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We generalized the notion of proximal contractions of the first and the second kinds and
established the best proximity point theorems for these classes. Our results improve and extend
recent result of Sadiq Basha (2011) and some authors.

1. Introduction

The significance of fixed point theory stems from the fact that it furnishes a unified treatment
and is a vital tool for solving equations of form Tx = x where T is a self-mapping defined on
a subset of a metric space, a normed linear space, topological vector space or some suitable
space. Some applications of fixed point theory can be found in [1–12]. However, almost all
such results dilate upon the existence of a fixed point for self-mappings. Nevertheless, if
T is a non-self-mapping, then it is probable that the equation Tx = x has no solution, in
which case best approximation theorems explore the existence of an approximate solution
whereas best proximity point theorems analyze the existence of an approximate solution that
is optimal. A classical best approximation theorem was introduced by Fan [13]; that is, if A
is a nonempty compact convex subset of a Hausdorff locally convex topological vector space
B and T : A → B is a continuous mapping, then there exists an element x ∈ A such that
d(x, Tx) = d(Tx,A). Afterward, several authors, including Prolla [14], Reich [15], Sehgal,
and Singh [16, 17], have derived extensions of Fan’s theorem inmany directions. Other works
of the existence of a best proximity point for contractions can be seen in [18–21]. In 2005,
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Eldred et al. [22] have obtained best proximity point theorems for relatively nonexpansive
mappings. Best proximity point theorems for several types of contractions have been
established in [23–36].

Recently, Sadiq Basha in [37] gave necessary and sufficient to claimed that the
existence of best proximity point for proximal contraction of first kind and the second kind
which are non-self mapping analogues of contraction self-mappings and also established
some best proximity and convergence theorem as follow.

Theorem 1.1 (see [37, Theorem 3.1]). Let (X, d) be a complete metric space and let A and B be
nonempty, closed subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A → B,
T : B → A and g : A ∪ B → A ∪ B satisfy the following conditions.

(a) S and T are proximal contractions of first kind.

(b) g is an isometry.

(c) The pair (S, T) is a proximal cyclic contraction.

(d) S(A0) ⊆ B0, T(B0) ⊆ A0.

(e) A0 ⊆ g(A0) and B0 ⊆ g(B0).

Then, there exists a unique point x ∈ A and there exists a unique point y ∈ B such that

d
(
gx, Sx

)
= d
(
gy, Ty

)
= d
(
x, y
)
= d(A,B). (1.1)

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d
(
gxn+1, Sxn

)
= d(A,B), (1.2)

converges to the element x. For any fixed y0 ∈ B0, the sequence {yn}, defined by

d
(
gyn+1, Tyn

)
= d(A,B), (1.3)

converges to the element y.
On the other hand, a sequence {un} in A converges to x if there is a sequence of positive

numbers {εn} such that

lim
n→∞

εn = 0, d(un+1, zn+1) ≤ εn, (1.4)

where zn+1 ∈ A satisfies the condition that d(zn+1, Sun) = d(A,B).

Theorem 1.2 (see [37, Theorem 3.4]). Let (X, d) be a complete metric space and let A and B be
nonempty, closed subsets of X. Further, suppose that A0 and B0 are nonempty. Let S : A → B and
g : A → A satisfy the following conditions.

(a) S is proximal contractions of first and second kinds.

(b) g is an isometry.

(c) S preserves isometric distance with respect to g.
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(d) S(A0) ⊆ B0.

(e) A0 ⊆ g(A0).

Then, there exists a unique point x ∈ A such that

d
(
gx, Sx

)
= d(A,B). (1.5)

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d
(
gxn+1, Sxn

)
= d(A,B), (1.6)

converges to the element x.
On the other hand, a sequence {un} in A converges to x if there is a sequence of positive

numbers {εn} such that

lim
n−→∞

εn = 0, d(un+1, zn+1) ≤ εn, (1.7)

where zn+1 ∈ A satisfies the condition that d(zn+1, Sun) = d(A,B).

The aim of this paper is to introduce the new classes of proximal contractions which
are more general than class of proximal contraction of first and second kinds, by giving
the necessary condition to have best proximity points and we also give some illustrative
examples of our main results. The results of this paper are extension and generalizations
of main result of Sadiq Basha in [37] and some results in the literature.

2. Preliminaries

Given nonvoid subsets A and B of a metric space (X, d), we recall the following notations
and notions that will be used in what follows:

d(A,B) := inf
{
d
(
x, y
)
: x ∈ A, y ∈ B},

A0 :=
{
x ∈ A : d

(
x, y
)
= d(A,B) for some y ∈ B},

B0 :=
{
y ∈ B : d

(
x, y
)
= d(A,B) for some x ∈ A}.

(2.1)

If A ∩ B /= ∅, then A0 and B0 are nonempty. Further, it is interesting to notice that A0

and B0 are contained in the boundaries ofA and B, respectively, providedA and B are closed
subsets of a normed linear space such that d(A,B) > 0 (see [31]).

Definition 2.1 ([37, Definition 2.2]). A mapping S : A → B is said to be a proximal contraction
of the first kind if there exists α ∈ [0, 1) such that

d(u, Sx) = d
(
v, Sy

)
= d(A,B) =⇒ d(u, v) ≤ αd(x, y) (2.2)

for all u, v, x, y ∈ A.
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It is easy to see that a self-mapping that is a proximal contraction of the first kind
is precisely a contraction. However, a non-self-proximal contraction is not necessarily a
contraction.

Definition 2.2 (see [37, Definition 2.3]). A mapping S : A → B is said to be a proximal
contraction of the second kind if there exists α ∈ [0, 1) such that

d(u, Sx) = d
(
v, Sy

)
= d(A,B) =⇒ d(Su, Sv) ≤ αd(Sx, Sy) (2.3)

for all u, v, x, y ∈ A.

Definition 2.3. Let S : A → B and T : B → A. The pair (S, T) is said to be a proximal cyclic
contraction pair if there exists a nonnegative number α < 1 such that

d(a, Sx) = d
(
b, Ty

)
= d(A,B) =⇒ d(a, b) ≤ αd(x, y) + (1 − α)d(A,B) (2.4)

for all a, x ∈ A and b, y ∈ B.

Definition 2.4. Leting S : A → B and an isometry g : A → A, the mapping S is said to
preserve isometric distance with respect to g if

d
(
Sgx, Sgy

)
= d
(
Sx, Sy

)
(2.5)

for all x, y ∈ A.

Definition 2.5. A point x ∈ A is said to be a best proximity point of the mapping S : A → B if it
satisfies the condition that

d(x, Sx) = d(A,B). (2.6)

It can be observed that a best proximity reduces to a fixed point if the underlying
mapping is a self-mapping.

Definition 2.6. A is said to be approximatively compact with respect to B if every sequence {xn}
in A satisfies the condition that d(y, xn) → d(y,A) for some y ∈ B has a convergent
subsequence.

We observe that every set is approximatively compact with respect to itself and that
every compact set is approximatively compact. Moreover, A0 and B0 are nonempty set ifA is
compact and B is approximatively compact with respect to A.

3. Main Results

Definition 3.1. A mapping S : A → B is said to be a generalized proximal ψ-contraction of the
first kind, if for all u, v, x, y ∈ A satisfies

d(u, Sx) = d
(
v, Sy

)
= d(A,B) =⇒ d(u, v) ≤ ψ(d(x, y)), (3.1)
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where ψ : [0,∞) → [0,∞) is an upper semicontinuous function from the right such that
ψ(t) < t for all t > 0.

Definition 3.2. A mapping S : A → B is said to be a generalized proximal ψ-contraction of the
second kind, if for all u, v, x, y ∈ A satisfies

d(u, Sx) = d
(
v, Sy

)
= d(A,B) =⇒ d(Su, Sv) ≤ ψ(d(Sx, Sy)), (3.2)

where ψ : [0,∞) → [0,∞) is a upper semicontinuous from the right such that ψ(t) < t for all
t > 0.

It is easy to see that if we take ψ(t) = αt, where α ∈ [0, 1), then a generalized proximal
ψ-contraction of the first kind and generalized proximal ψ-contraction of the second kind
reduce to a proximal contraction of the first kind Definition 2.1 and a proximal contraction of
the second kind Definition 2.2, respectively. Moreover, it is easy to see that a self-mapping
generalized proximal ψ-contraction of the first kind and the second kind reduces to the
condition of Boy and Wong’ s fixed point theorem [3].

Next, we extend the result of Sadiq Basha [37] and the Banach’s contraction principle
to the case of non-self-mappings which satisfy generalized proximal ψ-contraction condition.

Theorem 3.3. Let (X, d) be a complete metric space and let A and B be nonempty, closed subsets of
X such that A0 and B0 are nonempty. Let S : A → B, T : B → A, and g : A ∪ B → A ∪ B satisfy
the following conditions:

(a) S and T are generalized proximal ψ-contraction of the first kind;

(b) g is an isometry;

(c) The pair (S, T) is a proximal cyclic contraction;

(d) S(A0) ⊆ B0, T(B0) ⊆ A0;

(e) A0 ⊆ g(A0) and B0 ⊆ g(B0).

Then, there exists a unique point x ∈ A and there exists a unique point y ∈ B such that

d
(
gx, Sx

)
= d
(
gy, Ty

)
= d
(
x, y
)
= d(A,B). (3.3)

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d
(
gxn+1, Sxn

)
= d(A,B), (3.4)

converges to the element x. For any fixed y0 ∈ B0, the sequence {yn}, defined by

d
(
gyn+1, Tyn

)
= d(A,B), (3.5)

converges to the element y.
On the other hand, a sequence {un} in A converges to x if there is a sequence of positive

numbers {εn} such that
lim
n→∞

εn = 0, d(un+1, zn+1) ≤ εn, (3.6)

where zn+1 ∈ A satisfies the condition that d(gzn+1, Sun) = d(A,B).
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Proof. Let x0 be a fixed element inA0. In view of the fact that S(A0) ⊆ B0 andA0 ⊆ g(A0), it is
ascertained that there exists an element x1 ∈ A0 such that

d
(
gx1, Sx0

)
= d(A,B). (3.7)

Again, since S(A0) ⊆ B0 and A0 ⊆ g(A0), there exists an element x2 ∈ A0 such that

d
(
gx2, Sx1

)
= d(A,B). (3.8)

By similar fashion, we can find xn in A0. Having chosen xn, one can determine an element
xn+1 ∈ A0 such that

d
(
gxn+1, Sxn

)
= d(A,B). (3.9)

Because of the facts that S(A0) ⊆ B0 andA0 ⊆ g(A0), by a generalized proximal ψ-contraction
of the first kind of S, g is an isometry and property of ψ, for each n ∈ N, we have

d(xn+1, xn) = d
(
gxn+1, gxn

)

≤ ψ(d(xn, xn−1))

≤ d(xn, xn−1).

(3.10)

This means that the sequence {d(xn+1, xn)} is nonincreasing and bounded. Hence there exists
r ≥ 0 such that

lim
n→∞

d(xn+1, xn) = r. (3.11)

If r > 0, then

r = lim
n→∞

d(xn+1, xn)

≤ lim
n→∞

ψ(d(xn, xn−1))

= ψ(r)

< r,

(3.12)

which is a contradiction unless r = 0. Therefore,

αn := lim
n→∞

d(xn+1, xn) = 0. (3.13)

We claim that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy sequence. Then
there exists ε > 0 and subsequence {xmk}, {xnk} of {xn} such that nk > mk ≥ k with

rk := d(xmk , xnk) ≥ ε, d(xmk , xnk−1) < ε (3.14)
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for k ∈ {1, 2, 3, . . .}. Thus

ε ≤ rk ≤ d(xmk , xnk−1) + d(xnk−1, xnk)

< ε + αnk−1.
(3.15)

It follows from (3.13) that

lim
k→∞

rk = ε. (3.16)

On the other hand, by constructing the sequence {xn}, we have

d
(
gxmk+1, Sxmk

)
= d(A,B), d

(
gxnk+1, Sxnk

)
= d(A,B). (3.17)

Sine S is a generalized proximal ψ-contraction of the first kind and g is an isometry, we have

d(xmk+1, xnk+1) = d
(
gxmk+1, gxnk+1

) ≤ ψ(d(xmk , xnk)). (3.18)

Notice also that

ε ≤ rk ≤ d(xmk , xmk+1) + d(xnk+1, xnk) + d(xmk+1, xnk+1)

= αmk + αnk + d(xmk+1, xnk+1)

≤ αmk + αnk + ψ(d(xmk , xnk)).

(3.19)

Taking k → ∞ in above inequality, by (3.13), (3.16), and property of ψ, we get ε ≤ ψ(ε).
Therefore, ε = 0, which is a contradiction. So we obtain the claim and hence converge to some
element x ∈ A. Similarly, in view of the fact that T(B0) ⊆ A0 andA0 ⊆ g(A0), we can conclude
that there is a sequence {yn} such that d(gyn+1, Syn) = d(A,B) and converge to some element
y ∈ B. Since the pair (S, T) is a proximal cyclic contraction and g is an isometry, we have

d
(
xn+1, yn+1

)
= d
(
gxn+1, gyn+1

) ≤ αd(xn, yn
)
+ (1 − α)d(A,B). (3.20)

We take limit in (3.20) as n → ∞; it follows that

d
(
x, y
)
= d(A,B), (3.21)

so, we concluded that x ∈ A0 and y ∈ B0. Since S(A0) ⊆ B0 and T(B0) ⊆ A0, there is u ∈ A
and v ∈ B such that

d(u, Sx) = d(A,B) (3.22)

d
(
v, Ty

)
= d(A,B). (3.23)
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From (3.9), (3.22), and the notion of generalized proximal ψ-contraction of first kind of S, we
get

d
(
u, gxn+1

) ≤ ψ(d(x, xn)). (3.24)

Letting n → ∞, we get d(u, gx) ≤ ψ(0) = 0 and thus u = gx. Therefore

d
(
gx, Sx

)
= d(A,B). (3.25)

Similarly, we can show that v = gy and then

d
(
gy, Ty

)
= d(A, B). (3.26)

From (3.21), (3.25), and (3.26), we get

d
(
x, y
)
= d
(
gx, Sx

)
= d
(
gy, Ty

)
= d(A,B). (3.27)

Next, to prove the uniqueness, let us suppose that there exist x∗ ∈ A and y∗ ∈ B with
x /=x∗, y /=y∗ such that

d
(
gx∗, Sx∗) = d(A,B),

d
(
gy∗, Ty∗) = d(A,B).

(3.28)

Since g is an isometry, S and T are generalized proximal ψ-contractions of the first kind and
the property of ψ; it follows that

d(x, x∗) = d
(
gx, gx∗) ≤ ψ(d(x, x∗)) < d(x, x∗),

d
(
y, y∗) = d

(
gy, gy∗) ≤ ψ(d(y, y∗)) < d

(
y, y∗),

(3.29)

which is a contradiction, so we have x = x∗ and y = y∗. On the other hand, let {un} be a
sequence in A and let {εn} be a sequence of positive real numbers such that

lim
n→∞

εn = 0, d(un+1, zn+1) ≤ εn, (3.30)

where zn+1 ∈ A satisfies the condition that d(gzn+1, Sun) = d(A,B). Since S is a generalized
proximal ψ-contraction of first kind and g is an isometry, we have

d(xn+1, zn+1) ≤ ψ(d(xn, un)). (3.31)

Given ε > 0, we choose a positive integerN such that εn ≤ ε for all n ≥N; we obtain that

d(xn+1, un+1) ≤ d(xn+1, zn+1) + d(zn+1, un+1)

≤ ψ(d(xn, un)) + εn.
(3.32)
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Therefore, we get

d(un+1, x) ≤ d(un+1, xn+1) + d(xn+1, x)

≤ ψ(d(xn, un)) + εn + d(xn+1, x).
(3.33)

We claim that d(un, x) → 0 as n → ∞; supposing the contrary, by inequality (3.33) and
property of ψ, we get

lim
n→∞

d(un+1, x) ≤ lim
n→∞

(d(un+1, xn+1) + d(xn+1, x))

≤ lim
n→∞

(
ψ(d(xn, un)) + εn + d(xn+1, x)

)

= ψ

(
lim
n→∞

d(xn, un)
)

< lim
n→∞

d(xn, un)

≤ lim
n→∞

(d(xn, x) + d(x, un))

= lim
n→∞

d(x, un),

(3.34)

which is a contradiction, so we have {un} is convergent and it converges to x. This completes
the proof of the theorem.

If g is assumed to be the identity mapping, then by Theorem 3.3, we obtain the
following corollary.

Corollary 3.4. Let (X, d) be a complete metric space and let A and B be nonempty, closed subsets of
X. Further, suppose thatA0 and B0 are nonempty. Let S : A → B, T : B → A and g : A∪B → A∪B
satisfy the following conditions:

(a) S and T are generalized proximal ψ-contraction of the first kind;

(b) S(A0) ⊆ B0, T(B0) ⊆ A0;

(c) the pair (S, T) is a proximal cyclic contraction.

Then, there exists a unique point x ∈ A and there exists a unique point y ∈ B such that

d
(
gx, Sx

)
= d
(
gy, Ty

)
= d
(
x, y
)
= d(A,B). (3.35)

If we take ψ(t) = αt, where 0 ≤ α < 1, we obtain following corollary.

Corollary 3.5 (see [37, Theorem 3.1]). Let (X, d) be a complete metric space and A and B be
non-empty, closed subsets of X. Further, suppose that A0 and B0 are non-empty. Let S : A → B,
T : B → A and g : A ∪ B → A ∪ B satisfy the following conditions:

(a) S and T are proximal contractions of first kind;

(b) g is an isometry;
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(c) the pair (S, T) is a proximal cyclic contraction;

(d) S(A0) ⊆ B0, T(B0) ⊆ A0;

(e) A0 ⊆ g(A0) and B0 ⊆ g(B0).

Then, there exists a unique point x ∈ A and there exists a unique point y ∈ B such that

d
(
gx, Sx

)
= d
(
gy, Ty

)
= d
(
x, y
)
= d(A,B). (3.36)

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d
(
gxn+1, Sxn

)
= d(A,B), (3.37)

converges to the element x. For any fixed y0 ∈ B0, the sequence {yn}, defined by

d
(
gyn+1, Tyn

)
= d(A,B), (3.38)

converges to the element y.

If g is assumed to be the identity mapping in Corollary 3.5, we obtain the following
corollary.

Corollary 3.6. Let (X, d) be a complete metric space and letA andB be nonempty, closed subsets ofX.
Further, suppose thatA0 and B0 are nonempty. Let S : A → B, T : B → A, and g : A∪B → A∪B
satisfy the following conditions:

(a) S and T are proximal contractions of first kind;

(b) S(A0) ⊆ B0, T(B0) ⊆ A0;

(c) the pair (S, T) is a proximal cyclic contraction.

Then, there exists a unique point x ∈ A and there exists a unique point y ∈ B such that

d
(
gx, Sx

)
= d
(
gy, Ty

)
= d
(
x, y
)
= d(A,B). (3.39)

For a self-mapping, Theorem 3.3 includes the Boy andWong’ s fixed point theorem [3]
as follows.

Corollary 3.7. Let (X, d) be a complete metric space and let T : X → X be a mapping that satisfies
d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X, where ψ : [0,∞) → [0,∞) is an upper semicontinuous
function from the right such that ψ(t) < t for all t > 0. Then T has a unique fixed point v ∈ X.
Moreover, for each x ∈ X, {Tnx} converges to v.

Next, we give an example to show that Definition 3.1 is different form Definition 2.1;
moreover we give an example which supports Theorem 3.3.

Example 3.8. Consider the complete metric space R
2 with metric defined by

d
((
x1, y1

)
,
(
x2, y2

))
= |x1 − x2| +

∣∣y1 − y2
∣∣, (3.40)
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for all (x1, y1), (x2, y2) ∈ R
2. Let

A =
{(

0, y
)
: 0 ≤ y ≤ 1

}
, B =

{(
1, y
)
: 0 ≤ y ≤ 1

}
. (3.41)

Then d(A,B) = 1. Define the mappings S : A → B as follows:

S
((
0, y
))

=

(

1, y − y2

2

)

. (3.42)

First, we show that S is generalized proximal ψ-contraction of the first kind with the function
ψ : [0,∞) → [0,∞) defined by

ψ(t) =

⎧
⎪⎨

⎪⎩

t − t2

2
, 0 ≤ t ≤ 1,

t − 1, t > 1.
(3.43)

Let (0, x1), (0, x2), (0, a1) and (0, a2) be elements in A satisfying

d((0, x1), S(0, a1)) = d(A,B) = 1, d((0, x2), S(0, a2)) = d(A,B) = 1. (3.44)

It follows that

xi = ai −
a2i
2

for i = 1, 2. (3.45)

Without loss of generality, we may assume that a1 − a2 > 0, so we have

d((0, x1), (0, x2)) = d

((

0, a1 −
a21
2

)

,

(

0, a2 −
a22
2

))

=

∣∣
∣∣∣

(

a1 −
a21
2

)

−
(

a2 −
a22
2

)∣∣
∣∣∣

= (a1 − a2) −
(
a21
2

− a22
2

)

≤ (a1 − a2) − 1
2
(a1 − a2)2

= ψ(d((0, a1), (0, a2))).

(3.46)

Thus S is a generalized proximal ψ-contraction of the first kind.
Next, we prove that S is not a proximal contraction. Suppose S is proximal contraction

then for each (0, x), (0, y), (0, a), (0, b) ∈ A satisfying

d((0, x), S(0, a)) = d(A,B) = 1, d
((
0, y
)
, S(0, b)

)
= d(A,B) = 1, (3.47)
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there exists k ∈ [0, 1) such that

d
(
(0, x),

(
0, y
)) ≤ kd((0, a), (0, b)). (3.48)

From (3.47), we get

x = a − a2

2
, y = b − b2

2
, (3.49)

and thus
∣
∣
∣
∣
∣

(

a − a2

2

)

−
(

b − b2

2

)∣∣
∣
∣
∣
= d
(
(0, x),

(
0, y
))

≤ kd((0, a), (0, b))

= k|a − b|.

(3.50)

Letting b = 0 with a/= 0, we get

1 = lim
a→ 0+

(
1 − a

2

)
≤ k < 1, (3.51)

which is a contradiction. Therefore S is not a proximal contraction and Definition 3.1 is
different form Definition 2.1.

Example 3.9. Consider the complete metric space R
2 with Euclidean metric. Let

A =
{(

0, y
)
: y ∈ R

}
,

B =
{(

1, y
)
: y ∈ R

}
.

(3.52)

Define two mappings S : A → B, T : B → A and g : A ∪ B → A ∪ B as follows:

S
((
0, y
))

=
(
1,
y

4

)
, T

((
1, y
))

=
(
0,
y

4

)
, g

((
x, y
))

=
(
x,−y). (3.53)

Then it is easy to see that d(A,B) = 1, A0 = A, B0 = B and the mapping g is an isometry.
Next, we claim that S and T are generalized proximal ψ-contractions of the first kind.

Consider a function ψ : [0,∞) → [0,∞) defined by ψ(t) = t/2 for all t ≥ 0. If (0, y1), (0, y2) ∈
A such that

d
(
a, S
(
0, y1

))
= d(A,B) = 1, d

(
b, S
(
0, y2

))
= d(A,B) = 1 (3.54)

for all a, b ∈ A, then we have

a =
(
0,
y1
4

)
, b =

(
0,
y2
4

)
. (3.55)
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Because,

d(a, b) = d
((

0,
y1
4

)
,
(
0,
y2
4

))

=
∣
∣
∣
y1
4

− y2
4

∣
∣
∣

=
1
4
∣
∣y1 − y2

∣
∣

≤ 1
2
∣
∣y1 − y2

∣
∣

=
1
2
d
((
0, y1

)
,
(
0, y2

))

= ψ
(
d
((
0, y1

)
,
(
0, y2

)))
.

(3.56)

Hence S is a generalized proximal ψ-contraction of the first kind. If (1, y1), (1, y2) ∈ B such
that

d
(
a, T
(
1, y1

))
= d(A,B) = 1, d

(
b, T
(
1, y2

))
= d(A,B) = 1 (3.57)

for all a, b ∈ B, then we get

a =
(
1,
y1
4

)
, b =

(
1,
y2
4

)
. (3.58)

In the same way, we can see that T is a generalized proximal ψ-contraction of the first
kind. Moreover, the pair (S, T) forms a proximal cyclic contraction and other hypotheses of
Theorem 3.3 are also satisfied. Further, it is easy to see that the unique element (0, 0) ∈ A and
(1, 0) ∈ B such that

d
(
g(0, 0), S(0, 0)

)
= d
(
g(1, 0), T(1, 0)

)
= d((0, 0), (1, 0)) = d(A,B). (3.59)

Next, we establish a best proximity point theorem for non-self-mappings which are
generalized proximal ψ-contractions of the first kind and the second kind.

Theorem 3.10. Let (X, d) be a complete metric space and let A and B be non-empty, closed subsets
of X. Further, suppose that A0 and B0 are non-empty. Let S : A → B and g : A → A satisfy the
following conditions:

(a) S is a generalized proximal ψ-contraction of first and second kinds;

(b) g is an isometry;

(c) S preserves isometric distance with respect to g;

(d) S(A0) ⊆ B0;

(e) A0 ⊆ g(A0).
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Then, there exists a unique point x ∈ A such that

d
(
gx, Sx

)
= d(A,B). (3.60)

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d
(
gxn+1, Sxn

)
= d(A,B), (3.61)

converges to the element x.
On the other hand, a sequence {un} in A converges to x if there is a sequence of positive

numbers {εn} such that

lim
n→∞

εn = 0, d(un+1, zn+1) ≤ εn, (3.62)

where zn+1 ∈ A satisfies the condition that d(gzn+1, Sun) = d(A,B).

Proof. Since S(A0) ⊆ B0 and A0 ⊆ g(A0), similarly in the proof of Theorem 3.3, we can
construct the sequence {xn} of element in A0 such that

d
(
gxn+1, Sxn

)
= d(A,B) (3.63)

for nonnegative number n. It follows from g that is an isometry and the virtue of a generalized
proximal ψ-contraction of the first kind of S; we see that

d(xn, xn+1) = d
(
gxn, gxn+1

) ≤ ψ(d(xn, xn−1)) (3.64)

for all n ∈ N. Similarly to the proof of Theorem 3.3, we can conclude that the sequence {xn}
is a Cauchy sequence and converges to some x ∈ A. Since S is a generalized proximal ψ-
contraction of the second kind and preserves isometric distance with respect to g that

d(Sxn, Sxn+1) = d
(
Sgxn, Sgxn+1

)

≤ ψ(d(Sxn−1, Sxn))

≤ d(Sxn−1, Sxn),

(3.65)

this means that the sequence {d(Sxn+1, Sxn)} is nonincreasing and bounded below. Hence,
there exists r ≥ 0 such that

lim
n→∞

d(Sxn+1, Sxn) = r. (3.66)
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If r > 0, then

r = lim
n→∞

d(Sxn+1, Sxn)

≤ lim
n→∞

ψ(d(Sxn−1, Sxn))

= ψ(r)

< r,

(3.67)

which is a contradiction, unless r = 0. Therefore

βn := lim
n→∞

d(Sxn+1, Sxn) = 0. (3.68)

We claim that {Sxn} is a Cauchy sequence. Suppose that {Sxn} is not a Cauchy sequence.
Then there exists ε > 0 and subsequence {Sxmk}, {Sxnk} of {Sxn} such that nk > mk ≥ k with

rk := d(Sxmk , Sxnk) ≥ ε, d(Sxmk , Sxnk−1) < ε (3.69)

for k ∈ {1, 2, 3, . . .}. Thus

ε ≤ rk ≤ d(Sxmk , Sxnk−1) + d(Sxnk−1, Sxnk)

< ε + βnk−1,
(3.70)

it follows from (3.68) that

lim
k→∞

rk = ε. (3.71)

Notice also that

ε ≤ rk ≤ d(Sxmk , Sxmk+1) + d(Sxnk+1, Sxnk) + d(Sxmk+1, Sxnk+1)

= βmk + βnk + d(Sxmk+1, Sxnk+1)

≤ βmk + βnk + ψ(d(Sxmk , Sxnk)).

(3.72)

Taking k → ∞ in previous inequality, by (3.68), (3.71), and property of ψ, we get ε ≤ ψ(ε).
Hence, ε = 0, which is a contradiction. So we obtain the claim and then it converges to some
y ∈ B. Therefore, we can conclude that

d
(
gx, y

)
= lim

n→∞
d
(
gxn+1, Sxn

)
= d(A,B). (3.73)
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That is gx ∈ A0. Since A0 ⊆ g(A0), we have gx = gz for some z ∈ A0 and then d(gx, gz) = 0.
By the fact that g is an isometry, we have d(x, z) = d(gx, gz) = 0. Hence x = z and so x
becomes to a point in A0. As S(A0) ⊆ B0 that

d(u, Sx) = d(A,B) (3.74)

for some u ∈ A. It follows from (3.63) and (3.74) that S is a generalized proximal ψ-
contraction of the first kind that

d
(
u, gxn+1

) ≤ ψ(d(x, xn)) (3.75)

for all n ∈ N. Taking limit as n → ∞, we get the sequence {gxn} converging to a point u. By
the fact that g is continuous, we have

gxn −→ gx as n −→ ∞. (3.76)

By the uniqueness of limit of the sequence, we conclude that u = gx. Therefore, it results that
d(gx, Sx) = d(u, Sx) = d(A,B). The uniqueness and the remaining part of the proof follow
as in Theorem 3.3. This completes the proof of the theorem.

If g is assumed to be the identity mapping, then by Theorem 3.10, we obtain the
following corollary.

Corollary 3.11. Let (X, d) be a complete metric space and letA and B be nonempty, closed subsets of
X. Further, suppose that A0 and B0 are nonempty. Let S : A → B satisfy the following conditions:

(a) S is a generalized proximal ψ-contraction of first and second kinds;

(b) S(A0) ⊆ B0.

Then, there exists a unique point x ∈ A such that

d(x, Sx) = d(A,B). (3.77)

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Sxn) = d(A,B), (3.78)

converges to the best proximity point x of S.

If we take ψ(t) = αt, where 0 ≤ α < 1 in Theorem 3.10, we obtain following corollary.

Corollary 3.12 (see [37, Theorem 3.4]). Let (X, d) be a complete metric space and let A and B be
non-empty, closed subsets of X. Further, suppose that A0 and B0 are non-empty. Let S : A → B and
g : A → A satisfy the following conditions:

(a) S is a proximal contraction of first and second kinds;

(b) g is an isometry;
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(c) S preserves isometric distance with respect to g;

(d) S(A0) ⊆ B0;

(e) A0 ⊆ g(A0).

Then, there exists a unique point x ∈ A such that

d
(
gx, Sx

)
= d(A,B). (3.79)

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d
(
gxn+1, Sxn

)
= d(A,B), (3.80)

converges to the element x.

If g is assumed to be the identity mapping in Corollary 3.12, we obtain the following
corollary.

Corollary 3.13. Let (X, d) be a complete metric space and let A and B be non-empty, closed subsets
ofX. Further, suppose thatA0 and B0 are non-empty. Let S : A → B satisfy the following conditions:

(a) S is a proximal contraction of first and second kinds;

(b) S(A0) ⊆ B0.

Then, there exists a unique point x ∈ A such that

d(x, Sx) = d(A,B). (3.81)

Moreover, for any fixed x0 ∈ A0, the sequence {xn}, defined by

d(xn+1, Sxn) = d(A,B), (3.82)

converges to the best proximity point x of S.
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[36] K. Wlodarczyk, R. Plebaniak, and C. Obczyński, “Convergence theorems, best approximation and
best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone
uniform spaces,” Nonlinear Analysis, Theory, Methods and Applications, vol. 72, no. 2, pp. 794–805, 2009.

[37] S. Sadiq Basha, “Best proximity point theorems generalizing the contraction principle,” Nonlinear
Analysis, Theory, Methods and Applications, vol. 74, no. 17, pp. 5844–5850, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


