
delays,” Nonlinear Analysis. Real World Applications, vol. 8, no. 1, pp. 73–89, 2007.



Abstract and Applied Analysis 11

[15] Q. Liu and R. Xu, “Stability and bifurcation of a Cohen-Grossberg neural network with discrete
delays,” Applied Mathematics and Computation, vol. 218, no. 6, pp. 2850–2862, 2011.

[16] Q. Liu, R. Xu, and Z. Wang, “Stability and bifurcation of a class of discrete-time Cohen-Grossberg
neural networks with delays,” Discrete Dynamics in Nature and Society, Article ID 403873, 14 pages,
2011.

[17] J. K. Hale, Theory of Functional Differential Equations, Springer, New York, NY, USA, 1977.
[18] B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41,

Cambridge University Press, Cambridge, UK, 1981.
[19] J. Wu, “Symmetric functional-differential equations and neural networks with memory,” Transactions

of the American Mathematical Society, vol. 350, no. 12, pp. 4799–4838, 1998.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


