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The purpose of this paper is to introduce and study a modified Halpern’s iterative scheme for
solving the split feasibility problem (SFP) in the setting of infinite-dimensional Hilbert spaces.
Under suitable conditions a strong convergence theorem is established. The main result presented
in this paper improves and extends some recent results done by Xu (Iterative methods for the split
feasibility problem in infinite-dimensional Hilbert space, Inverse Problem 26 (2010) 105018) and
some others.

1. Introduction

Let C and Q be nonempty-closed convex subsets of real Hilbert spaces H1 and H2, respec-
tively. Let A be a linear-bounded operator fromH1 toH2. The split feasibility problem (SFP)
is finding a point x̂ satisfying the following property:

x̂ ∈ C, Ax̂ ∈ Q. (1.1)

The SFP was introduced by Censor and Elfving [1] for modeling inverse problems
which arise from phase retrievals andmedical image reconstruction [2], and verywell-known
iterative algorithms have been invented to solve it [2].

We use Γ to denote the solution set of SFP:

Γ = {x̂ ∈ C : Ax̂ ∈ Q}, (1.2)
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and assume that the SFP (1.1) is consistent (i.e., (1.1) has a solution) so that Γ is closed,
convex, and nonempty, it is not hard to see that x ∈ C solves (1.1) if and only if it solves the
following fixed point equation;

x = PC

(

I − γA∗(I − PQ

)

A
)

x, x ∈ C, (1.3)

where PC and PQ are the (orthogonal) projections onto C and Q, respectively, γ > 0 is any
positive constant and A∗ denotes the adjoint of A. Moreover, for sufficiently small γ > 0, the
operator PC(I−γA∗(I−PQ)A)which defines the fixed point equation in (1.3) is nonexpansive.

To solve the SFP (1.1), Byrne [2] proposed his CQ algorithm (see also [3])which gene-
rates a sequence {xn} by

xn+1 = PC

(

I − γA∗(I − PQ

)

A
)

xn, n ≥ 0, (1.4)

where γ ∈ (0, 2/λ) with λ being the spectral radius of the operator A∗A.
Very recently, Xu [4] has viewed theCQ algorithm for averagedmappings and applied

Mann’s algorithm to solving the SFP, and he also proved that an averaged CQ algorithm is
weakly convergent to a solution of the SFP.

In this paper, we also regard the CQ algorithm as a fixed point algorithm for averaged
mappings and try to study the SFP by the following modified Halpern’s iterative scheme;

xn+1 = αnu + βnxn + γnPC

(

I − ξA∗(I − PQ

)

A
)

xn, n ≥ 0, (1.5)

where {αn}, {βn}, and {γn} are three sequences in [0, 1] satisfying αn+βn+γn = 1. Furthermore,
our result extends and improves the result of Xu [4] from weak to strong convergence
theorems.

2. Preliminaries

Throughout the paper, we adopt the following notation.
Let xn be a sequence and x be a point in a normed spaceX. We use xn → x and xn ⇀ x

to denote strong and weak convergence to x of the sequence {xn}, respectively. In addition,
we use ωw(xn) to denote the weak ω-limit set of the sequence {xn}; namely,

ωw(xn) :=
{

x : xni ⇀ x for some subsequence {xni} of {xn}
}

. (2.1)

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and
let K be a nonempty-closed convex subset ofH. For every point x ∈ H, there exists a unique
nearest point in K, denoted by PKx, such that

‖x − PKx‖ ≤ ∥

∥x − y
∥

∥, ∀y ∈ K, (2.2)
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PK is called the metric projection ofH ontoK. It is well known that PK is a nonexpan-
sive mapping ofH onto K and satisfies

〈x − y, PKx − PKy〉 ≥ ∥

∥PKx − PKy
∥

∥

2
, (2.3)

for every x, y ∈ H. Moreover, PKx is characterized by the following properties: PKx ∈ K and

〈x − PKx, y − PKx〉 ≤ 0,
∥

∥x − y
∥

∥

2 ≥ ‖x − PKx‖2 +
∥

∥y − PKx
∥

∥

2
,

(2.4)

for all x ∈ H,y ∈ K.
Some important properties of projections are gathered in the following proposition.

Proposition 2.1. Given x ∈ H and z ∈ K. Then z = PKx if and only if

〈x − z, y − z〉 ≤ 0, ∀y ∈ K. (2.5)

One also needs other sorts of nonlinear operators which are introduced below.
Let T,A : H → H be the nonlinear operators.

(1) T is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ H.

(2) T is firmly nonexpansive if 2T − I is nonexpansive. Equivalent, T = (I + S)/2, where
S : H → H is nonexpansive. Alternatively, T is firmly nonexpansive if and only if

〈x − y, Tx − Ty〉 ≥ ∥

∥Tx − Ty
∥

∥

2
, x, y ∈ H. (2.6)

(3) T is averaged if T = (1 − α)I + αS, where α ∈ (0, 1) and S : H → H is nonexpansive.
In this case, one also says that T is α-averaged. A firmly nonexpansive mapping is (1/2)-
averaged.

(4) A is monotone if 〈Ax −Ay, x − y〉 ≥ 0 for x, y ∈ H.

(5) A is β-strongly monotone, with β > 0, if

〈x − y,Ax −Ay〉 ≥ β
∥

∥x − y
∥

∥

2
, x, y ∈ H. (2.7)

(6) A is ν-inverse strongly monotone (ν-ism), with ν > 0, if

〈x − y,Ax −Ay〉 ≥ ν
∥

∥Ax −Ay
∥

∥

2
, x, y ∈ H. (2.8)

It is well known that both PK and I − PK are firmly nonexpansive and (1/2)-ism.
Denote by Fix(T) the set of fixed points of a self-mapping T defined on H, (i.e., Fix(T) = x ∈

H : Tx = x).
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Proposition 2.2 (see [2, 5]). One has the following assertions.

(1) T is nonexpansive if and only if the complement I − T is (1/2)-ism.

(2) If T is ν-ism and γ > 0, then γT is (ν/γ)-ism.

(3) T is averaged if and only if the complement I − T is ν-ism, for some ν > (1/2).

Indeed, for α ∈ (0, 1), T is α-averaged if and only if I − T is (1/2α)-ism.

(4) If T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then the composite T1T2 is
α-averaged, where α = α1 + α2 − α1α2.

(5) If T1 and T2 are averaged and have a common fixed point, then Fix(T1T2) = Fix(T1) ∩
Fix(T2).

Lemma 2.3 (see [6]). Let K be a nonempty-closed convex subset of a real Hilbert space H and T
be nonexpansive mapping on K with Fix(T)/= ∅. If {xn} is a sequence in K which converges weakly
to x and if {(I − T)xn} converges strongly to y, then y = (I − T)x. In particular, if y = 0, then
x ∈ Fix(T).

Lemma 2.4 (see [7]). Let (E, 〈·, ·〉) be an inner product space. Then for all x, y, z∈E and αn, βn, γn ∈
[0, 1] with αn + βn + γn = 1, one has

∥

∥αx + βy + γz
∥

∥

2 = α‖x‖2 + β
∥

∥y
∥

∥

2 + γ‖z‖2 − αβ
∥

∥x − y
∥

∥

2 − αγ‖x − z‖2 − βγ
∥

∥y − z
∥

∥

2
. (2.9)

Lemma 2.5 (see [8]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − γn
)

an + δn, (2.10)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=0 γn = ∞;

(2) lim supn→∞δn/γn ≤ 0 or
∑∞

n=0 |δn| < ∞.

Then, limn→∞an = 0.

3. Main Result

Let C be a nonempty closed and convex subset of a Hilbert space H. For any u, x0 ∈ C, we
define the sequence {xn} by

xn+1 = αnu + βnxn + γnPC

(

I − ξA∗(I − PQ

)

A
)

xn, n ≥ 0, (3.1)

where {αn}, {βn}, and {γn} are three sequences in [0, 1] and satisfy αn + βn + γn = 1.

Theorem 3.1. Suppose that the SFP is consistent and 0 < ξ < (2/‖A‖2). Let {xn} be a sequence
defined as in (3.1). If the following assumptions are satisfied:
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(C1) limn→∞αn = 0 but
∑∞

n=1 αn = ∞,

(C2) lim supn→∞βn < 1,

(C3) the sums
∑∞

n=1 |αn+1 − αn|,
∑∞

n=1 |βn+1 − βn| and
∑∞

n=1 |γn+1 − γn| are finite.

Then {xn} converges strongly to a solution of the SFP (1.1).

Proof. We firstly show that the sequence {xn} is bounded. For our convenience, we take T :=
PC(I − ξA∗(I − PQ)A). Then, for any x∗ ∈ Γ, we have Tx∗ = x∗. Now, we observe that

‖xn+1 − x∗‖ ≤ ∥

∥αnu + βnxn + γnTxn − x∗∥
∥

≤ αn‖u − x∗‖ + βn‖xn − x∗‖ + γn‖Txn − x∗‖.
(3.2)

Now, we note that the condition 0 < ξ < (2/‖A‖2) implies that the operator PC(I − ξA∗(I −
PQ)A) is averaged. Since I − PQ is firmly nonexpansive mappings and so is (1/2)-average,
which is 1-ism. Also observe that A∗(I − PQ)A is (1/‖A‖2)-ism so that ξA∗(I − PQ)A is
(1/ξ‖A‖2)-ism. Further, from the fact that I − ξA∗(I − PQ)A is (ξ‖A‖2/2)-averaged and PC

is (1/2)-averaged, we may obtain that PC(I − ξA∗(I − PQ)A) is χ-averaged, where

χ =
1
2
+
ξ‖A‖2

2
− 1
2
· ξ‖A‖2

2
=

2 + ξ‖A‖2
4

. (3.3)

This implies that T = χI + (1−χ)S, where χ=(2+ ξ‖A‖2/4)∈(0, 1) for some nonexpan-
sive mappings S. Note that T is also nonexpansive mappings. Hence, we have

‖Txn − x∗‖ = ‖Txn − Tx∗‖ ≤ ‖xn − x∗‖. (3.4)

From the inequalities (3.2) and (3.4), we have

‖xn+1 − x∗‖ ≤ αn‖u − x∗‖ + (1 − αn)‖xn − x∗‖
≤ max{‖u − x∗‖, ‖xn − x∗‖}.

(3.5)

Continuing inductively, we may obtain that the inequality

‖xn+1 − x∗‖ ≤ max{‖u − x∗‖, ‖x0 − x∗‖}, (3.6)

holds for all n ≥ 0. So, {xn} is bounded so does {Txn}.
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Next, we will show that limn→∞‖xn+1 − xn‖ = 0. Observe that

‖xn+1 − xn‖ =
∥

∥

(

αnu + βnxn + γnTxn

) − (

αn−1u + βn−1xn−1 + γn−1Txn−1
)∥

∥

≤ ∥

∥

(

αnu + βnxn + γnTxn

) − (

αnu + βnxn−1 + γnTxn−1
)∥

∥

+
∥

∥

(

αnu + βnxn−1 + γnTxn−1
) − (

αn−1u + βn−1xn−1 + γn−1Txn−1
)∥

∥

≤ (1 − αn)‖xn − xn−1‖ + |αn − αn−1|‖u‖ +
∣

∣βn − βn−1
∣

∣‖xn−1‖

+
∣

∣γn − γn−1
∣

∣‖Txn−1‖.

(3.7)

Since {xn} and {Txn} are bounded, there existsM = sup(‖u‖, ‖xn+1‖, ‖Txn−1‖) > 0 such that

‖xn+1 − xn‖ ≤ (1 − αn)‖xn − xn−1‖ +M
(|αn − αn−1| +

∣

∣βn − βn−1
∣

∣ +
∣

∣γn − γn−1
∣

∣

)

. (3.8)

According to Lemma 2.5 and the condition (C3), we have limn→∞‖xn+1 − xn‖ = 0.
We note that

‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Txn‖

≤ ‖xn − xn+1‖ +
∥

∥αnu + βnxn +
(

1 − αn − βn
)

Txn − Txn

∥

∥

= ‖xn − xn+1‖ +
∥

∥αn(u − Txn) + βn(xn − Txn)
∥

∥

≤ ‖xn − xn+1‖ + αn‖(u − Txn)‖ + βn‖(xn − Txn)‖

=
1

1 − βn
‖xn+1 − xn‖ + αn

1 − βn
‖u − Txn‖.

(3.9)

Consequently, by the condition (C1) and (C2), we also have limn→∞‖xn − Txn‖ = 0. Next, we
will show that

lim sup
n→∞

〈v − z0, xn+1 − z0〉 ≤ 0, where z0 = PΓv. (3.10)

To show this, we can choose a subsequence {xnk} of {xn} such that

lim sup
n→∞

〈v − z0, Txn − z0〉 = lim
k→∞

〈v − z0, Txnk − z0〉. (3.11)

As {xn} is bounded, there exists a subsequence {xnk} which converges weakly to z.
We may assume without loss of generality that xnk ⇀ z. Since ‖Txn − xn‖ → 0, we obtain
Txnk ⇀ z as k → ∞. By Lemma 2.3, we obtain that z ∈ Fix(T) = Γ.
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Now from (2.4), observe that

lim sup
n→∞

〈v − z0, xn − z0〉 = lim sup
n→∞

〈v − z0, Txn − z0〉

= lim
k→∞

〈v − z0, Txnk − z0〉

= 〈v − z0, z − z0〉 ≤ 0.

(3.12)

Therefore, we compute

‖xn+1 − z0‖2 = 〈αnv + βnxn + γnTxn − z0, xn+1 − z0〉
= αn〈v − z0, xn+1 − z0〉 + βn〈xn − z0, xn+1 − z0〉 + γn〈Txn − z0, xn+1 − z0〉

≤ αn〈v − z0, xn+1 − z0〉 + 1
2
βn
(

‖xn − z0‖2 + ‖xn+1 − z0‖2
)

+
1
2
γn
(

‖xn − z0‖2 + ‖xn+1 − z0‖2
)

≤ αn〈v − z0, xn+1 − z0〉 + 1
2
(1 − αn)

(

‖xn − z0‖2 + ‖xn+1 − z0‖2
)

(3.13)

which implies that

‖xn+1 − z0‖2 ≤ (1 − αn)
(

‖xn − z0‖2
)

+ 2αn〈v − z0, xn+1 − z0〉. (3.14)

Finally, by (3.12), (3.14), and Lemma 2.5, we conclude that {xn} converges to z0. This com-
pletes the proof.

Letting βn ≡ 0 of iterative scheme (3.1) in Theorem 3.1, then we obtain the following
corollary.

Corollary 3.2. For any u, x0 ∈ C, one defines the sequence {xn} by

xn+1 = αnu + (1 − αn)PC

(

I − ξA∗(I − PQ

)

A
)

xn, n ≥ 0, (3.15)

where {αn} is a sequence in [0, 1]. Suppose that the SFP is consistent and 0 < ξ < (2/‖A‖2).
Let {xn} be defined as in (3.15). If the following assumptions are satisfied:

(C1) limn→∞αn = 0 but
∑∞

n=1 αn = ∞,

(C2)
∑∞

n=1 |αn+1 − αn| < ∞.

Then {xn} converges to a solution of the SFP (1.1).

Remark 3.3. Theorem 3.1 and Corollary 3.2 extend and improve the result of Xu [4] fromweak
to strong convergence theorems by using the modified Halpern’s iterative scheme.
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