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We consider a triple hierarchical variational inequality problem (in short, THVIP). By combining
hybrid steepest descent method, viscosity method, and projection method, we propose an
approximation method to compute the approximate solution of THVIP. We also study the strong
convergence of the sequences generated by the proposed method to a solution of THVIP.

1. Introduction and Formulations

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. LetC be a nonempty closed convex subset ofH and let Γ : C → H be a nonlinear
mapping. The variational inequality problem (for short, VIP) is to find x∗ ∈ C such that

〈
Γx∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.1)

The inequality (1.1) is called a variational inequality (in short, VI). If the mapping Γ is a
monotone operator, then the inequality (1.1) is called a monotone variational inequality.
The theory of variational inequalities is well established in the literature because of its
applications in science, engineering, social sciences, and so forth. For further detail on
variational inequalities and their applications, we refer to [1–10] and the references therein.
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It is well known that the VI (1.1) is equivalent to the fixed point equation

x∗ = PC(I − λΓ)x∗, (1.2)

where λ > 0 and PC is the metric projection ofH onto Cwhich assigns to each x ∈ H the only
point in C, denoted by PCx, such that

‖x − PCx‖ = inf
y∈C

∥
∥x − y

∥
∥. (1.3)

It is known that the fixed point methods can be implemented to find a solution of the VI (1.1)
provided Γ satisfies some conditions and λ > 0 is chosen appropriately. For instance, if Γ is
Lipschitzian and strongly monotone (i.e., 〈Γx − Γy, x − y〉 ≥ η‖x − y‖2, for all x, y ∈ C for
some η > 0) and λ > 0 is small enough, then the mapping determined by the right-hand side
of (1.2) is a contraction. Hence, the Banach contraction principle guarantees that the sequence
{xn} of Picard iterates, given by xn = PC(I − λΓ)xn−1 (n ≥ 1), converges strongly to a unique
solution of the VI (1.1).

Furthermore, it is also known that if Γ is inverse strongly monotone (i.e., there is a
constant α > 0 such that 〈Γx − Γy, x − y〉 ≥ α‖Γx − Γy‖2, for all x, y ∈ C), then the mapping
PC(I −λΓ) is an averaged mapping (namely, there are β ∈ (0, 1) and a nonexpansive mapping
T such that PC(I −λΓ) = (1−β)I +βT), then the sequence of Picard iterates, {(PC(I −λΓ))nx0},
converges weakly to a solution of the VI (1.1) (if such a solution exists).

In the last decade, the variational inequality problem is considered over the set of
fixed points of a nonexpansive mapping; see, for example, [11–15] and the reference therein.
In particular, Moudafi andMaingé [12] and Xu [14] considered the following VIP over the set
Fix(T) of fixed points of a nonexpansive mapping T : C → C (i.e., C = Fix(T))with Γ = I −V ,
where V is another nonexpansive self-mapping on C: find x∗ ∈ Fix(T) such that

〈(I − V )x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T), (1.4)

where we assume that Fix(T)/= ∅. It is called hierarchical variational inequality problem (in
short, HVIP). The HVIP (1.4) is equivalent to the following fixed point problem:

find x∗ ∈ C such that x∗ = PFix(T) ◦ V (x∗). (1.5)

Let S denote the solution set of the HVIP (1.4). It has been shown in [12] that the HVIP (1.4)
contains the HVIP considered in [15], monotone inclusion problem, convex programming
problem, minimization problem over a set of fixed points, and so forth, as special cases;
see, for example, [12, 14] and the references therein. In the recent past, several kinds of
approximation methods for computing the approximate solutions of HVIP are proposed;
see, for example, [11–15] and the reference therein. Yamada [15] considered the so-called
hybrid steepest descent method for solving the VIP over the set of fixed points of a
nonexpansive mapping. Moudafi [11] proposed the viscosity approximation method of
selecting a particular fixed point of a given nonexpansive mapping which is also a solution
of a variational inequality problem. Subsequently, this method was developed by Xu [13].
Moudafi and Maingé [12] and Xu [14] further studied the viscosity method for HVIP.
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Very recently, Iiduka [16, 17] considered a variational inequality problem with vari-
ational inequality constraint over the set of fixed points of a nonexpansive mapping. Since
this problem has a triple structure in contrast with hierarchical constrained optimization
problems or hierarchical fixed point problem, it is referred as triple hierarchical-constrained
optimization problem (THCOP). He presented some examples of THCOP and developed
iterative algorithms to find the solution of such a problem. The convergence analysis of the
proposed algorithms is also studied in [16, 17]. Since the original problem is a variational
inequality problem, in this paper, we call it the triple hierarchical variational inequality
problem (THVIP).

Let F : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants
κ and η > 0, respectively. Let f : C → H be L-Lipschitzian with constant L ≥ 0 and let
T, V : C → C be nonexpansive mappings with Fix(T)/= ∅. Let 0 < μ < 2η/κ2 and 0 ≤ γL < τ ,

where τ = 1 −
√
1 − μ(2η − μκ2). We consider the following triple hierarchical variational

inequality problem (for short, THVIP): find x∗ ∈ S such that

〈(
μF − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ S, (1.6)

where S denotes the solution set of the hierarchical variational inequality problem (1.4)which
is assumed to be nonempty.

Recall the function g : C → R is said to be convex if for all x, y ∈ C and for all
λ ∈ [0, 1], g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y). It is said to be α-strongly convex if there
exists α > 0 such that for all x, y ∈ K and for all λ ∈ [0, 1], g(λx + (1 − λ)y) ≤ λg(x) + (1 −
λ)g(y)− (1/2)αλ(1− λ)‖x −y‖2. It is easy to see that if g is Fréchet differential and α-strongly
convex, then the gradient ∇g is α-strongly monotone.

Now, we illustrate the triple hierarchical variational inequality problem (for short,
THVIP) by an example which is closely related to [17, Example 3.1].

Example 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let
f : C → H be L-Lipschitz continuous with constant L > 0. Suppose that g0 : H → R

is a convex function with a 1/α0-Lipschitz continuous gradient, g1 : H → R is a convex
function with a 1/α1-Lipschitz continuous gradient, and g2 : H → R is an α-strongly
convex function with an α2-Lipschitz continuous gradient. Define T := PC(I − λ∇g0) (λ ∈
(0, 2α0]), V := PC(I − λ̃∇g1) (λ̃ ∈ (0, 2α1]) and F := ∇g2. Then T, V : C → C are
nonexpansive mappings with Fix(T) = Argminz∈Cg0(z) and Fix(V ) = Argminz∈Cg1(z),
and F is κ-Lipschitzian and η-strongly monotone with κ = 1/α2 and η = α. Assume
that Argminz∈Cg0(z) ∩ Argminz∈Cg1(z)/= ∅. Then for the solution set S of the hierarchical
variational inequality problem (for short, HVIP), we have

∅/= Argmin
z∈C

g0(z) ∩Argmin
z∈C

g1(z)

= Fix(T) ∩ Fix(V )

⊂ {z∗ ∈ Fix(T) : 〈(I − V )z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T)}
= S.

(1.7)
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When 0 < μ < 2αα2
2 and 0 ≤ γL < τ , where τ = 1 −

√
1 − μ(2α − μ/α2

2), we have

0 < μ <
2η
κ2

, 0 ≤ γL < τ, (1.8)

where τ = 1 −
√
1 − μ(2η − μκ2). In particular, when μ = η/κ2 = αα2

2, we have

0 ≤ γL < τ = 1 −
√√
√
√1 − μ

(

2α − μ

α2
2

)

= 1 −
√
1 − α2α2

2. (1.9)

In this case, when γ = (1/2L)α2α2
2 (obviously,

√
1 − α2α2

2 < 1 − (1/2)α2α2
2), the following

triple hierarchical variational inequality problem (for short, THVIP): find x∗ ∈ S such that

〈(
μF − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ S (1.10)

reduces to the following THVIP: find x∗ ∈ S such that

〈(
∇g2 − α

2L
f
)
x∗, x − x∗

〉
≥ 0, ∀x ∈ S. (1.11)

In this paper, by combining hybrid steepest descent method, viscosity method, and
projection method, we propose an approximation method to compute the approximate
solution of THVIP. We also study the strong convergence of the sequences generated by the
proposed method to a solution of THVIP. The results of this paper extend and generalize the
results given in [12, 14] and several others given in the literature.

2. Preliminaries

Throughout the paper, unless other specified, we assume that C is a nonempty closed convex
subset of a real Hilbert space H. We use xn → x and xn ⇀ x to denote strong and weak
convergence to x of the sequence {xn}, respectively.

Recall that amapping f : C → H is called L-Lipschitzian onC if there exists L ∈ [0,∞)
such that ‖f(x) − f(y)‖ ≤ L‖x − y‖, for all x, y ∈ C. In particular, if L ∈ [0, 1) then f is called
a contraction on C; if L = 1 then f is called a nonexpansive mapping on C.

We present some basic facts and results which will be used in the sequel.

Lemma 2.1 (see [18]). LetH be a real Hilbert space. Then,

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 (2.1)

for all x, y ∈ H and λ ∈ [0, 1].

The following lemma can be easily proved, and therefore, we omit the proof.
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Lemma 2.2. Let f : C → H be an L-Lipschitzian mapping with constant L ∈ [0,∞), and let
F : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants κ and η > 0,
respectively. Then, for 0 ≤ γL < μη,

〈
x − y,

(
μF − γf

)
x − (

μF − γf
)
y
〉 ≥ (

μη − γL
)‖x − y‖2, ∀x, y ∈ C. (2.2)

That is, μF − γf is strongly monotone with constant μη − γL > 0.

Lemma 2.3 (see [18, Demiclosedness Principle]). Let T : C → C be a nonexpansive mapping
with Fix(T)/= ∅. If {xn} weakly converges to x in C and if {(I − T)xn} strongly converges to y, then
(I − T)x = y; in particular, if y = 0, then x ∈ Fix(T).

In the following lemma, we present some properties of the projection.

Lemma 2.4. Given x ∈ H and z ∈ C. Then

(a) z = PCx if and only if there holds the relation:

〈
x − z, y − z

〉 ≤ 0, ∀y ∈ C. (2.3)

(b) z = PCx if and only if there holds the relation:

‖x − z‖2 ≤ ‖x − y‖2 − ‖y − z‖2, ∀y ∈ C. (2.4)

(c) PC is nonexpansive and monotone, that is,

〈
PCx − PCy, x − y

〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H. (2.5)

Lemma 2.5. LetH be a real Hilbert space. Then, for all x, y ∈ H,

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, x + y

〉
. (2.6)

The following lemma plays a key role in proving the main results of this paper.

Lemma 2.6 (see [19, Lemma 3.1]). Let λ ∈ (0, 1] and μ > 0. Let F : C → H be an operator on
C such that, for some constants κ, η > 0, F is κ-Lipschitzian and η-strongly monotone. Associating
with a nonexpansive mapping T : C → C, define the mapping Tλ : C → H by

Tλx := Tx − λμF(Tx), ∀x ∈ C. (2.7)

Then Tλ is a contraction provided μ < 2η/κ2, that is,

∥∥∥Tλx − Tλy
∥∥∥ ≤ (1 − λτ)

∥∥x − y
∥∥, ∀x, y ∈ C, (2.8)

where τ = 1 −
√
1 − μ(2η − μκ2) ∈ (0, 1].
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Remark 2.7. If F = I, where I is the identity operator of H. Then κ = η = 1 and hence μ <
2η/κ2 = 2. Also, if μ = 1, then it is easy to see that

τ = 1 −
√
1 − μ

(
2η − μκ2

)
= 1. (2.9)

In particular, whenever λ > 0, we have Tλx := Tx − λμF(Tx) = (1 − λ)Tx.

3. Approximation Methods and Convergence Results

Let F : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants κ and
η > 0, respectively. Let f : C → H be a L-Lipschitzian mapping with constant L ≥ 0 and let
T : C → C be a nonexpansive mapping with Fix(T)/= ∅. Let 0 < μ < 2η/κ2 and 0 ≤ γL ≤ τ ,

where τ = 1 −
√
1 − μ(2η − μκ2). We consider the hierarchical variational inequality problem

(in short, HVIP) of finding z∗ ∈ Fix(T) such that

〈(
μF − γf

)
z∗, z − z∗

〉 ≥ 0, ∀z ∈ Fix(T). (3.1)

We denote by Ω the solution set of the HVIP (3.1).
When μ = 1, F = I, γ = τ = 1 and f = V are a nonexpansive self-mapping on C,

the HVIP (3.1) reduces to the following hierarchical variational inequality problem of finding
z∗ ∈ Fix(T) such that

〈(I − V )z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T). (3.2)

It is considered and studied in [12, 14].
We consider a mapping Θt on C defined by

Θtx = PC

[
tγf(x) +

(
I − tμF

)
Tx

]
, ∀x ∈ C. (3.3)

It is easy to see that Θt is a nonexpansive mapping. Indeed, we have

∥∥Θtx −Θty
∥∥ =

∥∥PC

[
tγf(x) +

(
I − tμF

)
Tx

] − PC

[
tγf

(
y
)
+
(
I − tμF

)
Ty

]∥∥

≤ tγ
∥∥f(x) − f

(
y
)∥∥ +

∥∥(I − tμF
)
Tx − (

I − tμF
)
Ty

∥∥

≤ tγL
∥∥x − y

∥∥ + (1 − tτ)
∥∥x − y

∥∥

=
(
1 − (

τ − γL
)
t
)∥∥x − y

∥∥.

(3.4)

Since 0 ≤ γL ≤ τ , it is known that Θt is nonexpansive on C.

Proposition 3.1. Let F : C → H be a κ-Lipschitzian and η-strongly monotone operator with
constants κ and η > 0, respectively. Let f : C → H be L-Lipschitzian with constant L ≥ 0 and
let T : C → C be nonexpansive with Fix(T)/= ∅. Let 0 < μ < 2η/κ2 and 0 ≤ γL ≤ τ , where τ =

1−
√
1 − μ(2η − μκ2). Let t ∈ (0, 1) and zt be a fixed point of the mapping Θt = PC[tγf+(I−tμF)T],
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that is, zt = PC[tγf(zt) + (I − tμF)Tzt]. Assume {zt} remains bounded as t → 0, then the following
conclusions hold.

(a) The solution set Ω of the HVIP (3.1) is nonempty and each weak limit point (as t → 0) of
{zt} solves the HVIP (3.1).

(b) If μF − γf is strictly monotone, then the net {zt} converges weakly to the (unique) solution
of the HVIP (3.1).

(c) If μF − γf is strongly monotone (e.g., μη > γL), then the net {zt} converges strongly to a
solution of the HVIP (3.1).

Proof. Let W be the set of all weak accumulation points of {zt} as t → 0; that is,

W =
{
z : ztn ⇀ z for some sequence {tn} in (0, 1) such that tn −→ 0

}
. (3.5)

Then, W /= ∅ because {zt} is bounded.
To prove (a), we notice that the boundedness of {zt} implies that W /= ∅ and

‖zt − Tzt‖ =
∥∥PC

[
tγf(zt) +

(
I − tμF

)
Tzt

] − PCTzt
∥∥

≤ ∥∥tγf(zt) +
(
I − tμF

)
Tzt − Tzt

∥∥

= t
∥∥γf(zt) − μF(Tzt)

∥∥ −→ 0 as t −→ 0.

(3.6)

It thus follows from Lemma 2.3 that W ⊂ Fix(T). Take a fixed x̂ ∈ Fix(T) arbitrarily and set

wt = tγf(zt) +
(
I − tμF

)
Tzt, ∀t ∈ (0, 1). (3.7)

Then zt = PCwt and

zt − x̂ = PCwt −wt + tγf(zt) +
(
I − tμF

)
Tzt − x̂

= PCwt −wt + t
(
γf(zt) − μFx̂

)
+
(
I − tμF

)
Tzt −

(
I − tμF

)
x̂

= PCwt −wt + tγ
(
f(zt) − f(x̂)

)
+ t

(
γf(x̂) − μFx̂

)

+
(
I − tμF

)
Tzt −

(
I − tμF

)
Tx̂.

(3.8)

Since PC is the metric projection fromH onto C, utilizing Lemma 2.4, we have

〈PCwt −wt, PCwt − x̂〉 ≤ 0. (3.9)
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Hence, utilizing κ-Lipschitzian property of F, we get

‖zt − x̂‖2 = 〈PCwt −wt, PCwt − x̂〉 + 〈wt − x̂, zt − x̂〉
≤ 〈wt − x̂, zt − x̂〉
= t

〈
γf(zt) − μFx̂, zt − x̂

〉
+
〈(
I − tμF

)
Tzt −

(
I − tμF

)
x̂, zt − x̂

〉

≤ t
(〈(

γf − μF
)
zt, zt − x̂

〉
+ μ〈Fzt − Fx̂, zt − x̂〉)

+
1
2

(∥
∥(I − tμF

)
Tzt −

(
I − tμF

)
x̂
∥
∥2 + ‖zt − x̂‖2

)

= t
(〈(

γf − μF
)
zt, zt − x̂

〉
+ μ〈Fzt − Fx̂, Tzt − x̂〉 + μ〈Fzt − Fx̂, zt − Tzt〉

)

+
1
2

[
‖Tzt − x̂‖2 − 2tμ〈FTzt − Fx̂, Tzt − x̂〉 + t2μ2‖FTzt − Fx̂‖2 + ‖zt − x̂‖2

]

= t
(〈(

γf − μF
)
zt, zt − x̂

〉
+ μ〈FTzt − Fx̂, Tzt − x̂〉

+ μ〈Fzt − FTzt, Tzt − x̂〉 + μ〈Fzt − Fx̂, zt − Tzt〉
)

+
1
2

[
‖Tzt − x̂‖2 − 2tμ〈FTzt − Fx̂, Tzt − x̂〉 + t2μ2‖FTzt − Fx̂‖2 + ‖zt − x̂‖2

]

= t
(〈(

γf − μF
)
zt, zt − x̂

〉
+ μ〈Fzt − FTzt, Tzt − x̂〉 + μ〈Fzt − Fx̂, zt − Tzt〉

)

+
1
2

[
‖Tzt − x̂‖2 + t2μ2‖FTzt − Fx̂‖2 + ‖zt − x̂‖2

]

≤ t
〈(
γf − μF

)
zt, zt − x̂

〉
+ 2tμκ‖zt − Tzt‖‖zt − x̂‖ +

(

1 +
t2μ2κ2

2

)

‖zt − x̂‖2.

(3.10)

It follows that

〈(
μF − γf

)
zt, zt − x̂

〉 ≤ tμ2κ2

2
‖zt − x̂‖2 + 2μκ‖zt − Tzt‖‖zt − x̂‖. (3.11)

Note that 0 ≤ γL ≤ τ and

μη ≥ τ ⇐⇒ μη ≥ 1 −
√
1 − μ

(
2η − μκ2

)

⇐⇒
√
1 − μ

(
2η − μκ2

) ≥ 1 − μη

⇐⇒ 1 − 2μη + μ2κ2 ≥ 1 − 2μη + μ2η2

⇐⇒ κ2 ≥ η2

⇐⇒ κ ≥ η.

(3.12)
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Since 0 ≤ γL ≤ τ ≤ μη, we have μη − γL ≥ 0. Thus, utilizing the η-strong monotonicity of F
and L-Lipschitzian property of f , we know that μF − γf is monotone because the following
inequality holds:

〈(
μF − γf

)
x − (

μF − γf
)
y, x − y

〉 ≥ (
μη − γL

)∥∥x − y
∥
∥2
, ∀x, y ∈ C. (3.13)

Consequently, we have

〈(
μF − γf

)
zt, zt − x̂

〉 ≥ 〈(
μF − γf

)
x̂, zt − x̂

〉
. (3.14)

This together with (3.11) implies that

〈(
μF − γf

)
x̂, zt − x̂

〉 ≤ tμ2κ2

2
‖zt − x̂‖2 + 2μκ‖zt − Tzt‖‖zt − x̂‖. (3.15)

Now, if x̃ ∈ W ⊂ Fix(T) and if tn → 0 is such that ztn ⇀ x̃, then we obtain from (3.15) and
‖zt − Tzt‖ → 0 that

〈(
μF − γf

)
x̂, x̃ − x̂

〉 ≤ 0, ∀x̂ ∈ Fix(T). (3.16)

Replacing x̂ by x̃ + λ(x − x̃) ∈ Fix(T) in (3.16), where λ ∈ (0, 1) and x ∈ Fix(T), we get

〈(
μF − γf

)
(x̃ + λ(x − x̃)), x̃ − x

〉 ≤ 0. (3.17)

Letting λ → 0 yields

〈(
μF − γf

)
x̃, x̃ − x

〉 ≤ 0, ∀x ∈ Fix(T). (3.18)

Consequently, x̃ ∈ Ω.
To see (b), we assume that {t′n} is another null sequence in (0, 1) such that xt′n x̂. Then

x̂ ∈ Fix(T) and by replacing x by x̂ in (3.18), we get

〈(
μF − γf

)
x̃, x̃ − x̂

〉 ≤ 0. (3.19)

By interchanging x̃ and x̂, we get

〈(
μF − γf

)
x̂, x̂ − x̃

〉 ≤ 0. (3.20)

Adding up (3.19) and (3.20) yields

〈(
μF − γf

)
x̃ − (

μF − γf
)
x̂, x̃ − x̂

〉 ≤ 0. (3.21)

So the strict monotonicity of μF − γf implies that x̃ = x̂ and {zt} converges weakly.
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Finally, to prove (c), we observe that the strong monotonicity of μF − γf and (3.11)
implies that

α‖zt − x̂‖2 + 〈(
μF − γf

)
x̂, zt − x̂

〉 ≤ tμ2κ2

2
‖zt − x̂‖2 + 2μκ‖zt − Tzt‖‖zt − x̂‖, (3.22)

where α > 0 is the strong monotonicity constant of μF − γf ; that is,

〈(
μF − γf

)
x − (

μF − γf
)
y, x − y

〉 ≥ α
∥
∥x − y

∥
∥2

, ∀x, y ∈ C. (3.23)

A straightforward consequence of (3.22) is that if x̂ ∈ W and if ztn ⇀ x̂ for some null sequence
{tn} in (0, 1), then we must have ztn → x̂. This shows that {zt} is relatively compact in
the norm topology, and each of its limit points solves the HVIP (3.1). Finally repeating the
argument in the weak convergence case of (b), we see that {zt} can have exactly one limit
point; hence, {zt} converges in norm.

Corollary 3.2 (see [14, Proposition 3.1]). Let V, T : C → C be nonexpansive mappings with
Fix(T)/= ∅. Let t ∈ (0, 1) and zt be a fixed point of the mapping Wt = tV + (1 − t)T , that is, zt =
tV zt + (1 − t)Tzt. Assume {zt} remains bounded as t → 0, then the following conclusions hold.

(a) The solution set S of the HVIP (1.4) is nonempty and each weak limit point (as t → 0) of
{zt} solves the HVIP (1.4).

(b) If I −V is strictly monotone, then the net {zt} converges weakly to the solution of the HVIP
(1.4).

(c) If I −V is strongly monotone (e.g., V is a contraction), then the net {zt} converges strongly
to a solution of the HVIP (1.4).

Now by combining hybrid steepest descent method, viscosity method, and projection
method, we define, for each s, t ∈ (0, 1), two mappings Wt and fs,t by

Wt = tV + (1 − t)T, fs,t = PC

[
sγf +

(
I − sμF

)
Wt

]
. (3.24)

It is easy to see thatWt is a nonexpansive self-mapping on C. Moreover, utilizing Lemma 2.6,
we can see that fs,t is a (1 − (τ − γL)s)-contraction. Indeed, observe that

∥∥fs,t(x) − fs,t
(
y
)∥∥ =

∥∥PC

[
sγf(x) +

(
I − sμF

)
Wtx

] − PC

[
sγf

(
y
)
+
(
I − sμF

)
Wty

]∥∥

≤ ∥∥[sγf(x) +
(
I − sμF

)
Wtx

] − [
sγf

(
y
)
+
(
I − sμF

)
Wty

]∥∥

≤ sγ
∥∥f(x) − f

(
y
)∥∥ +

∥∥(I − sμF
)
Wtx − (

I − sμF
)
Wty

∥∥

≤ sγL
∥∥x − y

∥∥ + (1 − sτ)
∥∥x − y

∥∥

=
(
1 − s

(
τ − γL

))∥∥x − y
∥∥.

(3.25)
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Let xs,t be the unique fixed point of fs,t. Namely, xs,t is the unique solution in C to the follow-
ing:

xs,t = PC

[
sγf(xs,t) +

(
I − sμF

)
Wtxs,t

]

= PC

[
sγf(xs,t) +

(
I − sμF

)
(tV xs,t + (1 − t)Txs,t)

]
.

(3.26)

Theorem 3.3. Let F : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants
κ and η > 0, respectively. Let f : C → H be L-Lipschitzian with constant L ≥ 0 and let V, T :
C → C be nonexpansive with Fix(T)/= ∅. Let 0 < μ < 2η/κ2 and 0 ≤ γL < τ , where τ = 1 −√
1 − μ(2η − μκ2). For each s, t ∈ (0, 1), let xs,t be the unique solution to (3.26). Assume also that,

for each t ∈ (0, 1), Fix(Wt) is nonempty (but not necessarily bounded), and the following assumption
holds:

∅/=S ⊂ ‖·‖ − lim inf
t→ 0

Fix(Wt) := {z : ∃zt ∈ Fix(Wt) such that zt −→ z}. (A)

Then the strong lims→ 0xs,t =: xt exists for each t ∈ (0, 1). Moreover, the strong limt→ 0xt =: x∞
exists and solves the THVIP (1.6). Hence, for any null sequence {sn} in (0, 1), there is another null
sequence {tn} in (0, 1) such that xsn,tn → x∞ in norm, as n → ∞.

Proof. Observe that the condition 0 ≤ γL < τ and the fact τ ≤ μη imply that

0 ≤ γL < τ ≤ μη. (3.27)

Therefore, μF − γf is a strongly monotone operator with constant μη − γL > 0. Since, for each
fixed t ∈ (0, 1), the fixed point set Fix(Wt) of Wt is nonempty, we can apply Proposition 3.1
(c) to get that

xt := ‖·‖ − lim
s→ 0

xs,t (3.28)

exists in Fix(Wt) and solves the following hierarchical variational inequality problem of
finding xt ∈ Fix(Wt) such that

〈(
μF − γf

)
xt, x − xt

〉 ≥ 0, ∀x ∈ Fix(Wt). (3.29)

Equivalently, xt = PFix(Wt)(I − μF + γf)xt, where PFix(Wt) is the metric projection from H onto
Fix(Wt).

Utilizing the strong monotonicity of μF − γf , we conclude from (3.29) that for each
z ∈ Fix(Wt),

(
μη − γL

)‖xt − z‖2 ≤ 〈(
μF − γf

)
xt −

(
μF − γf

)
z, xt − z

〉

= − 〈(
μF − γf

)
xt, z − xt

〉
+
〈(
γf − μF

)
z, xt − z

〉

≤ 〈(
γf − μF

)
z, xt − z

〉
.

(3.30)
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Hence,

‖xt − z‖2 ≤ 1
μη − γL

〈(
γf − μF

)
z, xt − z

〉
, ∀z ∈ Fix(Wt). (3.31)

This implies that

‖xt − z‖ ≤ 1
μη − γL

∥
∥(γf − μF

)
z
∥
∥, ∀z ∈ Fix(Wt). (3.32)

The inequality (3.32) is yet to imply the boundedness of {xt} since z may depend on t.
However, since the solution set S of the HVIP (1.4) is nonempty, we can take (an arbitrary)
v ∈ S and use assumption (A) to find zt ∈ Fix(Wt) such that zt → v in norm as t → 0.
Hence, {zt}must be bounded (as t → 0). The inequality (3.32) implies

‖xt‖ ≤ ‖xt − zt‖ + ‖zt − v‖ + ‖v‖

≤ 1
μη − γL

∥∥(γf − μF
)
zt
∥∥ + ‖zt − v‖ + ‖v‖,

(3.33)

and this is sufficient to ensure that {xt} is bounded (as t closes 0).
Now, the boundedness of {xt} allows us to apply Corollary 3.2 (a) to conclude that

every weak limit point x̃ of {xt} belongs to the solution set S of the HVIP (1.4). Then (3.31)
guarantees that every such weak limit point x̃ of {xt} is also a strong limit point of {xt}.
Indeed, if {tn} is a null sequence in (0, 1) and if xtn ⇀ x̃, then x̃ ∈ S. By assumption (A), we
get a sequence {zn} such that zn ∈ Fix(Wtn) for all n and zn → x̃ in norm. From (3.31) we
derive

‖xtn − x̃‖2 = ‖(xtn − zn) + (zn − x̃)‖2

≤ 2
(
‖xtn − zn‖2 + ‖zn − x̃‖2

)

≤ 2
μη − γL

〈(
γf − μF

)
zn, xtn − zn

〉
+ 2‖zn − x̃‖2.

(3.34)

However, 〈(γf−μF)zn, xtn−zn〉 → 0 since (γf−μF)zn → (γf−μF)x̃ in norm and xtn−zn → 0
weakly, and we find that the right-hand side of (3.34) tends to zero. Hence, xtn → x̃ in norm.

So to prove the strong convergence of the entire net {xt}, it remains to prove that {xt}
can have only one strong limit point. Let x̃ and x̃′ be two strong limit points of {xt} and
assume that xtn → x̃ and xt′n → x̃′ both in norm, where {tn} and {t′n} are null sequences in
(0, 1). It remains to verify that x̃ = x̃′.

Since x̃′ ∈ S, by assumption (A), we can find zt ∈ Fix(Wt) such that zt → x̃′ in norm
as t → 0. The HVIP (3.29) implies

〈(
μF − γf

)
xtn , ztn − xtn

〉 ≥ 0. (3.35)
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Taking the limit as n → ∞ yields

〈(
μF − γf

)
x̃, x̃′ − x̃

〉 ≥ 0. (3.36)

Similarly, we have

〈(
μF − γf

)
x̃′, x̃ − x̃′〉 ≥ 0. (3.37)

Adding up (3.36) and (3.37) gives

〈(
μF − γf

)
x̃ − (

μF − γf
)
x̃′, x̃ − x̃′〉 ≤ 0. (3.38)

Utilizing Lemma 2.2, we know that μF − γf is strongly monotone with constant μη − γL > 0.
Hence, from (3.38) it follows that x̃ = x̃′ and so {xt} converges in norm to (say) x∞.

Now, for any v ∈ S, since by assumption (A), we can find zt ∈ Fix(Wt) such that
zt → v in norm, (3.29) then implies

〈(
μF − γf

)
xt, v − xt

〉 ≥ 〈(
μF − γf

)
xt, v − zt

〉 −→ 0 (3.39)

which in turns implies

〈(
μF − γf

)
x∞, v − x∞

〉 ≥ 0, ∀v ∈ S, (3.40)

that is, x∞ = PS(I − μF + γf)x∞, the unique fixed point of the contraction PS(I − μF + γf).
Finally, for any null sequence {sn} in (0, 1), using a diagonalization argument (cf. [1]), we can
find another null sequence {tn} in (0, 1) such that xsn,tn → x∞ in norm, as n → ∞.

Remark 3.4. Theorem 3.3 shows that for any null sequence {sn} in (0, 1), there is another null
sequence {tn} in (0, 1) such that xsn,tn → x∞ in norm, as n → ∞, and x∞ is a solution to the
HVIP (3.40). Theorem 3.3 is the main result of the present paper in which we improve the
result of Moudafi and Maingé [12] by proving that {xt} actually converges strongly and also
by removing the boundedness of the set {Fix(Wt) : 0 < t < 1}. Our proof is different from that
of [12]. In the meantime, Theorem 3.3 covers [14, Theorem 3.2] as a special case. For instance,
whenever we put μ = 1, F = I, γ = τ = 1, and let the L-Lipschitzian mapping f : C → H be a
(self-) contraction with coefficient ρ ∈ [0, 1), our Theorem 3.3 reduces to [14, Theorem 3.2].

Now, we present a general result. We show that as long as ts is taken so that ts =
o(s) (i.e., lims→ 0ts/s = 0), then xs,ts → z∞ in norm, and moreover, z∞ solves the HVIP
(3.40) on the larger set Fix(T) (i.e., z∞ is the unique fixed point in Fix(T) of the contraction
PFix(T)(I − μF + γf)), without the assumption (A). However, for such a general choice of {ts},
this solution z∞ may differ from the solution x∞ of the HVIP (3.40) on the smaller set S (i.e.,
x∞ is the unique fixed point in S of the contraction PS(I − μF + γf)). We will verify this by
taking ts = s2 for simplicity (the argument, however, works for any net {ts} in (0, 1) such that
lims→ 0 ts/s = 0).

Theorem 3.5. Let F : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants
κ and η > 0, respectively. Let f : C → H be L-Lipschitzian with constant L ≥ 0 and let V, T :
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C → C be nonexpansive with Fix(T)/= ∅. Let 0 < μ < 2η/κ2 and 0 ≤ γL < τ , where τ = 1 −√
1 − μ(2η − μκ2). For each s ∈ (0, 1), let xs be the unique solution in C to the following:

xs = PC

[
sγf(xs) +

(
I − sμF

)(
s2Vxs +

(
1 − s2

)
Txs

)]
. (3.41)

Then, as s → 0, xs converges in norm to the solution of the HVIP of finding z∞ ∈ Fix(T) such that

〈(
μF − γf

)
z∞, z − z∞

〉 ≥ 0, ∀z ∈ Fix(T); (3.42)

equivalently, z∞ = PFix(T)(I − μF + γf)z∞.

Proof. WriteWs (instead ofWs2) for s2V + (1 − s2)T ; then

xs = PC

[
sγf(xs) +

(
I − sμF

)
Wsxs

]
. (3.43)

Take a fixed z ∈ Fix(T) arbitrarily and put

ys = sγf(xs) +
(
I − sμF

)
Wsxs, ∀s ∈ (0, 1). (3.44)

Then from (3.41) we get xs = PCys. Since PC is the metric projection from H onto C, we have

〈
PCys − ys, PCys − z

〉 ≤ 0. (3.45)

Also, observe that

ys − z = sγf(xs) +
(
I − sμF

)
Wsxs − z

= s
(
γf(xs) − μFWsz

)
+
(
I − sμF

)
Wsxs −

(
I − sμF

)
Wsz +Wsz − z

= sγ
(
f(xs) − f(z)

)
+ s

(
γf(z) − μFWsz

)
+
(
I − sμF

)
Wsxs −

(
I − sμF

)
Wsz

+ s2(V − I)z.

(3.46)
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Utilizing Lemma 2.6, we deduce from (3.41) that

‖xs − z‖2 = 〈
PCys − ys, PCys − z

〉
+
〈
ys − z, xs − z

〉

≤ 〈
ys − z, xs − z

〉

= sγ
〈
f(xs) − f(z), xs − z

〉
+ s

〈
γf(z) − μFWsz, xs − z

〉

+
〈(
I − sμF

)
Wsxs −

(
I − sμF

)
Wsz, xs − z

〉
+ s2〈(V − I)z, xs − z〉

≤ sγ
∥
∥f(xs) − f(z)

∥
∥‖xs − z‖ + s

〈
γf(z) − μFWsz, xs − z

〉

+
∥
∥(I − sμF

)
Wsxs −

(
I − sμF

)
Wsz

∥
∥‖xs − z‖ + s2〈(V − I)z, xs − z〉

≤ sγL‖xs − z‖2 + s
〈
γf(z) − μFWsz, xs − z

〉
+ (1 − sτ)‖xs − z‖2

+ s2〈(V − I)z, xs − z〉

=
(
1 − s

(
τ − γL

))‖xs − z‖2 + s
〈
γf(z) − μFWsz, xs − z

〉

+ s2〈(V − I)z, xs − z〉.

(3.47)

It follows that, for any fixed z ∈ Fix(T),

‖xs − z‖2 ≤ 1
τ − γL

(〈
γf(z) − μFWsz, xs − z

〉
+ s〈(V − I)z, xs − z〉). (3.48)

This implies that

‖xs − z‖ ≤ 1
τ − γL

(∥∥γf(z) − μFWsz
∥∥ + ‖(V − I)z‖). (3.49)

In particular, {xs} is bounded, and from (3.41), we further get

‖xs − Txs‖ =
∥∥∥PC

[
sγf(xs) +

(
I − sμF

)(
s2Vxs +

(
1 − s2

)
Txs

)]
− PCTxs

∥∥∥

≤
∥∥∥sγf(xs) +

(
I − sμF

)(
s2Vxs +

(
1 − s2

)
Txs

)
− Txs

∥∥∥

≤ s
∥∥∥γf(xs) − μF

(
s2Vxs +

(
1 − s2

)
Txs

)∥∥∥ + s2‖Vxs − Txs‖ −→ 0,

(3.50)
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as s → 0. Lemma 2.3 ensures that every weak limit point, as s → 0, of {xs} is a fixed point
of T . Going back to (3.48), we find that each weak limit point of {xs} is actually a strong limit
point of {xs} because

∣
∣〈γf(z) − μFWsz, xs − z

〉∣∣

=
∣
∣〈γf(z) − μFz, xs − z

〉
+
〈
μFz − μFWsz, xs − z

〉∣∣

≤ ∣
∣〈γf(z) − μFz, xs − z

〉∣∣ + μ‖Fz − FWsz‖‖xs − z‖

≤ ∣
∣〈γf(z) − μFz, xs − z

〉∣∣ + μκs2‖(V − I)z‖‖xs − z‖.

(3.51)

So to prove the strong convergence of {xs}, we need only to show the uniqueness of strong
limit points of {xs}. Assuming {sn} and {s′n} are null sequences in (0, 1) such that xsn → v
and xs′n → v′, both in norm. Observing that (3.41) implies

(
μF − γf

)
xs =

1
s

(
PCys − ys

) − 1
s
(I −Ws)xs + μ(Fxs − FWsxs), (3.52)

where ys = sγf(xs) + (I − sμF)Wsxs and xs = PCys. Utilizing Lemmas 2.4 and 2.6, we deduce
from the monotonicity of I −Ws that for any fixed z ∈ Fix(T),

〈(
μF − γf

)
xs, xs − z

〉

=
1
s

〈
PCys − ys, PCys − z

〉 − 1
s
〈(I −Ws)xs, xs − z〉 + μ〈Fxs − FWsxs, xs − z〉

≤ 1
s

〈
PCys − ys, PCys − z

〉 − 1
s
[〈(I −Ws)xs − (I −Ws)z, xs − z〉

+ 〈(I −Ws)z, xs − z〉] + μ〈Fxs − FWsxs, xs − z〉
≤ −s〈(I − V )z, xs − z〉 + μκ‖xs −Wsxs‖‖xs − z‖

= −s〈(I − V )z, xs − z〉 + μκ
∥∥∥(xs − Txs) + s2(T − V )xs

∥∥∥‖xs − z‖.

(3.53)

In particular, we have from I −Ws that for any fixed z ∈ Fix(T),

〈(
μF − γf

)
xsn , xsn − v′〉 ≤ − sn

〈
(I − V )v′, xsn − v′〉

+ μκ
∥∥∥(xsn − Txsn) + s2n(T − V )xsn

∥∥∥
∥∥xsn − v′∥∥.

(3.54)

So letting n → ∞ yields

〈(
μF − γf

)
v, v − v′〉 ≤ 0. (3.55)

Repeating the above argument obtains

〈(
μF − γf

)
v′, v′ − v

〉 ≤ 0. (3.56)
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Adding up (3.55) and (3.56) gives us that

〈(
μF − γf

)
v − (

μF − γf
)
v′, v − v′〉 ≤ 0. (3.57)

The strong monotonicity of μF − γf (Lemma 2.2) then implies v = v′. Finally, taking the limit
as s → 0 in (3.53) and letting z∞ = ‖ · ‖ − lims→ 0xs, we conclude immediately that z∞ solves
the variational inequality of finding z∞ ∈ Fix(T) such that

〈(
μF − γf

)
z∞, z∞ − z

〉 ≤ 0, ∀z ∈ Fix(T). (3.58)

Equivalently, z∞ = PFix(T)(I − μF + γf)z∞. The proof is therefore complete.

Remark 3.6. If T and V have a common fixed point, then it is not hard to see that Fix(Wt) =
Fix(T) ∩ Fix(V ) for all t ∈ (0, 1). Indeed, it suffices to show the inclusion Fix(Wt) ⊂ Fix(T) ∩
Fix(V ). Let z ∈ Fix(Wt). Then for any fixed p ∈ Fix(T) ∩ Fix(V ) we have

∥∥z − p
∥∥2 = t

∥∥Vz − p
∥∥2 + (1 − t)

∥∥Tz − p
∥∥2 − t(1 − t)‖Vz − Tz‖2

≤ ∥∥z − p
∥∥2 − t(1 − t)‖Vz − Tz‖2.

(3.59)

This implies Vz = Tz = z; that is z ∈ Fix(T) ∩ Fix(V ). Furthermore, it is clear that Fix(T) ∩
Fix(V ) ⊂ S. In this case, assumption (A) is reduced to the assumption S ⊂ Fix(T) ∩ Fix(V ).
Therefore, assumption (A) is equivalent to the assumption S = Fix(T) ∩ Fix(V ).

Corollary 3.7. Let F : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants
κ and η > 0, respectively. Let f : C → H be L-Lipschitzian with constant L ≥ 0 and let V, T :
C → C be nonexpansive with Fix(T) ∩ Fix(V )/= ∅. Let 0 < μ < 2η/κ2 and 0 ≤ γL < τ , where

τ = 1 −
√
1 − μ(2η − μκ2). For each s, t ∈ (0, 1), let xs,t be the unique solution to (3.26). Then the

conclusion of Theorem 3.3 holds. Namely, the strong lims→ 0xs,t =: xt exists for each fixed t ∈ (0, 1),
and moreover, the strong limt→ 0xt =: x∞ exists and solves the THVIP (1.6).

Proof. Since Fix(Wt) = Fix(T)∩Fix(V ) is independent of t; the z in both (3.31) and (3.32) does
not depend on t. Hence, it is immediately clear that {xt} is bounded, which then implies via
(3.31) that every weak accumulation point of {xt} is also a strong accumulation point of {xt}.
Eventually, {xt} converges in norm as shown in the final part of the proof of Theorem 3.5.

Remark 3.8. Theorems 3.3 and 3.5 improve and extend [14, Theorems 3.2 and 3.4], respec-
tively, in the following ways.

(a) The contraction mapping f : C → C in [14, Theorems 3.2 and 3.4] is extended to
the case of (possibly nonself) L-Lipschitzian mapping f : C → H from a nonempty
closed convex subset C toH.

(b) The convex combination of (self) contraction mapping f and nonexpansive
mapping Wt in the implicit scheme in [14, Theorem 3.2] is extended to the linear
combination of (possibly nonself) L-Lipschitzian mapping f and hybrid steepest
descent method involvingWt. In particular, if t = s2, Theorem 3.5 is an extension of
[14, Theorem 3.4].
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(c) In order to guarantee that the net {xs,t} generated by the implicit scheme still lies
in C, the implicit scheme in [14, Theorem 3.2] is extended to develop our new
implicit scheme (3.26) by virtue of the projection method. In particular, if t = s2,
[14, Theorem 3.4] is extended to the corresponding case in our Theorem 3.5.

(d) The new technique of argument is applied to derive our Theorems 3.3 and 3.5. For
instance, the characteristic properties (Lemma 2.4) of the metric projection play a
key role in proving the strong convergence of the nets {xs,t}s,t∈(0,1) and {xs}s∈(0,1) in
our Theorems 3.3 and 3.5, respectively.

(e) If we put μ = 1, F = I and γ = τ = 1 and let f be a contractive self-mapping on C
with coefficient ρ ∈ [0, 1), then our Theorems 3.3 and 3.5 reduce to [14, Theorems
3.2 and 3.4], respectively. Thus, our Theorems 3.3 and 3.5 cover [14, Theorems 3.2
and 3.4] as special cases, respectively.
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