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This paper focuses on the relationship between L-posets and complete L-lattices from the
categorical view. By considering a special class of fuzzy closure operators, we prove that the
category of complete L-lattices is a reflective full subcategory of the category of L-posets with
appropriate morphisms. Moreover, we characterize the Dedekind-MacNeille completions of L-
posets and provide an equivalent description for them.

1. Introduction

Fuzzy order was originated from the literature of Zadeh [1] and later was broadly studied. A
fuzzy ordered set (an L-poset) is the fundamental idea of fuzzy ordered structures. Some
people studied it from the fuzzy set theory such as [2–8], and others considered it as a
category (see [9–11]). All these works enriched the theories of fuzzy orders and fuzzy
ordered structures. At present, we are about to consider fuzzy ordered sets as objects in the
framework of category. As we are all know that the researches on categoryD can be reflected
on its reflective full subcategories whose structures are better than D. Searching for such
subcategories provides a new approach to study primary category.

In recent years, the completion theory for fuzzy ordered sets attracts much attention.
Wagner [9] introduced the enriched Dedekind-MacNeille completion for a category enriched
over a commutative unital quantale. Bělohlávek [12] described the Dedekind-MacNeille
completion for an L-ordered set as an application of the theory of concept lattices in the
fuzzy setting. Xie et al. [13] built and characterized the Dedekind-MacNeille completions
for L-posets. In [14], Wang and Zhao proposed join-completions for L-ordered sets and
investigated their characterizations. It was shown that each join-completion is in bijective
correspondence with a consistent fuzzy closure operator C, and it has a universal property
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with respect to C-homomorphisms. It also mentioned that the relationship between the
categories of L-posets and complete L-lattices will be of concern in the future. This problem
is closely related to the appropriate morphisms chosen, respectively. How about when C-
homomorphisms endowed on L-posets and fuzzy-join-preserving mappings are chosen for
complete L-lattices? This is our first motivation for this paper. After analysis, we discover
that the latter category is a reflective full subcategory of the former with respect to a special
class of fuzzy closure operators, but not for any one (a counterexample is given). The special
class of fuzzy closure operators is singled out in this paper. Moreover, when a completion
has a universal property, we can declare that it is a join-completion. But there are so many
join-completions, thus which type is it? This is the other motivation of this paper. We prove
that it is exactly the Dedekind-MacNeille completion up to isomorphism.

This paper is organized as follows. In Section 2, we list some basic definitions
and well-known results for fuzzy order theory. In Section 3, we discuss the relationship
between C-homomorphisms and fuzzy-join-preserving mappings then single out a special
class of fuzzy closure operators such that the category of complete L-lattices is a reflective
full subcategory of the category of L-posets. In Section 4, we characterize the Dedekind-
MacNeille completions for L-posets and give an equivalent description for them. In Section 5,
we summarize all the content and reach a conclusion.

2. Preliminaries

A complete residuated lattice [15] is a structure (L, ∗, → ,∨,∧, 0, 1) such that (1) (L,∨,∧, 0, 1) is
a complete lattice with the greatest element 1 and least element 0; (2) (L, ∗, 1) is a commutative
monoid with the identity 1, and ∗ is isotone at both arguments; (3) (∗, → ) is an adjoint pair,
that is, x ∗ y ≤ z if and only if x ≤ y → z for all x, y, z ∈ L. Usually, we abbreviate (L, ∗, →
,∨,∧, 0, 1) by L simply. Some basic properties of complete residuated lattices are collected
here ([15–17]).

(1) 1 → a = a;

(2) a ≤ b if and only if a → b = 1;

(3) (a → b) ∗ (b → c) ≤ a → c;

(4) a → (b → c) = b → (a → c) = (a ∗ b) → c;

(5) a ≤ b → (a ∗ b);

(6) a ∗ (a → b) ≤ b;

(7) a ∗ (∨i∈Ibi) =
∨

i∈I(a ∗ bi), a ∗ (
∧

i∈Ibi) ≤
∧

i∈I(a ∗ bi);

(8) a → (
∧

i∈Ibi) =
∧

i∈I(a → bi), (
∨

i∈Iai) → b =
∧

i∈I(ai → b);

(9) a → b ≥ b;

(10) b → c ≤ (a → b) → (a → c), b → c ≤ (c → a) → (b → a);

(11) (a → b) → b ≥ a;

(12) (a → b) ∗ (c → d) ≤ (a ∗ c) → (b ∗ d).
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In this paper, L always denotes a complete residuated lattice unless otherwise stated,
and LX denotes the set of all L-subsets of a nonempty set X. For all A,B ∈ LX , we define

(A ∩ B)(x) = A(x) ∧ B(x), (A ∪ B)(x) = A(x) ∨ B(x),
(A ∗ B)(x) = A(x) ∗ B(x), (A −→ B)(x) = A(x) −→ B(x).

(2.1)

Then (LX, ∗, → ,∨,∧, 0, 1) is also a complete residuated lattice. If no confusion arises, we
always do not discriminate the constant value function a with a, for example, (a ∗ A)(x) =
a ∗A(x) and (a → A)(x) = a → A(x) for every x ∈ X.

Fuzzy order was first introduced by Zadeh [1], from then on, different kinds of fuzzy
order have been introduced and studied by different authors (the reader is referred to [3, 6,
9, 11, 18–20] for details). In this paper, we adopt the definition of fuzzy order introduced by
Fan and Zhang [3, 6].

Definition 2.1. An L-partial order e (also called an L-order) on X is an L-relation satisfying:

(1) for all x ∈ X, e(x, x) = 1;

(2) for all x, y, z ∈ X, e(x, y) ∗ e(y, z) ≤ e(x, z);

(3) for all x, y ∈ X, e(x, y) = e(y, x) = 1⇒ x = y.

Then (X, e) is called an L-partially ordered set or an L-poset for simplicity.
It is worth noting that Bělohlávek defined another fuzzy order in [12, 16], and it was

shown to be equivalent to the above definition by Yao [5].
There are some important L-posets which are mentioned in many papers, such as

[3, 4, 19, 21]. For example, in an L-poset (X, e), define eop(x, y) = e(y, x) for all x, y ∈ X,
then (X, eop) is also an L-poset. In a complete residuated lattice L, define eL : L × L → L
by eL(x, y) = x → y for all x, y ∈ L, then (L, eL) is an L-poset. For all A,B ∈ LX , define
sub(A,B) =

∧
x∈X(A(x) → B(x)), then (LX, sub) is an L-poset.

In the following, some basic and very important definitions and results related to the
theory of L-poset are listed. The reader is referred to [2–9, 11–13, 20] for details.

Definition 2.2. Let (X, e) be an L-poset, A ∈ LX , x0 ∈ X. x0 is called a fuzzy join (resp., fuzzy
meet) of A denoted by x0 = �A (resp., x0 = A) if

(1) for all x ∈ X, A(x) ≤ e(x, x0) (resp., A(x) ≤ e(x0, x));

(2) for all y ∈ X,
∧

x∈X(A(x) → e(x, y)) ≤ e(x0, y) (resp.,
∧

x∈X(A(x) → e(y, x)) ≤
e(y, x0)).

It is easy to see that the fuzzy join or the fuzzy meet is unique in an L-poset (X, e) if
it exists, and x0 = �A (resp., x0 = A) if and only if e(x0, y) =

∧
x∈X(A(x) → e(x, y)) (resp.,

e(y, x0) =
∧

x∈X(A(x) → e(y, x))) for all y ∈ X. If �A and A exist for all A ∈ LX , then (X, e)
is said to be a complete L-lattice.

In an L-poset (X, e), for any x ∈ X, we usually define ↓x ∈ LX as ↓x (y) = e(y, x) for
each y ∈ X and dually define ↑x (y) = e(x, y). For any A ∈ LX , it is called an L-lower set
if A(x) ∗ e(y, x) ≤ A(y) for all x, y ∈ X, or an L-upper set if A(x) ∗ e(x, y) ≤ A(y) for all
x, y ∈ X. When A is an L-lower set, we have sub(↓x,A) = A(x), and sub(↑x,A) = A(x)when
A is an L-upper set.
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For each map f : X → Y from a set X to an L-poset (Y, e), there exist L-forward
powerset operators f →L : LX → LY defined as f →L (A)(y) =

∨
f(x)=yA(x) for all y ∈ Y,A ∈ LX ,

and an L-backward powerset operator f←L : LY → LX defined as f←L (B) = B ◦ f for each
B ∈ LY .

Definition 2.3. Let (X, eX), (Y, eY ) be L-posets and f : X → Y be a map. Then

(1) f is said to be L-order-preserving or L-monotone if eX(x, y) ≤ eY (f(x), f(y)) for all
x, y ∈ X;

(2) f is an L-order-embedding if eX(x, y) = eY (f(x), f(y)) for all x, y ∈ X;

(3) f is said to be fuzzy-join-preserving if for anyA ∈ LX such that �A exists, it implies
that �f →L (A) exists and f(�A) = �f →L (A);

(4) f is said to be fuzzy-meet-preserving if for any A ∈ LX such that A exists, it
implies that f →L (A) exists and f(A) = f →L (A).

Definition 2.4. Let (X, eX), (Y, eY ) be L-posets, f : X → Y , g : Y → X be L-order-preserving
maps. If eY (f(x), y) = eX(x, g(y)) for all x ∈ X, y ∈ Y , then (f, g) is called a fuzzy Galois
connection between X and Y . f is called the left adjoint of g, and dually g is the right adjoint
of f .

It is worth noting that for anymap f : X → Y , there is a useful fuzzyGalois connection
(f →L , f←L ) between (LX, sub) and (LY , sub).

Theorem 2.5. Let (X, eX), (Y, eY ) be L-posets, f : (X, eX) → (Y, eY ), and let g : (Y, eY ) →
(X, eX) be maps.

(1) If (X, eX) is complete, then f is L-order-preserving and has a right adjoint if and only if
f(�A) = �f →L (A) for each A ∈ LX ;

(2) If (Y, eY ) is complete, then g is L-order-preserving and has a left adjoint if and only if
g(B) = g←L (B) for each B ∈ LY .

Definition 2.6. Let (X, eX) be an L-poset, (Y, eY ) a complete L-lattice. If there exists an L-order-
embedding ϕ : X → Y , then (Y, eY ) is said to be a completion of X via ϕ. Besides, if ϕ(X) is
join-dense in Y (refer to [13]), then we say that (Y, eY ) is a join-completion of X via ϕ.

For an L-poset (X, e) and A ∈ LX , then we have Au,Al ∈ LX which is called upper
bound and lower bound of A, respectively.

Au(x) =
∧

y∈X
A
(
y
) −→ e

(
y, x

)
, Al(x) =

∧

y∈X
A
(
y
) −→ e

(
x, y

)
, (∀x ∈ X). (2.2)

Define DML(X) = {A ∈ LX | Aul = A} and DM
op

L (X) = {A ∈ LX | Alu = A}.
Then both (DML(X), sub) and (DM

op

L (X), subop) are join-completions of (X, e), respectively,
via L-order-embedding ι : X → DML(X) given by ι(x) = ↓ x and L-order-embedding
u : X → DM

op

L (X) given by u(x) = ↑ x (the reader is referred to [13] for details). They
are known as the Dedekind-MacNeille completions for (X, e).
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3. Reflective Full Subcategories of L-Posets

The aim of this section is to study the relationship between L-posets and complete L-lattices
in categorical terms, which is closely related to the universal property of join-completions
determined by a fuzzy closure operator. We refer to [22] for general category theory.

Definition 3.1. A subcategory A of a category B is said to be reflective in B if for each B-object
B, there exists an A-object A and a B-morphism r : B → A such that for each B-morphism
f : B → C there exists a unique A-morphism f with f ◦ r = f .

Assume that the reader is familiar with the concepts of fuzzy closure operators and
fuzzy closure systems. If C is a fuzzy closure operator on X, then there is an associated fuzzy
closure system LC = {A ∈ LX | C(A) = A} and vice versa (refer to [12, 23] for details).

Definition 3.2 (see [14]). Let (X, eX) be an L-poset. A fuzzy closure operator C on X is called
a consistent fuzzy closure operator if C(χ{x}) = ↓x.

As shown in the literature [14], join-completions are in bijective correspondence with
consistent fuzzy closure operators.

Definition 3.3 (see [14]). Let (X, eX), (Y, eY ) be L-posets and C a consistent fuzzy closure
operator on X. A mapping f : X → Y is called a C-homomorphism if for all y ∈ Y ,
f←L (↓y) ∈ LC.

Theorem 3.4 (see [14]). Let (X, eX) be a L-poset, C a consistent fuzzy closure operator on X, and
(Y, eY ) a completion of X via ϕ. Then, the following are equivalent:

(1) (Y, eY ) is a join-completion of X via ϕ;

(2) ϕ is a C-homomorphism. Moreover, for each complete L-lattice (Z, eZ) and each C-
homomorphism f : X → Z, there exists a unique fuzzy-join-preserving mapping f :
Y → Z such that f = f ◦ ϕ.

Considering Theorem 3.4, we do want to know that whether the category of
complete L-lattices with fuzzy-join-preserving mappings, in symbol L-Sup, is a reflective full
subcategories of the category whose objects are L-posets and arrows are C-homomorphisms
associated with a consistent fuzzy closure operator C, which is denoted by L-POS(C). In
fact, the answer is positive for some special consistent fuzzy closure operators. But as in
Example 3.5, when C = ↓, there exists some C-homomorphisms on complete L-lattices but
not fuzzy-join-preserving. So L-Sup is not a full subcategory of L-POS(↓). Sequentially, it is
not a reflective full subcategory of L-POS(↓) neither.

Example 3.5. Let X = {0, a, b, 1} with 0 ≤ a, b ≤ 1 and Y = {0, c, 1} with 0 ≤ c ≤ 1, then (X,≤)
and (Y,≤) are complete L-lattices where L = 2. Define f : X → Y as f(0) = 0, f(a) = f(b) =
c, f(1) = 1. It easily checked that f is a ↓-homomorphism, but it is not fuzzy-join-preserving.

In the sequel, we try to seek for those special fuzzy closure operators C in order to give
some reflective full subcategories for the category of L-posets.
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Definition 3.6. Let (X, e) be an L-poset and C a fuzzy closure operator on X. Then, C is called
an essential fuzzy closure operator if C(A) = ↓�A for all A ∈ LX with �A exists.

Note that an essential fuzzy closure operator is also a consistent fuzzy closure operator,
not vice versa. The following proposition shows that “essential” is a sufficient and necessary
condition for the equivalence of C-homomorphisms and fuzzy-join-preserving mappings on
complete L-lattices.

Proposition 3.7. Let (X, eX), (Y, eY ) be complete L-lattices, and let f a mapping from X to Y , C be
a consistent fuzzy closure operator on X. Then

(1) Assume that C is essential, we have f is a C-homomorphism if and only if it is fuzzy-join-
preserving;

(2) Assume that f is a C-homomorphism if and only if it is fuzzy-join-preserving, then C is
essential.

Proof. (1) Suppose that C is essential. If f is an C-homomorphism, then f is L-order-
preserving by Lemma 4.3 in [14]. For any A ∈ LX , clearly eY (�f →L (A), f(�A)) = 1. For
the other direction, let f←L (↓ �f →L (A)) = B, then sub(A,B) = sub(A, f←L (↓ �f→L (A))) =
sub(f→L (A), ↓ �f→L (A)) = 1. By Lemma 2.19(1) in [8], we have eX(�A,�B) ≥ sub(A,B) = 1,
and so ↓ �B(�A) = 1. By assumption, B ∈ LC and so B = C(B) = ↓ �B. It implies that
f←L (↓ �f →L (A))(�A) = 1. Thus ↓ �f →L (A)(f(�A)) = 1, that is, eY (f(�A), �f →L (A)) = 1.
Therefore, �f →L (A) = f(�A) and f is fuzzy-join-preserving. Conversely, if f is fuzzy-join-
preserving. Then for any y ∈ Y , it is easy to check that f←L (↓ y) ≤ ↓ �f←L (↓ y) at first.
Furthermore,

sub
(↓�f←L

(↓y), f←L
(↓y)) = sub

(
f→L

(↓�f←L
(↓y)), ↓y)

= eY
(
f
(�f←L

(↓y)), y)

= eY
(�(f →L

(
f←L

(↓y))), y)

= 1.

(3.1)

Hence, f←L (↓y) =↓�f←L (↓y) = C(f←L (↓y)) since C is essential. Thus f←L (↓y) ∈ LC, it implies
that f is an C-homomorphism.

(2) If C is not essential, then for C-homomorphism f , we have B = C(B) � ↓�B, where
B = f←L (↓ �f →L (A)) for A ∈ LX . As shown in the proof of (1), we can see that ↓ �B(�A) = 1.
It induces that f←L (↓�f →L (A))(�A) � 1, so eY (f(�A), �f →L (A)) � 1. Then f cannot be fuzzy-
join-preserving, and it contradicts with premise. Thus C is essential.

Corollary 3.8. (1) If C is an essential fuzzy closure operator, then L-Sup is a full subcategory of
L-POS(C).

(2) If L-Sup is a full subcategory of POS(C) associated with a consistent fuzzy closure
operator, then C is essential.
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Proposition 3.9. Let (X, e) be an L-poset and C an essential fuzzy closure operator on X. Then
there exists a join-completion (Y, e) of X via an C-homomorphism ϕ. Moreover, for each complete L-
lattice (Z, e) and C-homomorphism f : (X, e) → (Z, e), there exists an unique fuzzy-join-preserving
mapping f : (Y, e) → (Z, e) such that the following diagram commutes:

X Z

Y

f

ϕ
f

(3.2)

Proof. Since C is an essential fuzzy closure operator, then C is a consistent fuzzy closure
operator. By the Literature [14], we can see that (LC, sub) is a join-completion of X via C-
homomorphism ι. Thus the result follows immediately from Theorem 3.4.

Theorem 3.10. (1) If C is an essential fuzzy closure operator, then L-Sup is a reflective full
subcategory of L-POS(C).

(2) If L-Sup is a reflective full subcategory of L-POS(C) associated with a consistent fuzzy
closure operator, then C is essential.

Proof. It follows from Corollary 3.8 and Proposition 3.9.

Remark 3.11. For an L-poset (X, e), letC =ul. By Lemma 2.5(3) in [13], we can see thatC(A) = ↓
�A. SoC =ul is an essential fuzzy closure operator, and its associated completion is exactly the
Dedekind-MacNeille completion (DML(X), sub) via C-homomorphism ι (it is called lower-
continuous mapping in Section 4). Thus L-Sup is a reflective full subcategory of L-POS(ul).

It is easy to see thatDM
op

L ((X, e)) can be viewed asDML((X, eop)). With the duality of
the L-order, when mappings dual to C-homomorphism are chosen to serve as morphisms on
L-posets, the corresponding morphisms on complete L-lattices need to be changed to fuzzy-
meet-preserving mappings. Then the dual result is obtained immediately. We list it in the
following and leave the proof to the reader.

Definition 3.12. Let (X, eX), (Y, eY ) be L-posets, f : X → Y a mapping. Then f is said to be
upper-continuous if (f←L (↑y))lu = f←L (↑y) for all y ∈ Y .

Let L-Inf denote the category of complete L-lattices with fuzzy-meet-preserving
mappings, and the L-Pos denote the category whose objects are all L-posets and arrows are
upper-continuous mappings.

Theorem 3.13. L-Inf is a reflective full subcategory of L-POS.

4. The Characterizations of the Dedekind-MacNeille
Completions for L-Posets

From previous works, we have known that for an L-poset, each join-completion has a
universal property, and any completion with a universal property must be a join-completion.
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In this section, we study the characterizations of one special join-completion—the Dedekind-
MacNeille completion and obtain a stronger result that a complete L-lattice with a universal
property is exactly the Dedekind-MacNeille completion up to isomorphism.

Definition 4.1. Let (X, eX), (Y, eY ) be L-posets, f : X → Y a mapping, and B ∈ LY . Then f is
said to be lower-continuous if (f←L (↓y))ul = f←L (↓y) for all y ∈ Y .

Theorem 4.2. Let (X, eX), (Y, eY ) be L-posets, and let f : X → Y be a lower-continuous mapping.
Then there exists a unique fuzzy-join-preserving mapping F = DML(f) : DML(X) → DML(Y )
such that the following diagram commutes:

X
f

Y

F

ιX ιY

DML (X) DML (Y )

(4.1)

Proof. First, define F : DML(X) → DML(Y ) by F(A) = (f →L (A))ul, then we show that F
has a right adjoint. In fact, define G : DML(Y ) → DML(X) by G(A) = f←L (A). Then for
any A ∈ DML(X), B ∈ DML(Y ), sub(F(A),B) = sub((f→L (A))ul,B) = sub(Bu, (f→L (A))u) =
sub(f→L (A),Bul) = sub(f→L (A),B) = sub(A, f←L (B)) = sub(A,G(B)), it implies that (F,G) forms
a fuzzy Galois connection. By Theorem 2.5, F is fuzzy-join-preserving.

Next, to show that the diagram commutes amount to showing that (f →L (↓Xx))ul =
↓Yf(x) for every x ∈ X. Clearly, (f →L (↓Xx))ul ≤ ↓Yf(x) since f is L-order-preserving.
In the other direction, since (f →L (↓Xx))ul is an L-lower set, so for any y ∈ Y , we
have (f →L (↓Xx))ul(f(x)) ∗ eY (y, f(x)) ≤ (f →L (↓Xx))ul(y). It implies that eY (y, f(x)) ≤
(f →L (↓Xx))ul(y), that is, ↓Yf(x)(y) ≤ (f →L (↓Xx))ul(y). Thus ↓Yf(x) ≤ (f →L (↓Xx))ul, as needed.

Finally, we show that F is unique. Suppose that there is another fuzzy-join-preserving
mapping F∗ satisfying the diagram commutes; we show that F(A) = F∗(A) for all A ∈
DML(X). Since ιX(X) is join-dense in DML(X), it suffices to show that F(↓ x) = F∗(↓ x)
for all x ∈ X. That is obvious since the diagram commutes.

Corollary 4.3. Let f : X → Y be a lower-continuous mapping of an L-poset (X, eX) into a complete
L-lattice (Y, eY ). Then there exists a unique fuzzy-join-preserving mapping f : DML(X) → Y such
that the following diagram commutes:

X
f

Y

f

ιX

DML (X)

(4.2)
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Proof. By Theorem 4.2, there exists a commutative diagram as follows, and the mapping ιY is
an L-order-isomorphism since Y is a complete L-lattice. Let f = ι−1Y ◦ F, then f is a unique
fuzzy-join-preserving mapping such that the following diagram commutes:

X
f

Y

F

f
ιX ιY

DML (X) DML (Y )

(4.3)

Corollary 4.4. The Dedekind-MacNeille completion operator DML is a covariant functor from L-
POS(ul) to L-Sup.

Corollary 4.5. In the category L-Sup, (DML(X), sub) is the free object generated by an L-poset
(X, e).

Theorem 4.6. Let (X, eX) be an L-poset and (Y, eY ) a complete L-lattice. Then Y is isomorphic to the
Dedekind-MacNeille completion (DML(X), sub) if and only if it satisfies the following condition.

There exists a lower-continuous mapping ϕ : X → Y such that for every lower-continuous
mapping f : X → Z of X into a complete L-lattice (Z, eZ), there exists a unique fuzzy-join-
preserving mapping f : Y → Z such that the following diagram commutes:

X

f

Y

f

Z

ϕ

(4.4)

Proof. Suppose that Y is isomorphic to DML(X), then there exists an L-order-isomorphism
g : DML(X) → Y . We define ϕ : X → Y as ϕ = g ◦ ιX , then it is easily checked that ϕ is a
lower-continuous mapping. If f : X → Z is a lower-continuous mapping of X into complete
L-lattice (Z, eZ). By Corollary 4.3, there exists a unique fuzzy-join-preserving mapping h :
DML(X) → Z such that f = h ◦ ιX . Let f = h ◦ g−1, then f : Y → Z is a unique fuzzy-join-
preserving mapping such that f ◦ ϕ = f .

For the second part, assume that the condition holds. By Corollary 4.3, the diagrams
below commute:

XX

Y

Y

Y

ϕ

ϕ

ϕ

ϕ

ϕ

ιX

ιX

ιX ιX

jX

DML (X)

DML (X)

DML (X)

(4.5)
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By the uniquess condition, ϕ ◦ ιX = idDML(X) and ιX ◦ ϕ = idY . Thus Y is isomorphic to
DML(X).

Since DM
op

L ((X, e)) can be regarded as DML((X, eop)), when we replace the lower-
continuous mapping by upper-continuous mapping and fuzzy-join-preserving mapping by
fuzzy-meet-preserving mapping, then the dual results of Theorem 4.2 and Corollary 4.3 are
obtained naturally. Sequentially, the following observations are immediate, and the proofs
are trivial, so we omit them.

Proposition 4.7. (1) The Dedekind-MacNeille completion operatorDM
op

L is a covariant functor from
L-Pos to L-Inf.

(2) In the category L-Inf, (DM
op

L (X), subop) is the free object generated by an L-poset (X, e).

Theorem 4.8. Let (X, eX) be an L-poset and (Y, eY ) a complete L-lattice. Then Y is isomorphic to the
Dedekind-MacNeille completion (DM

op

L (X), subop) if and only if it satisfies the following condition.
There exists an upper-continuous mapping φ : X → Y such that for every upper-continuous

mapping f : X → Z of X into a complete L-lattice (Z, eZ), there exists a unique fuzzy-meet-
preserving mapping f : Y → Z such that the following diagram commutes:

X

f

Y

Z

φ

f (4.6)

5. Conclusion

In this paper, we consider the relationship between L-posets and complete L-lattices in the
categorical framework. After analysis of the characterizations of the join-completions, we
prove that the category of complete L-lattices with fuzzy-join-preserving mappings is a
reflective full subcategory of the category of L-posets with C-homomorphisms related to
an essential fuzzy closure operator. Furthermore, we characterize the Dedekind-MacNeille
completions. It is shown that they are the unique free objects (up to isomorphism) generated
by an L-poset in the category of complete L-lattices. It offers an equivalent description for
them. Maybe we will continue to focus on the completion theory for fuzzy ordered sets, we
will try to propose and characterize other completions for L-posets in the future.
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