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We obtain some subordination- and superordination-preserving properties for a class of multiplier
transformations associated with Noor integral operators defined on the space of normalized
analytic functions in the open unit disk. The sandwich-type theorems for these transformations
are also considered.

1. Introduction

LetH = H(U) denote the class of analytic functions in the open unit diskU = {z ∈ C : |z| < 1}.
For a ∈ C and nonnegative integer n, let

H[a, n] =
{
f ∈ H : f(z) = a + anzn + an+1zn+1 + · · ·

}
.

(1.1)

We also denoteA by the subclass ofH[a, 1]with the usual normalization f(0) = f ′(0)−1 = 0.
Let f and F be members of H. The function f is said to be subordinate to F, or F is

said to be superordinate to f , if there exists a function w analytic in U, with w(0) = 0 and
|w(z)| < 1, and such that f(z) = F(w(z)). In such a case, we write f ≺ F or f(z) ≺ F(z). If the
function F is univalent in U, then we have f ≺ F if and only if f(0) = F(0) and f(U) ⊂ F(U)
(cf. [1]).

Definition 1.1 (see [1]). Let φ : C
2 → C and let h be univalent in U. If p is analytic in U and

satisfies the differential subordination:

φ
(
p(z), zp′(z)

) ≺ h(z) (z ∈ U), (1.2)
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then p is called a solution of the differential subordination. The univalent function q is called
a dominant of the solutions of the differential subordination, or more simply a dominant if
p ≺ q for all p satisfying (1.2). A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1.2) is
said to be the best dominant.

Definition 1.2 (see [2]). Let ϕ : C
2 → C and let h be analytic in U. If p and ϕ(p(z), zp′(z)) are

univalent in U and satisfy the differential superordination:

h(z) ≺ ϕ(p(z), zp′(z)) (z ∈ U), (1.3)

then p is called a solution of the differential superordination. An analytic function q is called a
subordinant of the solutions of the differential superordination, or more simply a subordinant
if q ≺ p for all p satisfying (1.3). A univalent subordinant q̃ that satisfies q ≺ q̃ for all sub-
ordinants q of (1.3) is said to be the best subordinant.

Definition 1.3 (see [2]). We denote by Q the class of functions f that are analytic and injective
on U \ E(f), where

E
(
f
)
=
{
ζ ∈ ∂U : lim

z→ ζ
= ∞

}
, (1.4)

and are such that f ′(ζ)/= 0 for ζ ∈ ∂U \ E(f).
Following Komatu [3], we introduce the integral operator Lλ(c) : A → A defined by

Lλ(c)f(z) :=
cλ

Γ(λ)

∫1

0
tc−2

(
log

1
t

)λ−1
f(tz)dt

(
Re{c} > 0; λ ≥ 0; f ∈ A)

, (1.5)

where the symbol Γ stands the Gamma function. We also note that the operator Lλ(c)f(z)
defined by (1.5) can be expressed by the series expansion as follows:

Lλ(c)f(z) = z +
∞∑
k=2

(
c

c + k − 1

)λ

akz
k. (1.6)

Obviously, we have, for λ, ν ≥ 0,

Lλ(c)
(Lν(c)f(z)

)
= Lλ+ν(c)f(z). (1.7)

In particular, the operator Lλ(2) is closely related to the multiplier transformation studied
earlier by Flett [4]. Various interesting properties of the operator Lλ(2) have been studied by
Jung et al. [5] and Liu [6]. We also note from (1.6) that we can define the operator Lλ(c) for
any real number λ.

Let

fλc (z) = z +
∞∑
k=2

(
c

c + k − 1

)λ

zk (Re{c} > 0; λ ≥ 0) (1.8)



Abstract and Applied Analysis 3

and let fλ,μc be defined such that

fλc (z) ∗ fλ,μc (z) =
z

(1 − z)μ
(
μ > 0; z ∈ U

)
, (1.9)

where the symbol ∗ stands for the Hadamard product (or convolution). Then, motivated
essentially by the Noor integral operator [7] (see also [8–11]), we now introduce the operator
Iκ
λ,μ

: A → A, which are defined here by

I
λ,μ
c f(z) =

(
f
λ,μ
c ∗ f

)
(z)

(
f ∈ A; Re{c} > 0; λ ≥ 0; μ > 0

)
. (1.10)

In view of (1.9) and (1.10), we obtain the following relations:

z
(
I
λ,μ
c f(z)

)′
= cIλ+1,μc f(z) − (c − 1)Iλ,μc f(z), (1.11)

z
(
I
λ,μ
c f(z)

)′
= μIλ,μ+1c f(z) − (

μ − 1
)
I
λ,μ
c f(z). (1.12)

Making use of the principle of subordination between analytic functions, Miller et al.
[12] investigated some subordination theorems involving certain integral operators for anal-
ytic functions in U (see, also [13]). Moreover, Miller and Mocanu [2] considered differential
superordinations, as the dual concept of differential subordinations (see also [14]). In the pre-
sent paper, we obtain the subordination- and superordination-preserving properties of the
multiplier transformations Iλ,μc defined by (1.10) with the sandwich-type theorems.

The following lemmas will be required in our present investigation.

Lemma 1.4 (see [15]). Suppose that the functionH : C
2 → C satisfies the condition:

Re{H(is, t)} ≤ 0, (1.13)

for all real s and t ≤ −n(1+s2)/2, where n is a positive integer. If the function p(z) = 1+pnzn+ · · · is
analytic in U and

Re
{
H
(
p(z), zp′(z)

)}
> 0 (z ∈ U), (1.14)

then Re{p(z)} > 0 in U.

Lemma 1.5 (see [16]). Let β, γ ∈ C with β /= 0 and let h ∈ H(U) with h(0) = c. If Re{βh(z) + γ} >
0(z ∈ U), then the solution of the differential equation:

q(z) +
zq′(z)

βq(z) + γ
= h(z)

(
z ∈ U; q(0) = c

)
(1.15)

is analytic in U and satisfies Re{βq(z) + γ} > 0 (z ∈ U).
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Lemma 1.6 (see [1]). Let p ∈ Q with p(0) = a and let q(z) = a + anzn + · · · be analytic in U with
q(z)/≡a and n ≥ 1. If q is not subordinate to p, then there exist points z0 = r0e

iθ ∈ U and ζ0 ∈
∂U \ E(f), for which q(Ur0) ⊂ p(U),

p(z0) = q(ζ0), z0p
′(z0) = mζ0q′(ζ0) (m ≥ n). (1.16)

Lemma 1.7 (see [2]). Let q ∈ H[a, 1], let ϕ : C
2 → C, and set ϕ(q(z), zq′(z)) ≡ h(z). If L(z, t) =

ϕ(q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1] ∩ Q, then

h(z) ≺ ϕ(p(z), zp′(z)) (z ∈ U) (1.17)

implies that

q(z) ≺ p(z) (z ∈ U). (1.18)

Furthermore, if ϕ(q(z), zp′(z)) = h(z) has a univalent solution q ∈ Q, then q is the best subordinant.

A function L(z, t) defined on U × [0,∞) is the subordination chain (or Löwner chain)
if L(·, t) is analytic and univalent in U for all t ∈ [0,∞); L(z, ·) is continuously differentiable
on [0,∞) for all z ∈ U and L(z, s) ≺ L(z, t) for z ∈ U and 0 ≤ s < t.

Lemma 1.8 (see [17]). The function L(z, t) = a1(t)z + · · · with a1(t)/= 0 and limt→∞|a1(t)| = ∞.
Suppose that L(·; t) ia analytic in U for all t ≥ 0, L(z; ·) is continuously differentiable on [0,∞) for all
z ∈ U. If L(z; t) satisfies

|L(z; t)| ≤ K0|a1(t)| (|z| < r0 < 1; 0 ≤ t <∞) (1.19)

for some positive constants K0 and r0 and

R

{
z∂L(z, t)/∂z
∂L(z, t)/∂t

}
> 0 (z ∈ U; 0 ≤ t <∞), (1.20)

then L(z; t) is a subordination chain.

2. Main Results

Firstly, we begin by proving the following subordination theorem involving the multiplier
transformation Iλ,μc defined by (1.10).

Theorem 2.1. Let f, g ∈ A. Suppose that

Re
{
1 +

zφ′′(z)
φ′(z)

}
> −δ

(
φ(z) := (1 − α)Iλ+1,μc g(z) + αIλ,μc g(z); 0 ≤ α < 1; z ∈ U

)
, (2.1)
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where

δ =
(1 − α)2 + |c − 1 + α|2 −

∣∣∣(1 − α)2 − (c − 1 + α)2
∣∣∣

4(1 − α)Re{c − 1 + α} (Re{c − 1 + α} > 0). (2.2)

Then the subordination:

(1 − α)Iλ+1,μc f(z) + αIλ,μc f(z) ≺ φ(z) (z ∈ U) (2.3)

implies that

I
λ,μ
c f(z) ≺ Iλ,μc g(z) (z ∈ U). (2.4)

Moreover, the function Iλ,μc g(z) is the best dominant.

Proof. Let us define the functions F and G, respectively, by

F(z) := Iλ,μc f(z), G(z) := Iλ,μc g(z), (2.5)

We first show that if the function q is defined by

q(z) := 1 +
zG′′(z)
G′(z)

(z ∈ U), (2.6)

then

Re
{
q(z)

}
> 0 (z ∈ U). (2.7)

Taking the logarithmic differentiation on both sides of the second equation in (2.5) and using
(1.11) for g ∈ A, we obtain

cφ(z) = (c − 1 + α)G(z) + (1 − α)zG′(z), (2.8)

which, in conjunction with (2.8), yields the relationship:

1 +
zφ′′(z)
φ′(z)

= 1 +
zG′′(z)
G′(z)

+
zq′(z)

q(z) + (c − 1 + α)/(1 − α)

= q(z) +
zq′(z)

q(z) + (c − 1 + α)/(1 − α) ≡ h(z).
(2.9)

From (2.1), we have

Re
{
h(z) +

c − 1 + α
1 − α

}
> 0 (z ∈ U), (2.10)
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and by using Lemma 1.5, we conclude that the differential equation (2.9) has a solution q ∈
H(U)with q(0) = h(0) = 1.

Let us put

H(u, v) = u +
v

u + (c − 1 + α)/(1 − α) + δ, (2.11)

where δ is given by (2.2). From (2.1), (2.9), and (2.11), we obtain

Re
{
H
(
q(z), zq′(z)

)}
> 0 (z ∈ U). (2.12)

Now we proceed to show that Re{H(is, t)} ≤ 0 for all real s and t ≤ −(1 + s2)/2. From (2.11),
we have

Re{H(is, t)} = Re
{
is +

t

is + (c − 1 + α)/(1 − α) + δ
}

=
t(c − 1 + α)/(1 − α)

|(c − 1 + α)/(1 − α) + is|2
+ δ

≤ − Eδ(s)

2|(c − 1 + α)/(1 − α) + is|2
,

(2.13)

where

Eδ(s) :=
(
Re{c − 1 + α}

(1 − α) − 2δ
)
s2 − 4δs Im{c − 1 + α}

(1 − α)

− 2δ
∣∣∣∣
(c − 1 + α)
(1 − α)

∣∣∣∣
2

+
Re{c − 1 + α}

(1 − α) .

(2.14)

For δ given by (2.2), we can prove easily that the expression Eδ(s) given by (2.14) is positive
or equal to zero. Moreover, the quadratic expression by s in (2.14) is a perfect square for
the assumed value of δ. Hence from (2.13), we see that Re{H(is, t)} ≤ 0 for all real s and
t ≤ −(1 + s2)/2. Thus, by using Lemma 1.4, we conclude that Re{q(z)} > 0 for all z ∈ U. That
is, q is convex in U.

Next, we prove that the subordination condition (2.3) implies that

F(z) ≺ G(z) (z ∈ U) (2.15)

for the functions F andG defined by (2.5). Without loss of generality, we can assume thatG is
analytic and univalent on U and that G′(ζ)/= 0 (|ζ| = 1). Now we consider the function L(z, t)
given by

L(z, t) :=
c − 1 + α

c
G(z) +

(1 − α)(1 + t)
c

zG′(z) (z ∈ U; 0 ≤ t <∞). (2.16)

We note that
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∂L(z, t)
∂z

∣∣∣∣
z=0

= G′(0)
(
(c − 1 + α) + (1 − α)(1 + t)

c

)
/= 0 (0 ≤ t <∞; Re{c − 1 + α} > 0).

(2.17)

This shows that the function

L(z, t) = a1(t)z + · · · (2.18)

satisfies the condition a1(t)/= 0 for all t ∈ [0,∞). By using the well-known growth and distor-
tion theorems for convex functions, it is easy to check that the first part of Lemma 1.8 is satis-
fied. Furthermore, we have

Re
{
z∂L(z, t)/∂z
∂L(z, t)/∂t

}
= Re

{
c − 1 + α
1 − α + (1 + t)

(
1 +

zG′′(z)
G′(z)

)}
> 0, (2.19)

since G is convex and Re{c − 1 + α} > 0. Therefore, by virtue of Lemma 1.8, L(z, t) is a subor-
dination chain. We observe from the definition of a subordination chain that

φ(z) =
c − 1 + α

c
G(z) +

1 − α
c

zG′(z) = L(z, 0),

L(z, 0) ≺ L(z, t) (z ∈ U; 0 ≤ t <∞).
(2.20)

This implies that

L(ζ, t) /∈ L(U, 0) = φ(U) (ζ ∈ ∂U; 0 ≤ t <∞). (2.21)

Now suppose that F is not subordinate to G, then by Lemma 1.6, there exists points
z0 ∈ U and ζ0 ∈ ∂U such that

F(z0) = G(ζ0), z0F(z0) = (1 + t)ζ0G′(ζ0) (0 ≤ t <∞). (2.22)

Hence we have

L(ζ0, t) =
c − 1 + α

c
G(ζ0) +

(1 − α)(1 + t)
c

ζ0G
′(ζ0)

=
c − 1 + α

c
F(z0) +

1 − α
c

z0F
′(z0)

= (1 − α)Iλ+1,μc f(z0) + αI
λ,μ
c f(z0) ∈ φ(U),

(2.23)

by virtue of the subordination condition (2.3). This contracts the above observation that
L(ζ0, t) /∈ φ(U). Therefore, the subordination condition (2.3) must imply the subordination
given by (2.15). Considering F(z) = G(z), we see that the function G(z) is the best dominant.
This evidently completes the proof of Theorem 2.1.

Remark 2.2. We note that δ given by (2.2) in Theorem 2.1 satisfies the inequality 0 < δ ≤ 1/2.
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We next prove a dual problem of Theorem 2.1, in the sense that the subordinations are
replaced by superordinations.

Theorem 2.3. Let f, g ∈ A. Suppose that

Re
{
1 +

zφ′′(z)
φ′(z)

}
> −δ

(
φ(z) := (1 − α)Iλ+1,μc g(z) + αIλ,μc g(z); 0 ≤ α < 1; z ∈ U

)
, (2.24)

where δ is given by (2.2), and the function Iλ+1,μc f(z) is univalent in U and Iλ,μc f(z) ∈ Q. Then the
superordination:

φ(z) ≺ (1 − α)Iλ+1,μc f(z) + αIλ,μc f(z) (z ∈ U) (2.25)

implies that

I
λ,μ
c g(z)z ≺ Iλ,μc f(z) (z ∈ U). (2.26)

Moreover, the function Iλ,μc g(z) is the best subordinant.

Proof. Let us define the functions F and G, respectively, by (2.5). We first note that, if the fun-
ction q is defined by (2.6), by using (2.8), then we obtain

φ(z) =
c − 1 + α

c
G(z) +

1 − α
c

zG′(z)

=: ϕ
(
G(z), zG′(z)

)
.

(2.27)

After a simple calculation, (2.27) yields the relationship:

1 +
zφ′′(z)
φ′(z)

= q(z) +
zq′(z)

q(z) + (c − 1 + α)/(1 − α) . (2.28)

Then by using the same method as in the proof of Theorem 2.1, we can prove that Re{q(z)} >
0 for all z ∈ U. That is, G defined by (2.6) is convex (univalent) in U.

Next, we prove that the subordination condition (2.27) implies that

F(z) ≺ G(z) (z ∈ U) (2.29)

for the functions F and G defined by (2.5). Now consider the function L(z, t) defined by

L(z, t) :=
c − 1 + α

c
G(z) +

(1 − α)t
c

zG′(z) (z ∈ U; 0 ≤ t <∞). (2.30)

SinceG is convex and Re{c−1+α} > 0, we can prove easily that L(z, t) is a subordination chain
as in the proof of Theorem 2.1. Therefore according to Lemma 1.7, we conclude that the
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superordination condition (2.27) must imply the superordination given by (2.29). Further-
more, since the differential equation (2.27) has the univalent solution G, it is the best
subordinant of the given differential superordination. Therefore we complete the proof of
Theorem 2.3.

If we combine this Theorems 2.1 and 2.3, then we obtain the following sandwich-type
theorem.

Theorem 2.4. Let f, gk ∈ A(k = 1, 2). Suppose that

Re

{
1 +

zφ′′
k(z)

φ′
k(z)

}
>−δ

(
φk(z) :=(1 − α)Iλ+1,μc gk(z)+αI

λ,μ
c gk(z); k = 1, 2; 0 ≤ α < 1; z ∈ U

)
,

(2.31)

where δ is given by (2.2), and the function Iλ+1,μc f(z) is univalent in U and Iλ,μc f(z) ∈ Q. Then the
subordination relation:

φ1(z) ≺ Iλ+1,μc f(z) ≺ φ2(z) (z ∈ U) (2.32)

implies that

I
λ,μ
c gk(z) ≺ Iλ,μc f(z) ≺ Iλ,μc g2(z) (z ∈ U). (2.33)

Moreover, the functions Iλ,μc g1(z) and I
λ,μ
c g2(z) are the best subordinant and the best dominant, resp-

ectively.

The assumption of Theorem 2.4, that the functions Iλ+1,μc f(z) and I
λ,μ
c f(z) need to be

univalent in U, may be replaced by another conditions in the following result.

Corollary 2.5. Let f, gk ∈ A(k = 1, 2). Suppose that the condition (2.31) is satisfied and

Re
{
1 +

zψ ′′(z)
ψ ′(z)

}
> −δ

(
ψ(z) := (1 − α)Iλ+1,μc f(z) + αIλ,μc f(z); 0 ≤ α < 1; z ∈ U; f ∈ Q

)
,

(2.34)

where δ is given by (2.2). Then the subordination relation:

φ1(z) ≺ ψ(z) ≺ φ2(z) (z ∈ U) (2.35)

implies that

I
λ,μ
c gk(z) ≺ Iλ,μc f(z) ≺ Iλ,μc g2(z) (z ∈ U). (2.36)

Moreover, the functions Iλ,μc g1(z) and I
λ,μ
c g2(z) are the best subordinant and the best dominant, resp-

ectively.
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Proof. In order to prove Corollary 2.5, we have to show that the condition (2.34) implies the
univalence of ψ(z) and F(z) := I

λ,μ
c f(z). Since 0 < δ ≤ 1/2 from Remark 2.2, the condition

(2.34) means that ψ is a close-to-convex function in U (see [18]) and hence ψ is univalent in
U. Furthermore, by using the same techniques as in the proof of Theorem 2.4, we can prove
the convexity (univalence) of F and so the details may be omitted. Therefore, by applying
Theorem 2.4, we obtain Corollary 2.5.

By setting c = 2 and α = 0 in Theorem 2.4, so that δ = 1/2, we deduce the following
consequence of Theorem 2.4.

Corollary 2.6. Let f, gk ∈ A(k = 1, 2). Suppose that

Re

{
1 +

zφ′′
k(z)

φ′
k(z)

}
> −1

2

(
φk(z) := I

λ+1,μ
2 gk(z); k = 1, 2; z ∈ U

)
, (2.37)

and the function Iλ+1,μ2 f(z) is univalent functions in U and Iλ,μ2 f(z) ∈ Q. Then the subordination
relation:

I
λ+1,μ
2 g1(z) ≺ Iλ+1,μ2 f(z) ≺ Iλ+1,μ2 g2(z) (z ∈ U) (2.38)

implies that

I
λ,μ

2 g1(z) ≺ Iλ,μ2 f(z) ≺ Iλ,μ2 g2(z) (z ∈ U). (2.39)

Moreover, the functions Iλ,μ2 g1(z) and I
λ,μ

2 g2(z) are the best subordinant and the best dominant, res-
pectively.

If we take c = 2 + i and α = 0 in Theorem 2.4, then we easily to lead to the following
result.

Corollary 2.7. Let f, gk ∈ A(k = 1, 2). Suppose that

Re

{
1 +

zφ′′
k(z)

φ′
k(z)

}
> −3 −

√
5

4

(
φk(z) := I

λ,μ

2+igk(z); k = 1, 2; z ∈ U

)
, (2.40)

and the function Iλ+1,μ2+i f(z) is univalent functions in U and Iλ,μ2+i f(z) ∈ Q. Then the subordination
relation:

I
λ+1,μ
2+i g1(z) ≺ Iλ+1,μ2+i f(z) ≺ Iλ+1,μ2+i g2(z) (z ∈ U) (2.41)

implies that

I
λ,μ

2+ig1(z) ≺ I
λ,μ

2+i f(z) ≺ I
λ,μ

2+ig2(z) (z ∈ U). (2.42)
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Moreover, the functions Iλ,μ2+ig1(z) and I
λ,μ

2+ig2(z) are the best subordinant and the best dominant, res-
pectively.

The proof of Theorem 2.8 below is similar to that of Theorem 2.4 by using (1.12) and
so the details may be omitted.

Theorem 2.8. Let f, gk ∈ A (k = 1, 2). Suppose that

Re

{
1 +

zφ′′
k(z)

φ′
k(z)

}
>−δ

(
φk(z) :=(1 − α)Iλ,μ+1c gk(z)+αI

λ,μ
c gk(z); k = 1, 2; 0 ≤ α < 1; z ∈ U

)
,

(2.43)

where δ is given by (2.2) with c = μ, and the function Iλ,μ+1c f(z) is univalent in U and Iλ,μc f(z) ∈ Q.
Then the subordination relation:

φ1(z) ≺ Iλ,μ+1c f(z) ≺ φ2(z) (z ∈ U) (2.44)

implies that

I
λ,μ
c gk(z) ≺ Iλ,μc f(z) ≺ Iλ,μc g2(z) (z ∈ U). (2.45)

Moreover, the functions Iλ,μc g1(z) and I
λ,μ
c g2(z) are the best subordinant and the best dominant, res-

pectively.

By using a similar method given in the proof of Theorems 2.4 and 2.8, we have the
corresponding two theorems below.

Theorem 2.9. Let f, gk ∈ A (k = 1, 2) with the additional condition g ′′
k(z)/= 0. Suppose that

Re

{
1 +

zφ′′
k(z)

φ′
k(z)

}

> −δ
(
φk(z) :=

(1 − α)Iλ+1,μc gk(z) + αI
λ,μ
c gk(z)

z
; k = 1, 2; 0 ≤ α < 1; z ∈ U

)
,

(2.46)

where δ is given by

δ =
(1 − α)2 + |c|2 −

∣∣∣(1 − α)2 − c2
∣∣∣

4(1 − α)Re{c} (Re{c} > 0), (2.47)

and the function Iλ+1,μc f(z) is univalent in U and Iλ,μc f(z) ∈ Q. Then the subordination relation:

φ1(z) ≺
I
λ+1,μ
c f(z)

z
≺ φ2(z) (z ∈ U) (2.48)
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implies that

I
λ,μ
c g1(z)
z

≺ I
λ,μ
c f(z)
z

≺ I
λ,μ
c g2(z)
z

(z ∈ U). (2.49)

Moreover, the functions Iλ,μc g1(z)/z and I
λ,μ
c g2(z)/z are the best subordinant and the best dominant,

respectively.

Theorem 2.10. Let f, gk ∈ A(k = 1, 2) with the additional condition g ′′
k
(z)/= 0. Suppose that

Re

{
1 +

zφ′′
k(z)

φ′
k(z)

}

> −δ
(
φk(z) :=

(1 − α)Iλ,μ+1c gk(z) + αI
λ,μ
c gk(z)

z
; k = 1, 2; 0 ≤ α < 1; z ∈ U

)
,

(2.50)

where δ is given by (2.47) with c = μ, and the function I
λ,μ+1
c f(z)/z is univalent in U and Iλ,μc

f(z)/z ∈ Q. Then the subordination relation:

φ1(z) ≺
I
λ,μ+1
c f(z)

z
≺ φ2(z) (z ∈ U) (2.51)

implies that

I
λ,μ
c g1(z)
z

≺ I
λ,μ
c f(z)
z

≺ I
λ,μ
c g2(z)
z

(z ∈ U). (2.52)

Moreover, the functions Iλ,μc g1(z)/z and I
λ,μ
c g2(z)/z are the best subordinant and the best dominant,

respectively.
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