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By using the tanh-coth method, we obtained some travelling wave solutions of two well-known
nonlinear Sobolev type partial differential equations, namely, the Benney-Luke equation and the
higher-order improved Boussinesq equation. We show that the tanh-coth method is a useful,
reliable, and concise method to solve these types of equations.

1. Introduction

The term “Sobolev equation” is used in the Russian literature to refer to any equation
with spatial derivatives on the highest order time derivative [1]. In other words, they are
characterized by having mixed time and space derivatives appearing in the highest-order
terms of the equation and were studied by Sobolev [2]. Equations of Sobolev type describe
many physical phenomena [3–7]. In recent years considerable attention has been paid to the
study of equations of Sobolev type. For more details we refer the reader to [8] and references
therein.

The Benney-Luke equation is as follows:

utt − uxx + auxxxx − buxxtt + utuxx + 2uxuxt = 0, (1.1)

where a and b are positive numbers, such that a − b = σ − 1/3 is a Sobolev type equation and
studied for a very long time. The dimensionless parameter σ is named the Bond number,
which captures the effects of surface tension and gravity force and is a formally valid
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approximation for describing two-way water wave propagation in the presence of surface
tension [9]. In [10] Pego and Quintero studied the propagation of long water waves with
small amplitude. They showed that in the presence of a surface tension, the propagation of
such waves is governed by (1.1), originally derived by Benney and Luke [11]. There are many
studies concerning with this equation. Amongst them the stability analysis [9, 12], Cauchy
problem [13–15], existence and analyticity of solutions [16], and travelling wave solutions
[17] can be mentioned.

In [18], Schneider and Wayne showed that in the longwave limit the water wave
problem without surface tension can be described approximately by two decoupled KdV
equations. They considered a class of Boussinesq equation which models the water wave
problem with surface tension as follows:

−uxxxxtt + uxxtt − utt + uxx + μuxxxx +
(
u2
)
xx

= 0, (1.2)

where x, t, μ ∈ R and u(x, t) ∈ R. Duruk et al. investigated the well posedness of the Cauchy
problem

−βuxxxxtt + uxxtt − utt + uxx +
(
g(u)

)
xx = 0, x ∈ R, t > 0 (1.3)

and showed that under certain conditions the Cauchy problem is globally well posed [19].
Nevertheless, several types of the improved Boussinesq equation were investigated by many
researchers and found exact solutions by using exp-function method [20], modified extended
tanh-functionmethod [21], sine-cosine method [22], improved G’/G-expansionmethod [22],
the standard tanh and the extended tanh method [23], and so forth.

The tanh-coth is a powerful and reliable technique for finding exact travelling wave
solutions for nonlinear equations. This method has been used extensively, and it was
subjected by some modifications using the Riccati equation. The main features of the tanh-
cothmethodwill be outlined in the subsequent section, and this methodwill be applied to the
the Benney-Luke and the Higher-order improved Boussinesq equations. The main purpose
of this work is to obtain travelling wave solutions of the above-mentioned equations and to
show that the tanh-coth method can be easily applied to Sobolev type equations. Throughout
the work, Maple is used to deal with the tedious algebraic operations.

2. Outline of the Tanh-Coth Method

Wazwaz has summarized the tanh method in the following manner.

(i) First consider a general form of nonlinear equation

P(u, ut, ux, uxx, . . .) = 0. (2.1)

(ii) To find the traveling wave solution of (2.1), the wave variable ξ = x − V t is intro-
duced, so that

u(x, t) = U
(
μξ

)
. (2.2)
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Based on this one may use the following changes:

∂

∂t
= −V d

dξ
,

∂

∂x
= μ

d

dξ
,

∂2

∂x2
= μ2 d2

dξ2
,

∂3

∂x3
= μ3 d3

dξ3
,

(2.3)

and so on for other derivatives. Using (2.3) changes the PDE (2.1) to an ODE as
follows:

Q
(
U,U′, U′′, . . .

)
= 0. (2.4)

(iii) If all terms of the resulting ODE contain derivatives in ξ, then by integrating this
equation and by considering the constant of integration to be zero, one obtains a
simplified ODE.

(iv) A new independent variable

Y = tanh
(
μξ

)
(2.5)

is introduced that leads to the change of derivatives:

d

dξ
= μ

(
1 − Y 2

) d

dY
,

d2

dξ2
= −2μ2Y

(
1 − Y 2

) d

dY
+ μ2

(
1 − Y 2

)2 d2

dY 2
,

d3

dξ3
= 2μ3

(
1 − Y 2

)(
3Y 2 − 1

) d

dY
− 6μ3Y

(
1 − Y 2

)2 d2

dY 2
+ μ3

(
1 − Y 2

)3 d3

dY 3
,

d4

dξ4
= −8μ4Y

(
1 − Y 2

)(
3Y 2 − 2

) d

dY
+ 4μ4

(
1 − Y 2

)2(
9Y 2 − 2

) d2

dY 2

− 12μ4Y
(
1 − Y 2

)3 d3

dY 3
+ μ4

(
1 − Y 2

)4 d4

dY 4
,

(2.6)

where other derivatives can be derived in a similar manner.
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(v) The ansatz of the form

U
(
μξ

)
= S(Y ) =

M∑
k=0

akY
k +

M∑
k=1

bkY
−k (2.7)

is introduced where M is a positive integer, in most cases, that will be determined.
If M is not an integer, then a transformation formula is used to overcome this
difficulty. Substituting (2.6) and (2.7) into the ODE, (2.4) yields an equation in
powers of Y .

(vi) To determine the parameter M, the linear terms of highest order in the resulting
equation with the highest order nonlinear terms are balanced. WithM determined,
one collects the all coefficients of powers of Y in the resulting equation where these
coefficients have to vanish. This will give a system of algebraic equations involving
the ak and bk, (k = 0, . . . ,M), V , and μ. Having determined these parameters,
knowing that M is a positive integer in most cases, and using (2.7) one obtains
an analytic solution in a closed form.

3. The Benney-Luke Equation

The Benney-Luke equation can be written as

utt − uxx + auxxxx − buxxtt + utuxx + 2uxuxt = 0, (3.1)

where a and b are positive numbers such that a−b = σ−1/3 (σ is named the Bond number). In
order to solve (3.1) by the tanh-coth method, we use the wave transformation u(x, t) = U(μξ)
with wave variable ξ = x − V t; (3.1) takes on the form of an ordinary differential equation as
follows:

(
V 2 − 1

)
U′′ +

(
a − bV 2

)
U′′′′ − 3VU′U′′ = 0. (3.2)

Balancing the order of U′′′′ with the order of U′U′′ in (3.2) we find M = 1. Using the
assumptions of the tanh-coth method (2.5)–(2.7) gives the solution in the form

U
(
μξ

)
= S(Y ) =

1∑
k=0

akY
k +

1∑
k=1

bkY
−k. (3.3)
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Substituting (3.3) into (3.2), we obtain a system of algebraic equations for a0, a1, b1, and V in
the following form:

Y 10 : −24bV 2a1μ
4 + 24Va2

1μ
3 + 24aa1μ

4 = 0,

Y 9 : 18Va0a1μ
3 = 0,

Y 8 : −40bV 2a1μ
4 − 2V 2a1μ

2 + 36Va2
1μ

3 − 12b1Va1μ
3 + 40aa1μ

4 + 2a1μ
2 = 0,

Y 7 : 24Va0a1μ
3 = 0,

Y 6 : −16bV 2a1μ
4 − 2V 2a1μ

2 + 12Va2
1μ

3 − 12b1Va1μ
3 + 16aa1μ

4 + 2a1μ
2 = 0,

Y 5 : 6Va0a1μ
3 + 6Va0b1μ

3 = 0,

Y 4 : −16bV 2b1μ
4 − 2V 2b1μ

2 + 12Vb21μ
3 − 12a1Vb1μ

3 + 16ab1μ4 + 2b1μ2 = 0,

Y 3 : 24Va0b1μ
3 = 0,

Y 2 : −40bV 2b1μ
4 − 2V 2b1μ

2 + 36Vb21μ
3 − 12a1Vb1μ

3 + 40ab1μ4 + 2b1μ2 = 0,

Y 1 : 18Va0b1μ
3 = 0,

Y 0 : 24Vb21μ
3 + 24ab1μ4 − 24V 2bb1μ

4 = 0.

(3.4)

From the output of the Maple packages we find three sets of solutions:

a0 = b1 = 0, a1 =
(−a + b)μ

V
(
2μ2b + 1

) , V = ±
√

2μ2a + 1
2μ2b + 1

,

a0 = a1 = 0, b1 =
(−a + b)μ

V
(
2μ2b + 1

) , V = ±
√

2μ2a + 1
2μ2b + 1

,

a0 = 0, a1 = b1 =
(−a + b)μ

V
(
8μ2b + 1

) , V = ±
√

8μ2a + 1
8μ2b + 1

,

(3.5)

where μ is left as a free parameter. The travelling wave solutions are as follows:

u1(x, t) =

√
2μ2b + 1
2μ2a + 1

(−a + b)μ(
2μ2b + 1

) tanhμ

⎛
⎝x ∓

√
2μ2a + 1
2μ2b + 1

t

⎞
⎠,

u2(x, t) =

√
2μ2b + 1
2μ2a + 1

(−a + b)μ(
2μ2b + 1

) cothμ

⎛
⎝x ∓

√
2μ2a + 1
2μ2b + 1

t

⎞
⎠,

u3(x, t) =

√
8μ2b + 1
8μ2a + 1

(−a + b)μ(
2μ2b + 1

)
⎛
⎝tanhμ

⎛
⎝x ∓

√
8μ2a + 1
8μ2b + 1

t

⎞
⎠ + cothμ

⎛
⎝x ∓

√
8μ2a + 1
8μ2b + 1

t

⎞
⎠

⎞
⎠.

(3.6)
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4. The Higher-Order Improved Boussinesq Equation

We consider the Higher-order improved Boussinesq equation as follows:

−αuxxxxtt + βuxxtt − utt + uxx +
(
u2
)
xx

= 0, (4.1)

where α and β are arbitrary non zero real constants.
Using the wave transformation u(x, t) = U(μξ) with wave variable ξ = x − V t then by

integrating this equation and considering the constant of integration to be zero, we obtain the
ODE as follows:

−αV 2U′′′′ + βV 2U′′ +
(
1 − V 2

)
U +U2 = 0. (4.2)

Balancing the first term with the last term in (4.2) we find M = 4. Using the assumptions of
the tanh-coth method (2.5)–(2.7) gives the solution in the form

U
(
μξ

)
= S(Y ) =

4∑
k=0

akY
k +

4∑
k=1

bkY
−k. (4.3)

Substituting (4.3) into (4.2), we obtain a system of algebraic equations for a0, a1, a2, a3, a4, b1,
b2, b3, b4, μ, and V in the following form:

Y 16 : a2
4 − 840V 2a4αμ

4 = 0,

Y 15 : 2a4a3 − 360V 2a3αμ
4 = 0,

Y 14 : 2a4a2 + a2
3 + 20V 2a4βμ

2 + 2080V 2a4αμ
4 − 120V 2a2αμ

4 = 0,

Y 13 : 2a4a1 + 2a3a2 + 12V 2a3βμ
2 + 816V 2a3αμ

4 − 24V 2a1αμ
4 = 0,

Y 12 : 240αV 2a2μ
4 + 6βV 2a2μ

2 − 1696a4αV
2μ4

− 32a4βV
2μ2 − a4V

2 + a2
2 + a4 + 2a4a0 + 2a3a1 = 0,

Y 11 : a3 − V 2a3 + 2a4b1 + 2a3a0 + 2a1a2 − 18V 2a3βμ
2

− 576V 2a3αμ
4 + 2V 2a1βμ

2 + 40V 2a1αμ
4 = 0,

Y 10 : a2 − V 2a2 + 2a4b2 + 2b1a3 + 2a0a2 + a2
1

+ 12V 2a4βμ
2 + 480V 2a4αμ

4 − 8V 2a2βμ
2 − 136V 2a2αμ

4 = 0,

Y 9 : a1 − V 2a1 + 2a4b3 + 2b2a3 + 2b1a2 + 2a0a1

+ 6V 2a3βμ
2 + 120V 2a3αμ

4 − 2V 2a1βμ
2 − 16V 2a1αμ

4 = 0,
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Y 8 : a0 − V 2a0 + 2a4b4 + 2b3a3 + 2b1a1 + 2b2a2

+ a2
0 − 24V 2a4αμ

4 + 2V 2b2βμ
2 + 16V 2b2αμ

4 − 24V 2b4αμ
4

+ 2V 2a2βμ
2 + 16V 2a2αμ

4 + 16V 2b2αμ
4 − 24V 2b4αμ

4 + 2V 2a2βμ
2 + 16V 2a2αμ

4 = 0,

Y 7 : b1 − V 2b1 + 2b4a3 + 2b1a0 + 2b2a1 + 2b3a2

− 2V 2b1βμ
2 − 16V 2b1αμ

4 + 6V 2b3βμ
2 + 120V 2b3αμ

4 = 0,

Y 6 : b2 − V 2b2 + 2b2a0 + 2b3a1 + 2b4a2 + b21 − 8V 2b2βμ
2

− 136V 2b2αμ
4 + 12V 2b4βμ

2 + 480V 2b4αμ
4 = 0,

Y 5 : b3 − V 2b3 + 2b1b2 + 2b3a0 + 2b4a1 + 2V 2b1βμ
2

+ 40V 2b1αμ
4 − 18V 2b3βμ

2 − 576V 2b3αμ
4 = 0,

Y 4 : 240αV 2b2μ
4 + 6βV 2b2μ

2 − 1696b4αV 2μ4

− 32b4βV 2μ2 − b4V
2 + b22 + b4 + 2b1b3 + 2b4a0 = 0,

Y 3 : 2b1b4 + 2b2b3 − 24V 2b1αμ
4 + 12V 2b3βμ

2 + 816V 2b3αμ
4 = 0,

Y 2 : 2b2b4 + b23 − 120V 2b2αμ
4 + 20V 2b4βμ

2 + 2080V 2b4αμ
4 = 0,

Y 1 : 2b3b4 − 360V 2b3αμ
4 = 0,

Y 0 : b24 − 840V 2b4αμ
4 = 0. (4.4)

Using Maple gives six sets of solutions:

a0 = a4 =
105β2

2
(−36β2 + 169α

) , a2 =
−105β2

−36β2 + 169α
, a1 = a3 = b1 = b2 = b3 = b4 = 0,

V = ± 13√
−1872μ2β + 169

, μ = ± 1
26

√
13β
α

,

a0 =
33β2

2
(
36β2 + 169α

) , a2 =
−105β2

36β2 + 169α
, a4 =

105β2

2
(
36β2 + 169α

) ,

a1 = a3 = b1 = b2 = b3 = b4 = 0,

V = ± 13√
1872μ2β + 169

, μ = ± 1
26

√
13β
α

,
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a0 =
105β2

2
(−36β2 + 169α

) , b2 =
−105β2

−36β2 + 169α
, b4 =

105β2

2
(−36β2 + 169α

) ,

a1 = a2 = a3 = a4 = b1 = b3 = 0,

V = ± 13√
−1872μ2β + 169

, μ = ± 1
26

√
13β
α

,

a0 =
33β2

2
(
36β2 + 169α

) , b2 =
−105β2

36β2 + 169α
, b4 =

105β2

2
(
36β2 + 169α

) ,

a1 = a2 = a3 = a4 = b1 = b3 = 0,

V = ± 13√
1872μ2β + 169

, μ = ± 1
26

√
13β
α

,

a0 =
315β2

16
(−36β2 + 169α

) , a2 = b2 =
−105β2

8
(−36β2 + 169α

) , a4 = b4 =
105β2

32
(−36β2 + 169α

) ,

a1 = a3 = b1 = b3 = 0,

V = ± 13√
−7488μ2β + 169

, μ = ± 1
52

√
13β
α

,

a0 =
−261β2

16
(
36β2 + 169α

) , a2 = b2 =
−105β2

8
(
36β2 + 169α

) , a4 = b4 =
105β2

32
(
36β2 + 169α

) ,

a1 = a3 = b1 = b3 = 0,

V = ± 13√
7488μ2β + 169

, μ = ± 1
52

√
13β
α

,

(4.5)

The travelling wave solutions are as follows:

u1(x, t) =
105β2

2
(−36β2 + 169α

) − 105β2

−36β2 + 169α
tanh2μ

⎛
⎜⎝x ∓ 13√

−1872μ2β + 169
t

⎞
⎟⎠,

u2(x, t) =
33β2

2
(
36β2 + 169α

) − 105β2

36β2 + 169α
tanh2μ

⎛
⎜⎝x ∓ 13√

1872μ2β + 169
t

⎞
⎟⎠

+
105β2

2
(
36β2 + 169α

) tanh4μ

⎛
⎜⎝x ∓ 13√

1872μ2β + 169
t

⎞
⎟⎠,
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u3(x, t) =
105β2

2
(−36β2 + 169α

) − 105β2

−36β2 + 169α
coth2μ

⎛
⎜⎝x ∓ 13√

−1872μ2β + 169
t

⎞
⎟⎠

+
105β2

2
(−36β2 + 169α

)coth4μ

⎛
⎜⎝x ∓ 13√

−1872μ2β + 169
t

⎞
⎟⎠,

u4(x, t) =
33β2

2
(
36β2 + 169α

) − 105β2

36β2 + 169α
coth2μ

⎛
⎜⎝x ∓ 13√

1872μ2β + 169
t

⎞
⎟⎠

+
105β2

2
(
36β2 + 169α

)coth4μ

⎛
⎜⎝x ∓ 13√

1872μ2β + 169
t

⎞
⎟⎠,

u5(x, t) =
315β2

16
(−36β2 + 169α

) − 105β2

8
(−36β2 + 169α

) tanh2μ

⎛
⎜⎝x ∓ 13√

−7488μ2β + 169
t

⎞
⎟⎠

− 105β2

8
(−36β2 + 169α

)coth2μ

⎛
⎜⎝x ∓ 13√

−7488μ2β + 169
t

⎞
⎟⎠

+
105β2

32
(−36β2 + 169α

) tanh4μ

⎛
⎜⎝x ∓ 13√

−7488μ2β + 169
t

⎞
⎟⎠

+
105β2

32
(−36β2 + 169α

)coth4μ

⎛
⎜⎝x ∓ 13√

−7488μ2β + 169
t

⎞
⎟⎠,

u6(x, t) = − 261β2

16
(
36β2 + 169α

) − 105β2

8
(
36β2 + 169α

) tanh2μ

⎛
⎜⎝x ∓ 13√

7488μ2β + 169
t

⎞
⎟⎠

− 105β2

8
(
36β2 + 169α

)coth2μ

⎛
⎜⎝x ∓ 13√

7488μ2β + 169
t

⎞
⎟⎠

+
105β2

32
(
36β2 + 169α

) tanh4μ

⎛
⎜⎝x ∓ 13√

7488μ2β + 169
t

⎞
⎟⎠

+
105β2

32
(
36β2 + 169α

)coth4μ

⎛
⎜⎝x ∓ 13√

7488μ2β + 169
t

⎞
⎟⎠.

(4.6)
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